summaryrefslogtreecommitdiff
path: root/cv/image_similarity/cnn/build_models.py
diff options
context:
space:
mode:
Diffstat (limited to 'cv/image_similarity/cnn/build_models.py')
-rw-r--r--cv/image_similarity/cnn/build_models.py238
1 files changed, 238 insertions, 0 deletions
diff --git a/cv/image_similarity/cnn/build_models.py b/cv/image_similarity/cnn/build_models.py
new file mode 100644
index 0000000..e55e4f7
--- /dev/null
+++ b/cv/image_similarity/cnn/build_models.py
@@ -0,0 +1,238 @@
+import torch
+import torch.nn as nn
+from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout, MaxPool2d, \
+ AdaptiveAvgPool2d, Sequential, Module
+from collections import namedtuple
+
+
+# Support: ['IR_50', 'IR_101', 'IR_152', 'IR_SE_50', 'IR_SE_101', 'IR_SE_152']
+
+
+class Flatten(Module):
+ def forward(self, input):
+ return input.view(input.size(0), -1)
+
+
+def l2_norm(input, axis=1):
+ norm = torch.norm(input, 2, axis, True)
+ output = torch.div(input, norm)
+
+ return output
+
+
+class SEModule(Module):
+ def __init__(self, channels, reduction):
+ super(SEModule, self).__init__()
+ self.avg_pool = AdaptiveAvgPool2d(1)
+ self.fc1 = Conv2d(
+ channels, channels // reduction, kernel_size=1, padding=0, bias=False)
+
+ nn.init.xavier_uniform_(self.fc1.weight.data)
+
+ self.relu = ReLU(inplace=True)
+ self.fc2 = Conv2d(
+ channels // reduction, channels, kernel_size=1, padding=0, bias=False)
+
+ self.sigmoid = Sigmoid()
+
+ def forward(self, x):
+ module_input = x
+ x = self.avg_pool(x)
+ x = self.fc1(x)
+ x = self.relu(x)
+ x = self.fc2(x)
+ x = self.sigmoid(x)
+
+ return module_input * x
+
+
+class bottleneck_IR(Module):
+ def __init__(self, in_channel, depth, stride):
+ super(bottleneck_IR, self).__init__()
+ if in_channel == depth:
+ self.shortcut_layer = MaxPool2d(1, stride)
+ else:
+ self.shortcut_layer = Sequential(
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth))
+ self.res_layer = Sequential(
+ BatchNorm2d(in_channel),
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth))
+
+ def forward(self, x):
+ shortcut = self.shortcut_layer(x)
+ res = self.res_layer(x)
+
+ return res + shortcut
+
+
+class bottleneck_IR_SE(Module):
+ def __init__(self, in_channel, depth, stride):
+ super(bottleneck_IR_SE, self).__init__()
+ if in_channel == depth:
+ self.shortcut_layer = MaxPool2d(1, stride)
+ else:
+ self.shortcut_layer = Sequential(
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
+ BatchNorm2d(depth))
+ self.res_layer = Sequential(
+ BatchNorm2d(in_channel),
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
+ PReLU(depth),
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
+ BatchNorm2d(depth),
+ SEModule(depth, 16)
+ )
+
+ def forward(self, x):
+ shortcut = self.shortcut_layer(x)
+ res = self.res_layer(x)
+
+ return res + shortcut
+
+
+class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
+ '''A named tuple describing a ResNet block.'''
+
+
+def get_block(in_channel, depth, num_units, stride=2):
+
+ return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
+
+
+def get_blocks(num_layers):
+ if num_layers == 50:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=4),
+ get_block(in_channel=128, depth=256, num_units=14),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ elif num_layers == 100:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=13),
+ get_block(in_channel=128, depth=256, num_units=30),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ elif num_layers == 152:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=8),
+ get_block(in_channel=128, depth=256, num_units=36),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+
+ return blocks
+
+
+class Backbone(Module):
+ def __init__(self, input_size, num_layers, mode='ir'):
+ super(Backbone, self).__init__()
+ assert input_size[0] in [112, 224], "input_size should be [112, 112] or [224, 224]"
+ assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
+ assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
+ blocks = get_blocks(num_layers)
+ if mode == 'ir':
+ unit_module = bottleneck_IR
+ elif mode == 'ir_se':
+ unit_module = bottleneck_IR_SE
+ self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
+ BatchNorm2d(64),
+ PReLU(64))
+ if input_size[0] == 112:
+ self.output_layer = Sequential(BatchNorm2d(512),
+ Dropout(),
+ Flatten(),
+ Linear(512 * 7 * 7, 512),
+ BatchNorm1d(512))
+ # 224, 224
+ else:
+ self.output_layer = Sequential(BatchNorm2d(512),
+ Dropout(),
+ Flatten(),
+ Linear(512 * 14 * 14, 512),
+ BatchNorm1d(512))
+
+ modules = []
+ for block in blocks:
+ for bottleneck in block:
+ modules.append(
+ unit_module(bottleneck.in_channel,
+ bottleneck.depth,
+ bottleneck.stride))
+ self.body = Sequential(*modules)
+
+ self._initialize_weights()
+
+ def forward(self, x):
+ x = self.input_layer(x)
+ x = self.body(x)
+ x = self.output_layer(x)
+
+ return x
+
+ def _initialize_weights(self):
+ for m in self.modules():
+ if isinstance(m, nn.Conv2d):
+ nn.init.xavier_uniform_(m.weight.data)
+ if m.bias is not None:
+ m.bias.data.zero_()
+ elif isinstance(m, nn.BatchNorm2d):
+ m.weight.data.fill_(1)
+ m.bias.data.zero_()
+ elif isinstance(m, nn.BatchNorm1d):
+ m.weight.data.fill_(1)
+ m.bias.data.zero_()
+ elif isinstance(m, nn.Linear):
+ nn.init.xavier_uniform_(m.weight.data)
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+
+def IR_50(input_size):
+ """Constructs a ir-50 model.
+ """
+ model = Backbone(input_size, 50, 'ir')
+
+ return model
+
+
+def IR_101(input_size):
+ """Constructs a ir-101 model.
+ """
+ model = Backbone(input_size, 100, 'ir')
+
+ return model
+
+
+def IR_152(input_size):
+ """Constructs a ir-152 model.
+ """
+ model = Backbone(input_size, 152, 'ir')
+
+ return model
+
+
+def IR_SE_50(input_size):
+ """Constructs a ir_se-50 model.
+ """
+ model = Backbone(input_size, 50, 'ir_se')
+
+ return model
+
+
+def IR_SE_101(input_size):
+ """Constructs a ir_se-101 model.
+ """
+ model = Backbone(input_size, 100, 'ir_se')
+
+ return model
+
+
+def IR_SE_152(input_size):
+ """Constructs a ir_se-152 model.
+ """
+ model = Backbone(input_size, 152, 'ir_se')
+
+ return model