1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
import os
import requests
import feedparser
import datetime
from github import Github
from openai import OpenAI
ALLOWED_CATEGORIES = [
"cs.AI", "cs.CL", "cs.CV", "cs.LG", "cs.NE", "cs.RO",
"cs.IR", "stat.ML"
]
SYSTEM_PROMPT = (
"You are a helpful assistant. The user will give you a paper title and abstract. "
"Your task: Decide if this paper is about large language models (or generative text models) AND about bias/fairness. "
"If yes, respond with just a single character: 1. Otherwise, respond with a single character: 0. "
"No extra explanation, no punctuation—only the number."
)
def advanced_filter(entry):
title = getattr(entry, 'title', '').lower()
summary = getattr(entry, 'summary', '').lower()
full_text = title + " " + summary
general_terms = ["bias", "fairness"]
model_terms = ["llm", "language model", "transformer", "gpt", "nlp",
"pretrained", "embedding", "generation", "alignment", "ai"]
negative_terms = ["estimation", "variance", "quantum", "physics",
"sensor", "circuit", "electronics", "hardware"]
has_general = any(term in full_text for term in general_terms)
has_model = any(term in full_text for term in model_terms)
has_negative = any(term in full_text for term in negative_terms)
return (has_general and has_model) and (not has_negative)
def is_relevant_by_api(title, summary, client, model="gpt-4-turbo"):
prompt = f"Title: {title}\nAbstract: {summary}"
try:
dialogue = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt}
],
temperature=0.0,
max_tokens=1
)
response_msg = dialogue.choices[0].message.content.strip()
print(f"[DEBUG][API] OpenAI response='{response_msg}' for paper '{title[:60]}...'")
return response_msg == "1"
except Exception as e:
print("[ERROR][API] calling OpenAI API:", e)
return False
def fetch_papers_combined(days=1):
import datetime, requests, feedparser
# 1. Compute & log your 24 h window
now_utc = datetime.datetime.now(datetime.timezone.utc)
cutoff_utc = now_utc - datetime.timedelta(days=days)
print(f"[DEBUG] now_utc = {now_utc.isoformat()}")
print(f"[DEBUG] cutoff_utc= {cutoff_utc.isoformat()}")
# 2. Build your category query (or replace with "all:*" to disable)
cat_query = " OR ".join(f"cat:{c}" for c in ALLOWED_CATEGORIES)
base_url = "http://export.arxiv.org/api/query"
step, start = 100, 0
all_entries = []
while True:
params = {
"search_query": cat_query,
"sortBy": "submittedDate",
"sortOrder": "descending",
"start": start,
"max_results": step
}
resp = requests.get(base_url, params=params, timeout=30)
resp.raise_for_status()
print(f"[DEBUG] arXiv query URL: {resp.url}")
feed = feedparser.parse(resp.content)
batch = feed.entries
print(f"[DEBUG] fetched batch size: {len(batch)}")
if not batch:
break
# 3. Parse & filter every entry in this batch
kept = []
for e in batch:
# parse the Z‑timestamp
pub = datetime.datetime.strptime(
e.published, "%Y-%m-%dT%H:%M:%SZ"
).replace(tzinfo=datetime.timezone.utc)
print(f"[DEBUG] entry.published → {pub.isoformat()}")
if pub >= cutoff_utc:
kept.append(e)
# 4. Collect those in window
all_entries.extend(kept)
print(f"[DEBUG] kept {len(kept)} of {len(batch)} in this batch")
# 5. Stop if *none* in this batch were new enough
if not kept:
print("[DEBUG] no entries in window → stopping fetch loop")
break
# 6. Otherwise page on (or stop if fewer than a full page)
if len(batch) < step:
break
start += step
print(f"[DEBUG] total fetched papers from arXiv in last {days} day(s): {len(all_entries)}")
# …then proceed with your OpenAI filtering as before…
# (unchanged code for OpenAI calls, category checks, README updates)
return final_matched
def update_readme_in_repo(papers, token, repo_name):
if not papers:
print("[INFO] No matched papers, skip README update.")
return
g = Github(token)
repo = g.get_repo(repo_name)
readme_file = repo.get_contents("README.md", ref="main")
old_content = readme_file.decoded_content.decode("utf-8")
now_utc_str = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M UTC")
new_section = f"\n\n### Auto-captured papers on {now_utc_str}\n"
for p in papers:
cat_str = ", ".join(p["categories"])
new_section += f"- **{p['title']}** (Published={p['published']}) \n"
new_section += f" - Categories: {cat_str} \n"
new_section += f" - Link: {p['link']}\n\n"
updated_content = old_content + new_section
commit_msg = f"Auto update README with {len(papers)} new papers"
repo.update_file(
path="README.md",
message=commit_msg,
content=updated_content,
sha=readme_file.sha,
branch="main"
)
print(f"[INFO] README updated with {len(papers)} papers.")
def main():
days = 1
print(f"[DEBUG] Starting fetch_papers_combined with days={days}")
papers = fetch_papers_combined(days=days)
print(f"[DEBUG] After fetch_papers_combined: {len(papers)} papers matched.")
github_token = os.getenv("TARGET_REPO_TOKEN")
target_repo_name = os.getenv("TARGET_REPO_NAME")
print(f"[DEBUG] Github Token Set: {'Yes' if github_token else 'No'}")
print(f"[DEBUG] Target Repo Name: {target_repo_name}")
if github_token and target_repo_name and papers:
update_readme_in_repo(papers, github_token, target_repo_name)
else:
print("[INFO] Skipped README update due to missing credentials or no papers matched.")
if __name__ == "__main__":
main()
|