1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
from random import seed
from random import randint
from numpy import array
from math import ceil
from math import log10
from math import sqrt
from numpy import argmax
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import TimeDistributed
from keras.layers import RepeatVector
# generate lists of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1, largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
return X, y
# convert data to strings
def to_string(X, y, n_numbers, largest):
max_length = n_numbers * ceil(log10(largest + 1)) + n_numbers - 1
Xstr = list()
for pattern in X:
strp = '+'.join([str(n) for n in pattern])
strp = ''.join([' ' for _ in range(max_length - len(strp))]) + strp
Xstr.append(strp)
max_length = ceil(log10(n_numbers * (largest + 1)))
ystr = list()
for pattern in y:
strp = str(pattern)
strp = ''.join([' ' for _ in range(max_length - len(strp))]) + strp
ystr.append(strp)
return Xstr, ystr
# integer encode strings
def integer_encode(X, y, alphabet):
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
Xenc = list()
for pattern in X:
integer_encoded = [char_to_int[char] for char in pattern]
Xenc.append(integer_encoded)
yenc = list()
for pattern in y:
integer_encoded = [char_to_int[char] for char in pattern]
yenc.append(integer_encoded)
return Xenc, yenc
# one hot encode
def one_hot_encode(X, y, max_int):
Xenc = list()
for seq in X:
pattern = list()
for index in seq:
vector = [0 for _ in range(max_int)]
vector[index] = 1
pattern.append(vector)
Xenc.append(pattern)
yenc = list()
for seq in y:
pattern = list()
for index in seq:
vector = [0 for _ in range(max_int)]
vector[index] = 1
pattern.append(vector)
yenc.append(pattern)
return Xenc, yenc
# generate an encoded dataset
def generate_data(n_samples, n_numbers, largest, alphabet):
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
# convert to strings
X, y = to_string(X, y, n_numbers, largest)
# integer encode
X, y = integer_encode(X, y, alphabet)
# one hot encode
X, y = one_hot_encode(X, y, len(alphabet))
# return as numpy arrays
X, y = array(X), array(y)
return X, y
# invert encoding
def invert(seq, alphabet):
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
strings = list()
for pattern in seq:
string = int_to_char[argmax(pattern)]
strings.append(string)
return ''.join(strings)
# define dataset
seed(1)
n_samples = 5000
n_numbers = 2
largest = 100
alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']
n_chars = len(alphabet)
n_in_seq_length = n_numbers * ceil(log10(largest + 1)) + n_numbers - 1
n_out_seq_length = ceil(log10(n_numbers * (largest + 1)))
# define LSTM configuration
n_batch = 10
n_epoch = 50
# create LSTM
model = Sequential()
# n_in_seq_length: 7, n_chars: 12
model.add(LSTM(100, input_shape=(n_in_seq_length, n_chars)))
model.add(RepeatVector(n_out_seq_length))
model.add(LSTM(50, return_sequences=True))
model.add(TimeDistributed(Dense(n_chars, activation='softmax')))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
# train LSTM
for i in range(n_epoch):
X, y = generate_data(n_samples, n_numbers, largest, alphabet)
print(i)
model.fit(X, y, epochs=1, batch_size=n_batch)
# evaluate on some new patterns
X, y = generate_data(n_samples, n_numbers, largest, alphabet)
result = model.predict(X, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, alphabet) for x in y]
predicted = [invert(x, alphabet) for x in result]
# show some examples
for i in range(20):
print('Expected=%s, Predicted=%s' % (expected[i], predicted[i]))
|