diff options
| author | zhang <zch921005@126.com> | 2020-03-28 20:32:36 +0800 |
|---|---|---|
| committer | zhang <zch921005@126.com> | 2020-03-28 20:32:36 +0800 |
| commit | 71e4aa85367ef9af880204f13029211f16ff4f80 (patch) | |
| tree | c2272a20b4144cf5e4828c97092db3ba0213b9af /dip/hog_det/pedestrian_det.py | |
| parent | a3563e0afb9db883c4a366592ff783a42a3eb78d (diff) | |
数字图像处理行人检测与前景背景分割
Diffstat (limited to 'dip/hog_det/pedestrian_det.py')
| -rw-r--r-- | dip/hog_det/pedestrian_det.py | 101 |
1 files changed, 101 insertions, 0 deletions
diff --git a/dip/hog_det/pedestrian_det.py b/dip/hog_det/pedestrian_det.py new file mode 100644 index 0000000..11f54b0 --- /dev/null +++ b/dip/hog_det/pedestrian_det.py @@ -0,0 +1,101 @@ +import cv2 +import imutils +import numpy as np +from imutils import paths +from imutils.object_detection import non_max_suppression + + +def hog_clf(descriptor_type='default'): + if descriptor_type == 'daimler': + winSize = (48, 96) + blockSize = (16, 16) + blockStride = (8, 8) + cellSize = (8, 8) + nbins = 9 + hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins) + hog.setSVMDetector(cv2.HOGDescriptor_getDaimlerPeopleDetector()) + return hog + else: + winSize = (64, 128) + blockSize = (16, 16) + blockStride = (8, 8) + cellSize = (8, 8) + nbins = 9 + hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins) + hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) + return hog + + +def detect_image(hog, image): + # image = cv2.imread(image_path) + image = imutils.resize(image, width=min(400, image.shape[1])) + orig = image.copy() + + # detect people in the image + (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4), + padding=(8, 8), scale=1.1) + + # draw the original bounding boxes + for (x, y, w, h) in rects: + cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2) + + # apply non-maxima suppression to the bounding boxes using a + # fairly large overlap threshold to try to maintain overlapping + # boxes that are still people + rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects]) + pick = non_max_suppression(rects, probs=None, overlapThresh=0.65) + + # draw the final bounding boxes + for (xA, yA, xB, yB) in pick: + cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) + + # show some information on the number of bounding boxes + print("[INFO] {} original boxes, {} after suppression".format( + len(rects), len(pick))) + return image + + +def detect_images(hog, images_path): + # loop over the image paths + for image_path in paths.list_images(images_path): + # load the image and resize it to (1) reduce detection time + # and (2) improve detection accuracy + orig = cv2.imread(image_path) + image = detect_image(hog, orig) + + # show the output images + cv2.imshow("Before NMS", orig) + cv2.imshow("After NMS", image) + if cv2.waitKey(0) & 0xFF == ord('q'): + break + + +def detect_video(hog, video_path): + cap = cv2.VideoCapture(video_path) + while True: + ret, frame = cap.read() + if not ret: + break + detected = detect_image(hog, frame) + cv2.imshow("capture", detected) + if cv2.waitKey(100) & 0xFF == ord('q'): + break + cap.release() + cv2.destroyAllWindows() + + +if __name__ == '__main__': + # ap = argparse.ArgumentParser() + # ap.add_argument("-i", "--images", required=True, help="path to images directory") + # args = vars(ap.parse_args()) + # detect_images(args['images']) + + hog = cv2.HOGDescriptor() + hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) + + hog = hog_clf() + images_path = '../data/imgs/persons' + detect_images(hog, images_path) + + video_path = '../data/video/vtest.avi' + detect_video(hog, video_path) |
