diff options
| author | zhang <zch921005@126.com> | 2022-08-06 19:36:09 +0800 |
|---|---|---|
| committer | zhang <zch921005@126.com> | 2022-08-06 19:36:09 +0800 |
| commit | 6ff967aaa317073b43c8764386823191cdf8656c (patch) | |
| tree | 8832d2fb5d202f4fd09c5f88c8402f6746af3573 | |
| parent | fd4e40ae2ae58c06226cc9eb4c2ae9bdcfb677fd (diff) | |
update
| -rw-r--r-- | double_11.py | 43 | ||||
| -rw-r--r-- | nlp/gensim_demo/w2c.py | 8 | ||||
| -rw-r--r-- | readme.md | 41 |
3 files changed, 49 insertions, 43 deletions
diff --git a/double_11.py b/double_11.py index 118cfb7..92d14ee 100644 --- a/double_11.py +++ b/double_11.py @@ -1,19 +1,32 @@ +# +# import numpy as np +# import matplotlib.pyplot as plt +# +# years = [y+2009 for y in range(11)] +# gmvs = [0.5, 9.36, 52, 191, 350, 571, 912, 1207, 1682, 2135, 2684] +# +# +# def polynomial(xs, ys, n): +# f = np.polyfit(xs, ys, n) +# def func(x): +# return sum(f[i]*x**(n-i)for i in range(n+1)) +# return func +# +# f = polynomial(years, gmvs, 3) +# print(f(2020)) +# +# plt.plot(years, gmvs, marker='o') +# plt.show() -import numpy as np -import matplotlib.pyplot as plt +if __name__ == '__main__': + daily_rate = 0.00009080 + annual_rate = (1+daily_rate)**365 -years = [y+2009 for y in range(11)] -gmvs = [0.5, 9.36, 52, 191, 350, 571, 912, 1207, 1682, 2135, 2684] + fv_list = [5, 5, 5, 105] + pv = 0 + for i in range(len(fv_list)): + fv = fv_list[i] + pv += fv/annual_rate**(i+1) -def polynomial(xs, ys, n): - f = np.polyfit(xs, ys, n) - def func(x): - return sum(f[i]*x**(n-i)for i in range(n+1)) - return func - -f = polynomial(years, gmvs, 3) -print(f(2020)) - -plt.plot(years, gmvs, marker='o') -plt.show()
\ No newline at end of file + print(pv)
\ No newline at end of file diff --git a/nlp/gensim_demo/w2c.py b/nlp/gensim_demo/w2c.py index bf4ccb1..cf3cd92 100644 --- a/nlp/gensim_demo/w2c.py +++ b/nlp/gensim_demo/w2c.py @@ -6,13 +6,21 @@ from gensim.matutils import unitvec if __name__ == '__main__': + # 包含了句子以及分词的处理 # sentences = word2vec.Text8Corpus('text8') + # # sentences = list of list of words # model = Word2Vec(sentences, workers=cpu_count()//2) # model.save('text8.model') + model = Word2Vec.load('text8.model') + + # model.wv.vectors, model.wv.index2word # woman + king - man == ? + # woman + king - man == queen print(model.most_similar(positive=['woman', 'king'], negative=['man'], topn=2)) + + woman_vec = model.wv.word_vec('woman', use_norm=True) king_vec = model.wv.word_vec('king', use_norm=True) man_vec = model.wv.word_vec('man', use_norm=True) @@ -1,33 +1,18 @@ -## 0. 计算机科学基础 -- algo/sort_and_search.py, [【Python番外】Python排序(TimSort,list.sort/sorted)与搜索(bisect_left/bisect_right/insort) -](https://www.bilibili.com/video/av89285852) -- algo/lexicographic_order.py, [【计算机基础算法】从排列到随机,字典序(lexicographic order)排列算法的实现](https://www.bilibili.com/video/BV1e7411y7cZ) +### 合集列表 + +- [深度学习调包侠](https://space.bilibili.com/59807853/channel/collectiondetail?sid=429351) +- [经典神经网络模型拓扑结构(pytorch](https://space.bilibili.com/59807853/channel/collectiondetail?sid=446911) +- [程序员不务正业系列](https://space.bilibili.com/59807853/channel/collectiondetail?sid=446276) +- [深入理解概率统计](https://space.bilibili.com/59807853/channel/collectiondetail?sid=562732) +- [面向cv的ffmpeg](https://space.bilibili.com/59807853/channel/collectiondetail?sid=545236) +- [动手写 bert 系列](https://space.bilibili.com/59807853/channel/collectiondetail?sid=496538) +- [深度学习面试系列](https://space.bilibili.com/59807853/channel/collectiondetail?sid=464585) +- [手推公式](https://space.bilibili.com/59807853/channel/collectiondetail?sid=462509) +- [python 机器学习](https://space.bilibili.com/59807853/channel/collectiondetail?sid=386935) +- [csp:constraint satisfaction problem](https://space.bilibili.com/59807853/channel/collectiondetail?sid=413959) +- [程序员说会计、经济、金融](https://space.bilibili.com/59807853/channel/collectiondetail?sid=615087) - -## 1. 趣味计算机科学 - -- monte_carlo_triangle.py, [【计算机科学】蒙特卡洛方法计算“一棍砍两刀”构成三角形的概率](https://www.bilibili.com/video/av75100858/) -- double_11.py, [【计算机科学】三阶多项式拟合,如何科学地预测2020年天猫双11交易额?](https://www.bilibili.com/video/av75833668/) - -## 2. 趣味数学 - - -- fun_math/e.py, [【基础数学】1.01^365/0.99^365有数量级的变化,为什么1.001^365/0.999^365却没有数量级的变化。它们跟自然常数e关系,复利与年化,科普,我的学习日记,数学,原创,科学,教育,科技,趣味科普人文,哔哩哔哩,Bilibili,B站,弹幕](https://www.bilibili.com/video/av79317053) - - -## 3. 神经网络与计算机视觉 - -- cv/image_similarity, [【计算机视觉】从图像距离(图像相似性)的计算(ahash/dhash/phash/whash)到以图搜索的实现(deep ranking)(一)](https://www.bilibili.com/video/av77627995) -- cv/holiday_similarity, [【计算机视觉】基于 Siamese network 的图像相似性计算(keras 预训练网络及微调,多输入单输出)](https://www.bilibili.com/video/BV1cJ411v7vp) - - -## 4. 统计 - -- stats/, [【统计】统计检验(从t-distribution(t分布)到t-test(t检验),t-score(t-统计量)以及卡方检验(chi-test),excel计算](https://www.bilibili.com/video/av87641550) - -- stats/gini_index.py, [【统计】从MAD(mean absolute deviation)到Gini系数的计算(python实现)](https://www.bilibili.com/video/av92773925) - |
