1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
import numpy as np
import random
import operator
import pandas as pd
import matplotlib.pyplot as plt
from operator import itemgetter
class City:
def __init__(self, x, y):
self.x = x
self.y = y
def distance(self, city):
x_dis = abs(self.x - city.x)
y_dis = abs(self.y - city.y)
distance = np.sqrt((x_dis ** 2) + (y_dis ** 2))
return distance
def __repr__(self):
return "(" + str(self.x) + "," + str(self.y) + ")"
# 越小越好
class Fitness:
def __init__(self, route):
self.route = route
self.distance = 0
self.fitness = 0.0
def route_distance(self):
if self.distance == 0:
path_distance = 0
for i in range(0, len(self.route)):
from_city = self.route[i]
to_city = None
if i + 1 < len(self.route):
to_city = self.route[i + 1]
else:
to_city = self.route[0]
path_distance += from_city.distance(to_city)
self.distance = path_distance
return self.distance
def route_fitness(self):
if self.fitness == 0:
self.fitness = 1 / float(self.route_distance())
return self.fitness
def createRoute(cityList):
route = random.sample(cityList, len(cityList))
return route
def initialPopulation(popSize, cityList):
population = []
for i in range(0, popSize):
population.append(createRoute(cityList))
return population
def rankRoutes(population):
fitnessResults = {}
for i in range(0,len(population)):
fitnessResults[i] = Fitness(population[i]).route_fitness()
return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)
def selection(popRanked, eliteSize):
selectionResults = []
df = pd.DataFrame(np.array(popRanked), columns=["Index", "Fitness"])
df['cum_sum'] = df.Fitness.cumsum()
df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()
for i in range(0, eliteSize):
selectionResults.append(popRanked[i][0])
for i in range(0, len(popRanked) - eliteSize):
pick = 100 * random.random()
for i in range(0, len(popRanked)):
if pick <= df.iat[i, 3]:
selectionResults.append(popRanked[i][0])
break
return selectionResults
def matingPool(population, selectionResults):
matingpool = []
for i in range(0, len(selectionResults)):
index = selectionResults[i]
matingpool.append(population[index])
return matingpool
def breed(parent1, parent2):
child = []
childP1 = []
childP2 = []
geneA = int(random.random() * len(parent1))
geneB = int(random.random() * len(parent1))
startGene = min(geneA, geneB)
endGene = max(geneA, geneB)
# save_sub_city_list = parent1[startGene: endGene]
# target_index = 0
# for i in range(len(parent2)):
# while startGene < len(child) < endGene-1:
# child.append(save_sub_city_list[target_index])
# target_index += 1
# continue
# if parent2[i] not in save_sub_city_list:
# child.append(parent2[i])
for i in range(startGene, endGene):
childP1.append(parent1[i])
childP2 = [item for item in parent2 if item not in childP1]
child = childP1 + childP2
return child
def breedPopulation(matingpool, eliteSize):
children = []
length = len(matingpool) - eliteSize
pool = random.sample(matingpool, len(matingpool))
for i in range(0, eliteSize):
children.append(matingpool[i])
for i in range(0, length):
child = breed(pool[i], pool[len(matingpool) - i - 1])
children.append(child)
return children
def mutate(individual, mutationRate):
for swapped in range(len(individual)):
if (random.random() < mutationRate):
swapWith = int(random.random() * len(individual))
city1 = individual[swapped]
city2 = individual[swapWith]
individual[swapped] = city2
individual[swapWith] = city1
return individual
def mutatePopulation(population, mutationRate):
mutatedPop = []
for ind in range(0, len(population)):
mutatedInd = mutate(population[ind], mutationRate)
mutatedPop.append(mutatedInd)
return mutatedPop
def nextGeneration(currentGen, eliteSize, mutationRate):
popRanked = rankRoutes(currentGen)
selectionResults = selection(popRanked, eliteSize)
matingpool = matingPool(currentGen, selectionResults)
children = breedPopulation(matingpool, eliteSize)
nextGeneration = mutatePopulation(children, mutationRate)
return nextGeneration
def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations):
pop = initialPopulation(popSize, population)
print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate)
print(f"generation: {i}, distance: {1 / rankRoutes(pop)[0][1]}")
print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
bestRouteIndex = rankRoutes(pop)[0][0]
bestRoute = pop[bestRouteIndex]
return bestRoute
def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations):
pop = initialPopulation(popSize, population)
progress = []
progress.append(1 / rankRoutes(pop)[0][1])
for i in range(0, generations):
pop = nextGeneration(pop, eliteSize, mutationRate)
progress.append(1 / rankRoutes(pop)[0][1])
plt.plot(progress)
plt.ylabel('Distance')
plt.xlabel('Generation')
plt.show()
if __name__ == '__main__':
cityList = []
for i in range(0, 25):
cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))
# plt.scatter(list(map(lambda city: city.x, cityList)), list(map(lambda city: city.y, cityList)))
# plt.show()
best_route = geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=400)
# geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=500)
print()
# for i in range(0, len(best_route), 2):
x = list(map(lambda city: city.x, best_route))
y = list(map(lambda city: city.y, best_route))
plt.scatter(x, y)
plt.plot(x, y, 'ro-')
plt.show()
|