1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
import torch,os,torchvision
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, models, transforms
from PIL import Image
from sklearn.model_selection import StratifiedShuffleSplit
from torchviz import make_dot
from datetime import datetime
from tqdm import tqdm
DATA_ROOT = './data/dog-breed-identification'
from functools import wraps
from time import time
def timing(f):
@wraps(f)
def wrap(*args, **kw):
ts = time()
result = f(*args, **kw)
te = time()
print('func:%r args:[%r, %r] took: %2.4f sec' % \
(f.__name__, args, kw, te-ts))
return result
return wrap
class DogDataset(Dataset):
def __init__(self, labels_df, img_path, transform=None):
self.labels_df = labels_df
self.img_path = img_path
self.transform = transform
def __len__(self):
return self.labels_df.shape[0]
def __getitem__(self, idx):
image_name = os.path.join(self.img_path, self.labels_df.id[idx]) + '.jpg'
img = Image.open(image_name)
label = self.labels_df.label_idx[idx]
if self.transform:
img = self.transform(img)
return img, label
@timing
def train(model,device, train_loader, epoch):
model.train()
for batch_idx, data in tqdm(enumerate(train_loader)):
print('{}: {}/{}, {}'.format(epoch, batch_idx, len(train_dataset), data[0].shape))
x,y= data
x=x.to(device)
y=y.to(device)
optimizer.zero_grad()
y_hat= model(x)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
print ('Train Epoch: {}\t Loss: {:.6f}'.format(epoch,loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for i,data in enumerate(test_loader):
x,y= data
x=x.to(device)
y=y.to(device)
optimizer.zero_grad()
y_hat = model(x)
test_loss += criterion(y_hat, y).item() # sum up batch loss
pred = y_hat.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(y.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(val_dataset),
100. * correct / len(val_dataset)))
if __name__ == '__main__':
all_labels_df = pd.read_csv(os.path.join(DATA_ROOT, 'labels.csv'))
breeds = all_labels_df.breed.unique()
breed2idx = dict((breed, idx) for idx, breed in enumerate(breeds))
idx2breed = dict((idx, breed) for idx, breed in enumerate(breeds))
# all_labels_df['label_idx'] = [breed2idx[b] for b in all_labels_df.breed]
all_labels_df['label_idx'] = all_labels_df['breed'].apply(lambda x: breed2idx[x])
print(all_labels_df.head())
model_ft = models.resnet50(pretrained=True)
models.resnet18()
print(model_ft)
# make_dot(yhat, params=dict(list(model_ft.named_parameters()))).render("resnet50_torchviz", format="png")
IMG_SIZE = 224 # resnet50的输入是224的所以需要将图片统一大小
BATCH_SIZE = 256 # 这个批次大小需要占用4.6-5g的显存,如果不够的化可以改下批次,如果内存超过10G可以改为512
IMG_MEAN = [0.485, 0.456, 0.406]
IMG_STD = [0.229, 0.224, 0.225]
CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if CUDA else "cpu")
train_transforms = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.RandomResizedCrop(IMG_SIZE),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize(IMG_MEAN, IMG_STD)
])
val_transforms = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.CenterCrop(IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize(IMG_MEAN, IMG_STD)
])
dataset_names = ['train', 'valid']
stratified_split = StratifiedShuffleSplit(n_splits=1, test_size=0.1, random_state=0)
train_split_idx, val_split_idx = next(iter(stratified_split.split(all_labels_df.id, all_labels_df.breed)))
train_df = all_labels_df.iloc[train_split_idx].reset_index()
val_df = all_labels_df.iloc[val_split_idx].reset_index()
# print(len(train_df))
# print(len(val_df))
image_transforms = {'train': train_transforms, 'valid': val_transforms}
train_dataset = DogDataset(train_df, os.path.join(DATA_ROOT, 'train'), transform=image_transforms['train'])
val_dataset = DogDataset(val_df, os.path.join(DATA_ROOT, 'train'), transform=image_transforms['valid'])
image_dataset = {'train': train_dataset, 'valid': val_dataset}
image_dataloader = {x: DataLoader(image_dataset[x], batch_size=BATCH_SIZE, shuffle=True, num_workers=0) for x in
dataset_names}
dataset_sizes = {x: len(image_dataset[x]) for x in dataset_names}
# batch = next(iter(train_dataset))
# yhat = model_ft(batch[0].unsqueeze(0))
# make_dot(yhat).render("resnet_ft")
# 将所有的参数层进行冻结
for param in model_ft.parameters():
param.requires_grad = False
# 这里打印下全连接层的信息
print(model_ft.fc)
num_fc_ftr = model_ft.fc.in_features # 获取到fc层的输入
model_ft.fc = nn.Linear(num_fc_ftr, len(breeds)) # 定义一个新的FC层
model_ft = model_ft.to(DEVICE) # 放到设备中
print(model_ft) # 最后再打印一下新的模型
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam([
{'params': model_ft.fc.parameters()}
], lr=0.001) # 指定 新加的fc层的学习率
model_parameters = filter(lambda p: p.requires_grad, model_ft.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('params: {}, start time: {}'.format(params, datetime.now()))
for epoch in range(1, 10):
train(model=model_ft, device=DEVICE, train_loader=image_dataloader["train"], epoch=epoch)
test(model=model_ft, device=DEVICE, test_loader=image_dataloader["valid"])
|