summaryrefslogtreecommitdiff
path: root/learn_torch/basics/regression_v3.py
diff options
context:
space:
mode:
authorzhang <zch921005@126.com>2022-05-04 08:47:54 +0800
committerzhang <zch921005@126.com>2022-05-04 08:47:54 +0800
commit2180c68999eb8dc0c7bcec015b2703f5b8b20223 (patch)
tree3ec71623038ff8b90a5bc4e32da14a7382d42d9d /learn_torch/basics/regression_v3.py
parent70aebb73b81b50911e2107cd4519e69f09971021 (diff)
ndarray axis
Diffstat (limited to 'learn_torch/basics/regression_v3.py')
-rw-r--r--learn_torch/basics/regression_v3.py40
1 files changed, 40 insertions, 0 deletions
diff --git a/learn_torch/basics/regression_v3.py b/learn_torch/basics/regression_v3.py
new file mode 100644
index 0000000..f6bd467
--- /dev/null
+++ b/learn_torch/basics/regression_v3.py
@@ -0,0 +1,40 @@
+import math
+import torch
+
+
+dtype = torch.float
+device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
+
+
+lr = 1e-6
+
+
+def train(X, y):
+ a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
+ b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
+ c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
+ d = torch.randn((), device=device, dtype=dtype, requires_grad=True)
+
+ for i in range(2000):
+ y_pred = a + b*X + c*X**2 + d*X**3
+ loss = (y_pred - y).pow(2).sum()
+ if i % 100 == 0:
+ print('{}/{}: {}'.format(i, 2000, loss.item()))
+ loss.backward()
+ with torch.no_grad():
+ a -= lr * a.grad
+ b -= lr * b.grad
+ c -= lr * c.grad
+ d -= lr * d.grad
+ a.grad = None
+ b.grad = None
+ c.grad = None
+ d.grad = None
+ print('a = {}, b = {}, c = {}, d = {}'.format(a.item(), b.item(), c.item(), d.item()))
+
+if __name__ == '__main__':
+
+ X = torch.linspace(-math.pi, math.pi, 2000)
+ y = torch.sin(X)
+ train(X, y)
+