summaryrefslogtreecommitdiff
path: root/learn_torch/basics
diff options
context:
space:
mode:
Diffstat (limited to 'learn_torch/basics')
-rw-r--r--learn_torch/basics/add_norm.py17
-rw-r--r--learn_torch/basics/mha.py16
2 files changed, 33 insertions, 0 deletions
diff --git a/learn_torch/basics/add_norm.py b/learn_torch/basics/add_norm.py
new file mode 100644
index 0000000..6d733f7
--- /dev/null
+++ b/learn_torch/basics/add_norm.py
@@ -0,0 +1,17 @@
+
+import torch
+from transformers.models.bert import BertModel, BertTokenizer
+
+
+if __name__ == '__main__':
+ model_name = 'bert-base-uncased'
+ tokenizer = BertTokenizer.from_pretrained(model_name)
+ model = BertModel.from_pretrained(model_name, output_hidden_states=True)
+
+ test_sent = 'this is a test sentence'
+
+ model_input = tokenizer(test_sent, return_tensors='pt')
+ model.eval()
+ with torch.no_grad():
+ output = model(**model_input)
+
diff --git a/learn_torch/basics/mha.py b/learn_torch/basics/mha.py
new file mode 100644
index 0000000..d9d392d
--- /dev/null
+++ b/learn_torch/basics/mha.py
@@ -0,0 +1,16 @@
+import torch
+from torch import nn
+
+if __name__ == '__main__':
+
+ mha = nn.MultiheadAttention(embed_dim=768, num_heads=12, kdim=10, vdim=20)
+
+ query = torch.randn(10, 1, 768)
+ key = torch.randn(5, 1, 10)
+ value = torch.randn(5, 1, 20)
+
+ attn_output, attn_output_weights = mha(query, key, value)
+ print(attn_output.shape)
+ print(attn_output_weights.shape)
+
+