summaryrefslogtreecommitdiff
path: root/dl/tutorials/utils.py
blob: 89c010f24661a6554fcfe6615164710bde306e7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
from tqdm import tqdm


def get_mean_and_std(dataset):
    '''Compute the mean and std value of dataset.'''
    '''dataset: 0-1 range (ToTensor())'''
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    print('==> Computing mean and std..')
    for inputs, targets in tqdm(dataloader):
        for i in range(3):
            mean[i] += inputs[:, i, :, :].mean()
            std[i] += inputs[:, i, :, :].std()
    mean.div_(len(dataset))
    std.div_(len(dataset))
    return mean, std


class UnNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        Returns:
            Tensor: Normalized image.
        """
        for t, m, s in zip(tensor, self.mean, self.std):
            t.mul_(s).add_(m)
            # The normalize code -> t.sub_(m).div_(s)
        return tensor