summaryrefslogtreecommitdiff
path: root/llm/tutorials/03_embedding_search.ipynb
blob: 5225d75d6fc2103f1f8b2066306e8b0271590ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "12b9c4db",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T13:56:17.829502Z",
     "start_time": "2023-03-13T13:56:03.465027Z"
    },
    "collapsed": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Looking in indexes: http://mirrors.aliyun.com/pypi/simple/\n",
      "Collecting tiktoken\n",
      "  Downloading http://mirrors.aliyun.com/pypi/packages/5c/76/03b8286cd264f9f5550229fe21f72abc89d431a9a3c887fc365763acc5a4/tiktoken-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (735 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m735.4/735.4 kB\u001b[0m \u001b[31m256.0 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: requests>=2.26.0 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from tiktoken) (2.28.1)\n",
      "Requirement already satisfied: regex>=2022.1.18 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from tiktoken) (2022.7.9)\n",
      "Collecting blobfile>=2\n",
      "  Downloading http://mirrors.aliyun.com/pypi/packages/c1/35/6b92aa0d86f26f0a8ab6959dd29ac4c7e96d5c1d948d4347bba12e07695a/blobfile-2.0.1-py3-none-any.whl (73 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m73.5/73.5 kB\u001b[0m \u001b[31m214.4 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: urllib3<3,>=1.25.3 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from blobfile>=2->tiktoken) (1.26.11)\n",
      "Requirement already satisfied: filelock~=3.0 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from blobfile>=2->tiktoken) (3.6.0)\n",
      "Collecting pycryptodomex~=3.8\n",
      "  Downloading http://mirrors.aliyun.com/pypi/packages/78/db/ec162a8fa1c7c8e03488616a01de59bb752b985f1c507ffb127b40b9d456/pycryptodomex-3.17-cp35-abi3-macosx_10_9_x86_64.whl (1.6 MB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m272.2 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: lxml~=4.9 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from blobfile>=2->tiktoken) (4.9.1)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (2022.9.24)\n",
      "Requirement already satisfied: charset-normalizer<3,>=2 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (2.0.4)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /Users/chunhuizhang/opt/anaconda3/lib/python3.9/site-packages (from requests>=2.26.0->tiktoken) (3.3)\n",
      "Installing collected packages: pycryptodomex, blobfile, tiktoken\n",
      "Successfully installed blobfile-2.0.1 pycryptodomex-3.17 tiktoken-0.3.0\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install tiktoken"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f56bbe1c",
   "metadata": {},
   "source": [
    "## 认识数据集"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "id": "76150440",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:51:31.301676Z",
     "start_time": "2023-03-13T14:51:31.297972Z"
    }
   },
   "outputs": [],
   "source": [
    "# imports\n",
    "import pandas as pd\n",
    "import tiktoken\n",
    "import openai\n",
    "from openai.embeddings_utils import get_embedding\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "fa311d89",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T13:57:09.514327Z",
     "start_time": "2023-03-13T13:57:09.510859Z"
    }
   },
   "outputs": [],
   "source": [
    "# embedding model parameters\n",
    "embedding_model = \"text-embedding-ada-002\"\n",
    "embedding_encoding = \"cl100k_base\"  # this the encoding for text-embedding-ada-002\n",
    "max_tokens = 8191  # the maximum for text-embedding-ada-002 is 8191"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "id": "63c73803",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:52:36.612466Z",
     "start_time": "2023-03-13T14:52:36.609031Z"
    }
   },
   "outputs": [],
   "source": [
    "input_file = './data/fine_food_reviews_1k.csv'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "id": "b4a220f1",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:54:11.245064Z",
     "start_time": "2023-03-13T14:54:11.210401Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(1000, 6)\n",
      "(762, 6)\n"
     ]
    }
   ],
   "source": [
    "df = pd.read_csv(input_file, index_col=0)\n",
    "df = df[[\"Time\", \"ProductId\", \"UserId\", \"Score\", \"Summary\", \"Text\"]]\n",
    "df = df.sort_values('Time')\n",
    "df.dropna(inplace=True)\n",
    "print(df.shape)\n",
    "df.drop_duplicates(subset=['Summary', 'Text'], keep='last', inplace=True)\n",
    "print(df.shape)\n",
    "df['Combined'] = 'Title: ' + df.Summary.str.strip() + '; Content: ' + df.Text.str.strip()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "id": "a6c7bbd8",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:55:05.038778Z",
     "start_time": "2023-03-13T14:55:04.891622Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "100"
      ]
     },
     "execution_count": 89,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "top_n = 100\n",
    "encoding = tiktoken.get_encoding(embedding_encoding)\n",
    "# omit reviews that are too long to embed\n",
    "df[\"n_tokens\"] = df.Combined.apply(lambda x: len(encoding.encode(x)))\n",
    "df = df[df.n_tokens <= max_tokens].tail(top_n)\n",
    "len(df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "id": "262994d4",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:56:38.163617Z",
     "start_time": "2023-03-13T14:55:27.448765Z"
    }
   },
   "outputs": [],
   "source": [
    "openai.api_key = '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'\n",
    "df['embedding'] = df.Combined.apply(lambda x: get_embedding(x, engine=embedding_model))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9510f2b6",
   "metadata": {},
   "source": [
    "## embedding"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e918cedc",
   "metadata": {},
   "source": [
    "- dimension\n",
    "- norm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "id": "92261327",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:57:45.646492Z",
     "start_time": "2023-03-13T14:57:45.620730Z"
    }
   },
   "outputs": [],
   "source": [
    "df['embed_len'] = df.embedding.apply(lambda x: len(x))\n",
    "df['embed_norm'] = df.embedding.apply(lambda x: np.linalg.norm(x))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "id": "eaba5054",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:57:46.858110Z",
     "start_time": "2023-03-13T14:57:46.795263Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Time</th>\n",
       "      <th>ProductId</th>\n",
       "      <th>UserId</th>\n",
       "      <th>Score</th>\n",
       "      <th>Summary</th>\n",
       "      <th>Text</th>\n",
       "      <th>Combined</th>\n",
       "      <th>n_tokens</th>\n",
       "      <th>embedding</th>\n",
       "      <th>embed_len</th>\n",
       "      <th>embed_norm</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>650</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B0051O6P36</td>\n",
       "      <td>A1VC6419THHIET</td>\n",
       "      <td>5</td>\n",
       "      <td>Good for all cats.</td>\n",
       "      <td>I just got these treats last week and they're ...</td>\n",
       "      <td>Title: Good for all cats.; Content: I just got...</td>\n",
       "      <td>81</td>\n",
       "      <td>[-0.02040177956223488, -0.022390257567167282, ...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>651</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B001EO5RSQ</td>\n",
       "      <td>A33W5JAFGHYRQZ</td>\n",
       "      <td>5</td>\n",
       "      <td>Love this Cereal!</td>\n",
       "      <td>There is nothing else like this on the market....</td>\n",
       "      <td>Title: Love this Cereal!; Content: There is no...</td>\n",
       "      <td>55</td>\n",
       "      <td>[-0.012976857833564281, -0.008588296361267567,...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>652</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B0045H264C</td>\n",
       "      <td>A3IYSIAKYOMKTO</td>\n",
       "      <td>5</td>\n",
       "      <td>Wild Honey</td>\n",
       "      <td>This really is unfiltered honey made from wild...</td>\n",
       "      <td>Title: Wild Honey; Content: This really is unf...</td>\n",
       "      <td>107</td>\n",
       "      <td>[0.002022168133407831, -0.010228604078292847, ...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>679</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B000UBD88A</td>\n",
       "      <td>AWRFQYLG7LQKJ</td>\n",
       "      <td>2</td>\n",
       "      <td>Not very strong</td>\n",
       "      <td>Not as strong as the regular dark coffee.  Dis...</td>\n",
       "      <td>Title: Not very strong; Content: Not as strong...</td>\n",
       "      <td>45</td>\n",
       "      <td>[-0.0016124029643833637, -0.026590621098876, 0...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>654</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B001XWRMAU</td>\n",
       "      <td>A1KWVBDHBG50VZ</td>\n",
       "      <td>5</td>\n",
       "      <td>Outstanding product!.....</td>\n",
       "      <td>Great flavor.....lotsa &amp;#34;heat&amp;#34;....I use...</td>\n",
       "      <td>Title: Outstanding product!.....; Content: Gre...</td>\n",
       "      <td>43</td>\n",
       "      <td>[-0.00573874544352293, 0.007031316868960857, 0...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>623</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B0000CFXYA</td>\n",
       "      <td>A3GS4GWPIBV0NT</td>\n",
       "      <td>1</td>\n",
       "      <td>Strange inflammation response</td>\n",
       "      <td>Truthfully wasn't crazy about the taste of the...</td>\n",
       "      <td>Title: Strange inflammation response; Content:...</td>\n",
       "      <td>110</td>\n",
       "      <td>[0.00011091353371739388, -0.00466986745595932,...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>624</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B0001BH5YM</td>\n",
       "      <td>A1BZ3HMAKK0NC</td>\n",
       "      <td>5</td>\n",
       "      <td>My favorite and only  MUSTARD</td>\n",
       "      <td>You've just got to experience this mustard... ...</td>\n",
       "      <td>Title: My favorite and only  MUSTARD; Content:...</td>\n",
       "      <td>80</td>\n",
       "      <td>[-0.020869314670562744, -0.013138455338776112,...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>625</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B0009ET7TC</td>\n",
       "      <td>A2FSDQY5AI6TNX</td>\n",
       "      <td>5</td>\n",
       "      <td>My furbabies LOVE these!</td>\n",
       "      <td>Shake the container and they come running. Eve...</td>\n",
       "      <td>Title: My furbabies LOVE these!; Content: Shak...</td>\n",
       "      <td>47</td>\n",
       "      <td>[-0.009749102406203747, -0.0068712360225617886...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>619</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B007PA32L2</td>\n",
       "      <td>A15FF2P7RPKH6G</td>\n",
       "      <td>5</td>\n",
       "      <td>got this for the daughter</td>\n",
       "      <td>all i have heard since she got a kuerig is why...</td>\n",
       "      <td>Title: got this for the daughter; Content: all...</td>\n",
       "      <td>50</td>\n",
       "      <td>[-0.005320307798683643, 0.0009131018887273967,...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>1351209600</td>\n",
       "      <td>B001EQ5GEO</td>\n",
       "      <td>A3VYU0VO6DYV6I</td>\n",
       "      <td>5</td>\n",
       "      <td>I love Maui Coffee!</td>\n",
       "      <td>My first experience with Maui Coffee was bring...</td>\n",
       "      <td>Title: I love Maui Coffee!; Content: My first ...</td>\n",
       "      <td>118</td>\n",
       "      <td>[-0.006057822611182928, -0.015015840530395508,...</td>\n",
       "      <td>1536</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>100 rows × 11 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "           Time   ProductId          UserId  Score  \\\n",
       "650  1351209600  B0051O6P36  A1VC6419THHIET      5   \n",
       "651  1351209600  B001EO5RSQ  A33W5JAFGHYRQZ      5   \n",
       "652  1351209600  B0045H264C  A3IYSIAKYOMKTO      5   \n",
       "679  1351209600  B000UBD88A   AWRFQYLG7LQKJ      2   \n",
       "654  1351209600  B001XWRMAU  A1KWVBDHBG50VZ      5   \n",
       "..          ...         ...             ...    ...   \n",
       "623  1351209600  B0000CFXYA  A3GS4GWPIBV0NT      1   \n",
       "624  1351209600  B0001BH5YM   A1BZ3HMAKK0NC      5   \n",
       "625  1351209600  B0009ET7TC  A2FSDQY5AI6TNX      5   \n",
       "619  1351209600  B007PA32L2  A15FF2P7RPKH6G      5   \n",
       "999  1351209600  B001EQ5GEO  A3VYU0VO6DYV6I      5   \n",
       "\n",
       "                           Summary  \\\n",
       "650             Good for all cats.   \n",
       "651              Love this Cereal!   \n",
       "652                     Wild Honey   \n",
       "679                Not very strong   \n",
       "654      Outstanding product!.....   \n",
       "..                             ...   \n",
       "623  Strange inflammation response   \n",
       "624  My favorite and only  MUSTARD   \n",
       "625       My furbabies LOVE these!   \n",
       "619      got this for the daughter   \n",
       "999            I love Maui Coffee!   \n",
       "\n",
       "                                                  Text  \\\n",
       "650  I just got these treats last week and they're ...   \n",
       "651  There is nothing else like this on the market....   \n",
       "652  This really is unfiltered honey made from wild...   \n",
       "679  Not as strong as the regular dark coffee.  Dis...   \n",
       "654  Great flavor.....lotsa &#34;heat&#34;....I use...   \n",
       "..                                                 ...   \n",
       "623  Truthfully wasn't crazy about the taste of the...   \n",
       "624  You've just got to experience this mustard... ...   \n",
       "625  Shake the container and they come running. Eve...   \n",
       "619  all i have heard since she got a kuerig is why...   \n",
       "999  My first experience with Maui Coffee was bring...   \n",
       "\n",
       "                                              Combined  n_tokens  \\\n",
       "650  Title: Good for all cats.; Content: I just got...        81   \n",
       "651  Title: Love this Cereal!; Content: There is no...        55   \n",
       "652  Title: Wild Honey; Content: This really is unf...       107   \n",
       "679  Title: Not very strong; Content: Not as strong...        45   \n",
       "654  Title: Outstanding product!.....; Content: Gre...        43   \n",
       "..                                                 ...       ...   \n",
       "623  Title: Strange inflammation response; Content:...       110   \n",
       "624  Title: My favorite and only  MUSTARD; Content:...        80   \n",
       "625  Title: My furbabies LOVE these!; Content: Shak...        47   \n",
       "619  Title: got this for the daughter; Content: all...        50   \n",
       "999  Title: I love Maui Coffee!; Content: My first ...       118   \n",
       "\n",
       "                                             embedding  embed_len  embed_norm  \n",
       "650  [-0.02040177956223488, -0.022390257567167282, ...       1536         1.0  \n",
       "651  [-0.012976857833564281, -0.008588296361267567,...       1536         1.0  \n",
       "652  [0.002022168133407831, -0.010228604078292847, ...       1536         1.0  \n",
       "679  [-0.0016124029643833637, -0.026590621098876, 0...       1536         1.0  \n",
       "654  [-0.00573874544352293, 0.007031316868960857, 0...       1536         1.0  \n",
       "..                                                 ...        ...         ...  \n",
       "623  [0.00011091353371739388, -0.00466986745595932,...       1536         1.0  \n",
       "624  [-0.020869314670562744, -0.013138455338776112,...       1536         1.0  \n",
       "625  [-0.009749102406203747, -0.0068712360225617886...       1536         1.0  \n",
       "619  [-0.005320307798683643, 0.0009131018887273967,...       1536         1.0  \n",
       "999  [-0.006057822611182928, -0.015015840530395508,...       1536         1.0  \n",
       "\n",
       "[100 rows x 11 columns]"
      ]
     },
     "execution_count": 92,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b80cea9c",
   "metadata": {},
   "source": [
    "## semantic search base text embedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "id": "b9280f2b",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-03-13T14:59:32.786418Z",
     "start_time": "2023-03-13T14:59:31.781336Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "super coffee:  Great coffee and so easy to brew.  This coffee has great aroma and is good to the last drop.  I actually like all the brands.  This is the way coffee should taste!!\n",
      "Delicious!!!!:  A coffee treat. Now that my husband and I drink this coffee, there is no going back to the plain stuff ;).\n",
      "Full- bodied without a bitter after-taste:  This is my everyday coffee choice...a good all around crowd pleaser.  Green mountain Sumatra would be my back-up-for-a-change-of-pace second choice...nice t\n"
     ]
    }
   ],
   "source": [
    "from openai.embeddings_utils import get_embedding, cosine_similarity\n",
    "\n",
    "# search through the reviews for a specific product\n",
    "def search_reviews(df, query, n=3, pprint=True):\n",
    "    query_embed = get_embedding(\n",
    "        query,\n",
    "        engine=embedding_model\n",
    "    )\n",
    "    df[\"similarity\"] = df.embedding.apply(lambda x: cosine_similarity(x, query_embed))\n",
    "\n",
    "    results = (\n",
    "        df.sort_values(\"similarity\", ascending=False)\n",
    "        .head(n)\n",
    "        .Combined.str.replace(\"Title: \", \"\")\n",
    "        .str.replace(\"; Content:\", \": \")\n",
    "    )\n",
    "    if pprint:\n",
    "        for r in results:\n",
    "            print(r[:200])\n",
    "    return results\n",
    "\n",
    "\n",
    "results = search_reviews(df, \"good coffee\", n=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "717a8311",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": true
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}