summaryrefslogtreecommitdiff
path: root/learn_torch/basics/regression_v3.py
blob: f6bd46752d5fe3aba92bb6fa17b68079c1e60ea1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import math
import torch


dtype = torch.float
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'


lr = 1e-6


def train(X, y):
    a = torch.randn((), device=device, dtype=dtype, requires_grad=True)
    b = torch.randn((), device=device, dtype=dtype, requires_grad=True)
    c = torch.randn((), device=device, dtype=dtype, requires_grad=True)
    d = torch.randn((), device=device, dtype=dtype, requires_grad=True)

    for i in range(2000):
        y_pred = a + b*X + c*X**2 + d*X**3
        loss = (y_pred - y).pow(2).sum()
        if i % 100 == 0:
            print('{}/{}: {}'.format(i, 2000, loss.item()))
        loss.backward()
        with torch.no_grad():
            a -= lr * a.grad
            b -= lr * b.grad
            c -= lr * c.grad
            d -= lr * d.grad
            a.grad = None
            b.grad = None
            c.grad = None
            d.grad = None
    print('a = {}, b = {}, c = {}, d = {}'.format(a.item(), b.item(), c.item(), d.item()))

if __name__ == '__main__':

    X = torch.linspace(-math.pi, math.pi, 2000)
    y = torch.sin(X)
    train(X, y)