1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
def gen_data():
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
return training_data, test_data
# Define model
class NeuralNetwork(nn.Module):
def __init__(self, in_features, out_features):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(in_features, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, out_features)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
if __name__ == '__main__':
batch_size = 64
training_data, test_data = gen_data()
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for i, (X, y) in enumerate(test_dataloader):
print("{}, Shape of X [N, C, H, W]: {}, y: {}".format(i, X.shape, y.shape))
break
model = NeuralNetwork(28*28, 10).to(device)
print(model)
criterion = nn.CrossEntropyLoss()
opt = torch.optim.SGD(model.parameters(), lr=1e-3)
n_epochs = 10
for epoch in range(n_epochs):
for i, (x_batch, y_batch) in enumerate(train_dataloader):
opt.zero_grad()
preds = model(x_batch)
loss = criterion(preds, y_batch)
loss.backward()
opt.step()
if (i+1) % 100 == 0:
print('Train Loss: {}({}/{}): {}'.format(epoch, i, len(train_dataloader), loss.data))
test(test_dataloader, model, criterion)
|