diff options
| author | zhang <zch921005@126.com> | 2022-05-04 08:47:54 +0800 |
|---|---|---|
| committer | zhang <zch921005@126.com> | 2022-05-04 08:47:54 +0800 |
| commit | 2180c68999eb8dc0c7bcec015b2703f5b8b20223 (patch) | |
| tree | 3ec71623038ff8b90a5bc4e32da14a7382d42d9d /learn_torch/basics/nd_grad.py | |
| parent | 70aebb73b81b50911e2107cd4519e69f09971021 (diff) | |
ndarray axis
Diffstat (limited to 'learn_torch/basics/nd_grad.py')
| -rw-r--r-- | learn_torch/basics/nd_grad.py | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/learn_torch/basics/nd_grad.py b/learn_torch/basics/nd_grad.py new file mode 100644 index 0000000..d8af59e --- /dev/null +++ b/learn_torch/basics/nd_grad.py @@ -0,0 +1,42 @@ +# -*- coding: utf-8 -*- +import numpy as np +import math + +# Create random input and output data +x = np.linspace(-math.pi, math.pi, 2000) +y = np.sin(x) + +# Randomly initialize weights +a = np.random.randn() +b = np.random.randn() +c = np.random.randn() +d = np.random.randn() + +learning_rate = 1e-3 +for t in range(500): + # Forward pass: compute predicted y + # y = a + b x + c x^2 + d x^3 + y_pred = a + b * x + c * x ** 2 + d * x ** 3 + + # Compute and print loss + loss = np.square(y_pred - y).mean() + if t % 10 == 0: + print(x.shape, y_pred.shape, y.shape) + print(t, loss) + + # Backprop to compute gradients of a, b, c, d with respect to loss + grad_y_pred = 2.0 * (y_pred - y) + # grad_y_pred = 2.0 * (y - y_pred) + + grad_a = grad_y_pred.mean() + grad_b = (grad_y_pred * x).mean() + grad_c = (grad_y_pred * x ** 2).mean() + grad_d = (grad_y_pred * x ** 3).mean() + + # Update weights + a -= learning_rate * grad_a + b -= learning_rate * grad_b + c -= learning_rate * grad_c + d -= learning_rate * grad_d + +print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')
\ No newline at end of file |
