diff options
Diffstat (limited to 'rl/gym_demo/lunar/dqn.py')
| -rw-r--r-- | rl/gym_demo/lunar/dqn.py | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/rl/gym_demo/lunar/dqn.py b/rl/gym_demo/lunar/dqn.py new file mode 100644 index 0000000..a757a92 --- /dev/null +++ b/rl/gym_demo/lunar/dqn.py @@ -0,0 +1,112 @@ +import torch as T +import torch.nn as nn +import torch.nn.functional as F +import torch.optim as optim +import numpy as np + + +class DeepQNetwork(nn.Module): + def __init__(self, lr, input_dims, fc1_dims, fc2_dims, + n_actions): + super(DeepQNetwork, self).__init__() + self.input_dims = input_dims + self.fc1_dims = fc1_dims + self.fc2_dims = fc2_dims + self.n_actions = n_actions + self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims) + self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims) + self.fc3 = nn.Linear(self.fc2_dims, self.n_actions) + + self.optimizer = optim.Adam(self.parameters(), lr=lr) + self.loss = nn.MSELoss() + self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') + self.to(self.device) + + def forward(self, state): + x = F.relu(self.fc1(state)) + x = F.relu(self.fc2(x)) + actions = self.fc3(x) + + return actions + + +class Agent: + def __init__(self, gamma, epsilon, lr, input_dims, batch_size, n_actions, + max_mem_size=100000, eps_end=0.05, eps_dec=5e-4): + self.gamma = gamma + self.epsilon = epsilon + self.eps_min = eps_end + self.eps_dec = eps_dec + self.lr = lr + self.action_space = [i for i in range(n_actions)] + self.mem_size = max_mem_size + self.batch_size = batch_size + self.mem_cntr = 0 + self.iter_cntr = 0 + self.replace_target = 100 + + self.Q_eval = DeepQNetwork(lr, n_actions=n_actions, + input_dims=input_dims, + fc1_dims=256, fc2_dims=256) + self.state_memory = np.zeros((self.mem_size, *input_dims), + dtype=np.float32) + self.new_state_memory = np.zeros((self.mem_size, *input_dims), + dtype=np.float32) + self.action_memory = np.zeros(self.mem_size, dtype=np.int32) + self.reward_memory = np.zeros(self.mem_size, dtype=np.float32) + self.terminal_memory = np.zeros(self.mem_size, dtype=np.bool) + + def store_transition(self, state, action, reward, state_, terminal): + index = self.mem_cntr % self.mem_size + self.state_memory[index] = state + self.new_state_memory[index] = state_ + self.reward_memory[index] = reward + self.action_memory[index] = action + self.terminal_memory[index] = terminal + + self.mem_cntr += 1 + + def choose_action(self, observation): + if np.random.random() > self.epsilon: + state = T.tensor([observation]).to(self.Q_eval.device) + actions = self.Q_eval.forward(state) + action = T.argmax(actions).item() + else: + action = np.random.choice(self.action_space) + + return action + + def learn(self): + if self.mem_cntr < self.batch_size: + return + + self.Q_eval.optimizer.zero_grad() + + max_mem = min(self.mem_cntr, self.mem_size) + + batch = np.random.choice(max_mem, self.batch_size, replace=False) + batch_index = np.arange(self.batch_size, dtype=np.int32) + + state_batch = T.tensor(self.state_memory[batch]).to(self.Q_eval.device) + new_state_batch = T.tensor( + self.new_state_memory[batch]).to(self.Q_eval.device) + action_batch = self.action_memory[batch] + reward_batch = T.tensor( + self.reward_memory[batch]).to(self.Q_eval.device) + terminal_batch = T.tensor( + self.terminal_memory[batch]).to(self.Q_eval.device) + + q_eval = self.Q_eval.forward(state_batch)[batch_index, action_batch] + q_next = self.Q_eval.forward(new_state_batch) + q_next[terminal_batch] = 0.0 + + q_target = reward_batch + self.gamma*T.max(q_next, dim=1)[0] + + loss = self.Q_eval.loss(q_target, q_eval).to(self.Q_eval.device) + loss.backward() + self.Q_eval.optimizer.step() + + self.iter_cntr += 1 + self.epsilon = self.epsilon - self.eps_dec \ + if self.epsilon > self.eps_min else self.eps_min + |
