summaryrefslogtreecommitdiff
path: root/ga_demo/tsp_demo.py
blob: 5a5a406608d5f682fc8616fa9f2ec71dfb9f62c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
import random
import operator
import pandas as pd
import matplotlib.pyplot as plt
from operator import itemgetter


class City:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def distance(self, city):
        x_dis = abs(self.x - city.x)
        y_dis = abs(self.y - city.y)
        distance = np.sqrt((x_dis ** 2) + (y_dis ** 2))
        return distance

    def __repr__(self):
        return "(" + str(self.x) + "," + str(self.y) + ")"


# 越小越好
class Fitness:
    def __init__(self, route):
        self.route = route
        self.distance = 0
        self.fitness = 0.0

    def route_distance(self):
        if self.distance == 0:
            path_distance = 0
            for i in range(0, len(self.route)):
                from_city = self.route[i]
                to_city = None
                if i + 1 < len(self.route):
                    to_city = self.route[i + 1]
                else:
                    to_city = self.route[0]
                path_distance += from_city.distance(to_city)
            self.distance = path_distance
        return self.distance

    def route_fitness(self):
        if self.fitness == 0:
            self.fitness = 1 / float(self.route_distance())
        return self.fitness


def createRoute(cityList):
    route = random.sample(cityList, len(cityList))
    return route


def initialPopulation(popSize, cityList):
    population = []

    for i in range(0, popSize):
        population.append(createRoute(cityList))
    return population


def rankRoutes(population):
    fitnessResults = {}
    for i in range(0,len(population)):
        fitnessResults[i] = Fitness(population[i]).route_fitness()
    return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)


def selection(popRanked, eliteSize):
    selectionResults = []
    df = pd.DataFrame(np.array(popRanked), columns=["Index", "Fitness"])
    df['cum_sum'] = df.Fitness.cumsum()
    df['cum_perc'] = 100 * df.cum_sum / df.Fitness.sum()

    for i in range(0, eliteSize):
        selectionResults.append(popRanked[i][0])
    for i in range(0, len(popRanked) - eliteSize):
        pick = 100 * random.random()
        for i in range(0, len(popRanked)):
            if pick <= df.iat[i, 3]:
                selectionResults.append(popRanked[i][0])
                break
    return selectionResults


def matingPool(population, selectionResults):
    matingpool = []
    for i in range(0, len(selectionResults)):
        index = selectionResults[i]
        matingpool.append(population[index])
    return matingpool


def breed(parent1, parent2):
    child = []
    childP1 = []
    childP2 = []

    geneA = int(random.random() * len(parent1))
    geneB = int(random.random() * len(parent1))

    startGene = min(geneA, geneB)
    endGene = max(geneA, geneB)

    # save_sub_city_list = parent1[startGene: endGene]
    # target_index = 0
    # for i in range(len(parent2)):
    #     while startGene < len(child) < endGene-1:
    #         child.append(save_sub_city_list[target_index])
    #         target_index += 1
    #         continue
    #     if parent2[i] not in save_sub_city_list:
    #         child.append(parent2[i])
    for i in range(startGene, endGene):
        childP1.append(parent1[i])

    childP2 = [item for item in parent2 if item not in childP1]

    child = childP1 + childP2
    return child


def breedPopulation(matingpool, eliteSize):
    children = []
    length = len(matingpool) - eliteSize
    pool = random.sample(matingpool, len(matingpool))

    for i in range(0, eliteSize):
        children.append(matingpool[i])

    for i in range(0, length):
        child = breed(pool[i], pool[len(matingpool) - i - 1])
        children.append(child)
    return children


def mutate(individual, mutationRate):
    for swapped in range(len(individual)):
        if (random.random() < mutationRate):
            swapWith = int(random.random() * len(individual))

            city1 = individual[swapped]
            city2 = individual[swapWith]

            individual[swapped] = city2
            individual[swapWith] = city1
    return individual


def mutatePopulation(population, mutationRate):
    mutatedPop = []

    for ind in range(0, len(population)):
        mutatedInd = mutate(population[ind], mutationRate)
        mutatedPop.append(mutatedInd)
    return mutatedPop



def nextGeneration(currentGen, eliteSize, mutationRate):
    popRanked = rankRoutes(currentGen)
    selectionResults = selection(popRanked, eliteSize)
    matingpool = matingPool(currentGen, selectionResults)
    children = breedPopulation(matingpool, eliteSize)
    nextGeneration = mutatePopulation(children, mutationRate)
    return nextGeneration


def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations):
    pop = initialPopulation(popSize, population)
    print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))

    for i in range(0, generations):
        pop = nextGeneration(pop, eliteSize, mutationRate)
        print(f"generation: {i}, distance: {1 / rankRoutes(pop)[0][1]}")

    print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
    bestRouteIndex = rankRoutes(pop)[0][0]
    bestRoute = pop[bestRouteIndex]
    return bestRoute


def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations):
    pop = initialPopulation(popSize, population)
    progress = []
    progress.append(1 / rankRoutes(pop)[0][1])

    for i in range(0, generations):
        pop = nextGeneration(pop, eliteSize, mutationRate)
        progress.append(1 / rankRoutes(pop)[0][1])

    plt.plot(progress)
    plt.ylabel('Distance')
    plt.xlabel('Generation')
    plt.show()


if __name__ == '__main__':

    cityList = []

    for i in range(0, 25):
        cityList.append(City(x=int(random.random() * 200), y=int(random.random() * 200)))

    # plt.scatter(list(map(lambda city: city.x, cityList)), list(map(lambda city: city.y, cityList)))
    # plt.show()
    best_route = geneticAlgorithm(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=400)
    # geneticAlgorithmPlot(population=cityList, popSize=100, eliteSize=20, mutationRate=0.01, generations=500)
    print()
    # for i in range(0, len(best_route), 2):
    x = list(map(lambda city: city.x, best_route))
    y = list(map(lambda city: city.y, best_route))
    plt.scatter(x, y)
    plt.plot(x, y, 'ro-')
    plt.show()