summaryrefslogtreecommitdiff
path: root/cv/holiday_similarity/data_utils.py
blob: 16017065fdb970206f0cbf0dc9537a23fb085f08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import matplotlib.pyplot as plt
import numpy as np
import os
from PIL import Image
import itertools
from random import shuffle
from keras.utils import np_utils
from keras.applications import imagenet_utils
import itertools
import os
from random import shuffle

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from keras.applications import imagenet_utils
from keras.utils import np_utils

IMAGE_DIR = '/Users/chunhuizhang/workspaces/00_datasets/images/INRIA Holidays dataset /jpg'
# IMAGE_DIR = os.path.join(DATA_DIR, "holiday-photos")

image_cache = {}


def pair_generator(triples, image_cache, datagens, batch_size=32):
    while True:
        # shuffle once per batch
        indices = np.random.permutation(np.arange(len(triples)))
        num_batches = len(triples) // batch_size
        for bid in range(num_batches):
            batch_indices = indices[bid * batch_size: (bid + 1) * batch_size]
            batch = [triples[i] for i in batch_indices]
            X1 = np.zeros((batch_size, 224, 224, 3))
            X2 = np.zeros((batch_size, 224, 224, 3))
            Y = np.zeros((batch_size, 2))
            for i, (image_filename_l, image_filename_r, label) in enumerate(batch):
                if datagens is None or len(datagens) == 0:
                    X1[i] = image_cache[image_filename_l]
                    X2[i] = image_cache[image_filename_r]
                else:
                    X1[i] = datagens[0].random_transform(image_cache[image_filename_l])
                    X2[i] = datagens[1].random_transform(image_cache[image_filename_r])
                Y[i] = [1, 0] if label == 0 else [0, 1]
            yield [X1, X2], Y


def image_batch_generator(image_names, batch_size):
    num_batches = len(image_names) // batch_size
    for i in range(num_batches):
        batch = image_names[i * batch_size: (i + 1) * batch_size]
        yield batch
    batch = image_names[(i + 1) * batch_size:]
    yield batch


def show_img(sid, img_file, img_title):
    plt.subplot(sid)
    plt.title(img_title)
    plt.xticks([])
    plt.yticks([])
    img = np.asarray(Image.fromarray(plt.imread(img_file)).resize((512, 512)))
    plt.imshow(img)


def get_random_image(img_groups, group_names, gid):
    gname = group_names[gid]
    photos = img_groups[gname]
    pid = np.random.choice(np.arange(len(photos)), size=1)[0]
    pname = photos[pid]
    return gname + pname + ".jpg"


def create_triples(image_dir):
    img_groups = {}
    for img_file in os.listdir(image_dir):
        prefix, suffix = img_file.split(".")
        gid, pid = prefix[0:4], prefix[4:]
        if gid in img_groups:
            img_groups[gid].append(pid)
        else:
            img_groups[gid] = [pid]
    pos_triples, neg_triples = [], []
    # positive pairs are any combination of images in same group
    for key in img_groups.keys():
        triples = [(key + x[0] + ".jpg", key + x[1] + ".jpg", 1)
                   for x in itertools.combinations(img_groups[key], 2)]
        pos_triples.extend(triples)
    # need equal number of negative examples
    group_names = list(img_groups.keys())
    # pos:neg == 1:1
    for i in range(len(pos_triples)):
        g1, g2 = np.random.choice(np.arange(len(group_names)), size=2, replace=False)
        left = get_random_image(img_groups, group_names, g1)
        right = get_random_image(img_groups, group_names, g2)
        neg_triples.append((left, right, 0))
    pos_triples.extend(neg_triples)
    shuffle(pos_triples)
    return pos_triples


def load_image(image_name, imagenet=False):
    if image_name not in image_cache:
        image = plt.imread(os.path.join(IMAGE_DIR, image_name)).astype(np.float32)
        image = image.astype(np.uint8)
        image = np.asarray(Image.fromarray(image).resize((224, 224)))
        if imagenet:
            image = imagenet_utils.preprocess_input(image)
        else:
            image = np.divide(image, 256)
        image_cache[image_name] = image
    return image_cache[image_name]


def generate_image_triples_batch(image_triples, batch_size, shuffle=False):
    while True:
        # loop once per epoch
        if shuffle:
            indices = np.random.permutation(np.arange(len(image_triples)))
        else:
            indices = np.arange(len(image_triples))
        shuffled_triples = [image_triples[ix] for ix in indices]
        num_batches = len(shuffled_triples) // batch_size
        for bid in range(num_batches):
            # loop once per batch
            images_left, images_right, labels = [], [], []
            batch = shuffled_triples[bid * batch_size: (bid + 1) * batch_size]
            for i in range(batch_size):
                lhs, rhs, label = batch[i]
                images_left.append(load_image(lhs, imagenet=True))
                images_right.append(load_image(rhs))
                labels.append(label)
            Xlhs = np.array(images_left)
            Xrhs = np.array(images_right)
            Y = np_utils.to_categorical(np.array(labels), num_classes=2)
            yield ([Xlhs, Xrhs], Y)


def train_test_split(triples, splits):
    assert sum(splits) == 1.0
    split_pts = np.cumsum(np.array([0.] + splits))
    indices = np.random.permutation(np.arange(len(triples)))
    shuffled_triples = [triples[i] for i in indices]
    data_splits = []
    for sid in range(len(splits)):
        start = int(split_pts[sid] * len(triples))
        end = int(split_pts[sid + 1] * len(triples))
        data_splits.append(shuffled_triples[start:end])
    return data_splits


def batch_to_vectors(batch, vec_size, vec_dict):
    X1 = np.zeros((len(batch), vec_size))
    X2 = np.zeros((len(batch), vec_size))
    Y = np.zeros((len(batch), 2))
    for tid in range(len(batch)):
        X1[tid] = vec_dict[batch[tid][0]]
        X2[tid] = vec_dict[batch[tid][1]]
        Y[tid] = [1, 0] if batch[tid][2] == 0 else [0, 1]
    return ([X1, X2], Y)


def data_generator(triples, vec_size, vec_dict, batch_size=32):
    while True:
        # shuffle once per batch
        indices = np.random.permutation(np.arange(len(triples)))
        num_batches = len(triples) // batch_size
        for bid in range(num_batches):
            batch_indices = indices[bid * batch_size: (bid + 1) * batch_size]
            batch = [triples[i] for i in batch_indices]
            yield batch_to_vectors(batch, vec_size, vec_dict)


if __name__ == '__main__':
    show_img(131, os.path.join(IMAGE_DIR, "115200.jpg"), "original")
    show_img(132, os.path.join(IMAGE_DIR, "115201.jpg"), "similar")
    show_img(133, os.path.join(IMAGE_DIR, "123700.jpg"), "different")
    plt.tight_layout()
    plt.show()

    triples_data = create_triples(IMAGE_DIR)

    print("# image triples:", len(triples_data))
    print([x for x in triples_data[0:5]])