1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
import torch
import math
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
dtype = torch.float
lr = 1e-6
def train(X, y):
for i in range(2000):
y_pred = model(X)
loss = loss_fn(y_pred, y)
if i % 100 == 0:
print('{}/{}: {}'.format(i, 2000, loss.item()))
model.zero_grad()
loss.backward()
with torch.no_grad():
for param in model.parameters():
param -= lr * param.grad
if __name__ == '__main__':
X = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(X)
p = torch.Tensor([1, 2, 3])
X = X.unsqueeze(-1).pow(p)
model = torch.nn.Sequential(
torch.nn.Linear(3, 1),
torch.nn.Flatten(0, 1)
)
loss_fn = torch.nn.MSELoss()
train(X, y)
weight_layer = model[0]
print('y = {} + {}x + {}x^2 + {}x^3'.format(weight_layer.bias.item(),
weight_layer.weight[0, 0].item(),
weight_layer.weight[0, 1].item(),
weight_layer.weight[0, 2].item()))
|