blob: 84ccd9e6f427d20b85101a1bf7e8923a3bd06db4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
#!/usr/bin/env python3
"""
Test script for daily paper fetching functionality.
This script tests the daily paper fetching with a small sample to verify
the system works correctly before running in production.
"""
import os
import sys
from datetime import datetime, timezone, timedelta
# Add the parent directory to the path so we can import the main module
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from scripts.fetch_papers import ArxivPaperFetcher
def test_daily_fetch():
"""Test fetching papers from the last 3 days (to ensure we get some results)."""
# Check for OpenAI API key
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("ERROR: OPENAI_API_KEY environment variable is required")
print("Please set your OpenAI API key in the environment variable")
sys.exit(1)
print("Testing daily paper fetching (last 3 days)...")
# Initialize fetcher
fetcher = ArxivPaperFetcher(openai_api_key)
# Test with last 3 days to ensure we get some results
papers = fetcher.fetch_recent_papers(days=3)
print(f"\nFetch completed!")
print(f"Found {len(papers)} relevant LLM bias papers in the last 3 days")
if papers:
print("\nRelevant papers found:")
for i, paper in enumerate(papers, 1):
print(f"\n{i}. {paper['title']}")
print(f" Authors: {', '.join(paper['authors'][:3])}")
if len(paper['authors']) > 3:
print(" et al.")
print(f" Categories: {', '.join(paper['categories'])}")
print(f" Published: {paper['published']}")
print(f" arXiv ID: {paper['arxiv_id']}")
print(f" Link: {paper['link']}")
print(f" Abstract: {paper['abstract'][:200]}...")
print("-" * 50)
else:
print("\nNo relevant papers found in the last 3 days.")
print("This could be normal - LLM bias papers are not published every day.")
def test_system_components():
"""Test individual system components."""
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("ERROR: OPENAI_API_KEY environment variable is required")
sys.exit(1)
print("\nTesting system components...")
# Test fetcher initialization
try:
fetcher = ArxivPaperFetcher(openai_api_key)
print("✓ ArxivPaperFetcher initialized successfully")
except Exception as e:
print(f"✗ Failed to initialize ArxivPaperFetcher: {e}")
return False
# Test arXiv API connectivity
try:
end_date = datetime.now(timezone.utc)
start_date = end_date - timedelta(days=1)
papers = fetcher.fetch_papers_by_date_range(start_date, end_date, max_papers=5)
print(f"✓ arXiv API connectivity works (fetched {len(papers)} papers)")
except Exception as e:
print(f"✗ Failed to connect to arXiv API: {e}")
return False
# Test OpenAI API connectivity (if we have papers to test)
if papers:
try:
sample_paper = papers[0]
is_relevant = fetcher._check_paper_relevance(sample_paper)
print(f"✓ OpenAI API connectivity works (test result: {is_relevant})")
except Exception as e:
print(f"✗ Failed to connect to OpenAI API: {e}")
return False
return True
if __name__ == "__main__":
print("ArXiv Daily Paper Fetcher Test")
print("=" * 40)
try:
# Test system components first
if test_system_components():
print("\nAll system components working correctly!")
# Run main test
test_daily_fetch()
print("\n" + "=" * 40)
print("Test completed successfully!")
print("\nTo run the actual daily fetch:")
print("python scripts/fetch_papers.py")
else:
print("\nSystem component test failed!")
sys.exit(1)
except Exception as e:
print(f"\nError during testing: {e}")
sys.exit(1)
|