summaryrefslogtreecommitdiff
path: root/learn_torch/basics/nn_custom.py
diff options
context:
space:
mode:
authorzhang <zch921005@126.com>2022-05-04 08:47:54 +0800
committerzhang <zch921005@126.com>2022-05-04 08:47:54 +0800
commit2180c68999eb8dc0c7bcec015b2703f5b8b20223 (patch)
tree3ec71623038ff8b90a5bc4e32da14a7382d42d9d /learn_torch/basics/nn_custom.py
parent70aebb73b81b50911e2107cd4519e69f09971021 (diff)
ndarray axis
Diffstat (limited to 'learn_torch/basics/nn_custom.py')
-rw-r--r--learn_torch/basics/nn_custom.py69
1 files changed, 69 insertions, 0 deletions
diff --git a/learn_torch/basics/nn_custom.py b/learn_torch/basics/nn_custom.py
new file mode 100644
index 0000000..0d9ae8f
--- /dev/null
+++ b/learn_torch/basics/nn_custom.py
@@ -0,0 +1,69 @@
+
+import torch
+import math
+
+
+device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
+dtype = torch.float
+lr = 1e-3
+
+
+class Poly3(torch.nn.Module):
+ def __init__(self):
+ super(Poly3, self).__init__()
+ self.a = torch.nn.Parameter(torch.randn(()))
+ self.b = torch.nn.Parameter(torch.randn(()))
+ self.c = torch.nn.Parameter(torch.randn(()))
+ self.d = torch.nn.Parameter(torch.randn(()))
+
+ def forward(self, x):
+ return self.a + self.b * x + self.c * x**2 + self.d * x**3
+
+ def __repr__(self):
+ return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'
+
+
+def train(X, y):
+ for i in range(2000):
+ y_pred = model(X)
+ loss = loss_fn(y_pred, y)
+
+ if i % 100 == 0:
+ print('{}/{}: {}'.format(i, 2000, loss.item()))
+
+ # model.zero_grad()
+ opt.zero_grad()
+
+ loss.backward()
+
+ # with torch.no_grad():
+ # for param in model.parameters():
+ # param -= lr * param.grad
+ opt.step()
+
+
+if __name__ == '__main__':
+
+ X = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
+ y = torch.sin(X)
+
+ # p = torch.Tensor([1, 2, 3])
+ # X = X.unsqueeze(-1).pow(p)
+
+ # model = torch.nn.Sequential(
+ # torch.nn.Linear(3, 1),
+ # torch.nn.Flatten(0, 1)
+ # )
+ model = Poly3()
+
+ loss_fn = torch.nn.MSELoss(reduction='sum')
+ opt = torch.optim.RMSprop(model.parameters(), lr=lr)
+
+ train(X, y)
+ # weight_layer = model[0]
+ #
+ # print('y = {} + {}x + {}x^2 + {}x^3'.format(weight_layer.bias.item(),
+ # weight_layer.weight[0, 0].item(),
+ # weight_layer.weight[0, 1].item(),
+ # weight_layer.weight[0, 2].item()))
+ print(model)