summaryrefslogtreecommitdiff
path: root/rl/tutorials/02_env_rendering.ipynb
blob: 53220f16e482cd86722213104d344aa7b93bed5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:12:34.049707Z",
     "start_time": "2022-12-06T15:12:33.704126Z"
    }
   },
   "outputs": [],
   "source": [
    "import gym\n",
    "import time\n",
    "\n",
    "env_name = 'CartPole-v0'\n",
    "env = gym.make(env_name)\n",
    "\n",
    "state = env.reset()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. mode = 'human'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:12:39.490610Z",
     "start_time": "2022-12-06T15:12:35.087433Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1\n",
      "1\n",
      "1\n",
      "1\n",
      "1\n",
      "0\n",
      "1\n",
      "1\n",
      "0\n",
      "1\n",
      "0\n",
      "11.0\n"
     ]
    }
   ],
   "source": [
    "done = False\n",
    "total_reward = 0\n",
    "\n",
    "while not done:\n",
    "    env.render(mode='human')\n",
    "    env.render()\n",
    "    action = env.action_space.sample()\n",
    "    print(action)\n",
    "    observation, reward, done, info = env.step(action)\n",
    "    total_reward += reward\n",
    "    time.sleep(0.2)\n",
    "print(total_reward)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. render save"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:17:15.208593Z",
     "start_time": "2022-12-06T15:17:15.204348Z"
    }
   },
   "outputs": [],
   "source": [
    "import gym\n",
    "import time\n",
    "\n",
    "env_name = 'CartPole-v0'\n",
    "env = gym.make(env_name)\n",
    "\n",
    "state = env.reset()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:17:26.712342Z",
     "start_time": "2022-12-06T15:17:16.349872Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "20.0\n"
     ]
    }
   ],
   "source": [
    "done = False\n",
    "total_reward = 0\n",
    "\n",
    "frames = []\n",
    "while not done:\n",
    "    frames.append(env.render(mode='rgb_array'))\n",
    "    action = env.action_space.sample()\n",
    "    obs, reward, done, info = env.step(action)\n",
    "    total_reward += reward\n",
    "    time.sleep(0.5)\n",
    "env.close()\n",
    "print(total_reward)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:17:40.036631Z",
     "start_time": "2022-12-06T15:17:40.025386Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "20"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(frames)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:17:44.826262Z",
     "start_time": "2022-12-06T15:17:44.821711Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(800, 1200, 3)"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frames[0].shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:18:45.644043Z",
     "start_time": "2022-12-06T15:18:45.399440Z"
    }
   },
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "from matplotlib import animation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:25:03.128463Z",
     "start_time": "2022-12-06T15:25:03.123683Z"
    }
   },
   "outputs": [],
   "source": [
    "def display_frames_to_video(frames):\n",
    "    plt.figure(figsize=(frames[0].shape[0]/72, frames[0].shape[1]/72), dpi=72)\n",
    "    plt.axis('off')\n",
    "    patch = plt.imshow(frames[0])\n",
    "    \n",
    "#     def animate(i):\n",
    "#         patch.set_data(frames[i])\n",
    "    def animate(frame):\n",
    "        patch.set_data(frame)        \n",
    "    anim = animation.FuncAnimation(plt.gcf(), animate, frames=frames[1:], interval=50)\n",
    "    anim.save('cartpole_2.mp4')\n",
    "    anim.save('cartpole_2.gif', writer='imagemagick')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2022-12-06T15:25:17.295685Z",
     "start_time": "2022-12-06T15:25:04.815212Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnoAAAGrCAYAAABXIDobAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAR7ElEQVR4nO3dS5Nc9XnA4fd099xHl9EFIYGwLCITIyicmNjE5VvKqfIqi6zzEbzwF8jGy3wBb5xNdl6mypVKlbOwIYldFL7EccDIAiRwAI0Gobn39PR0nywUx3GCZg4l9Zxz3nmeDYvz0vOuun6aM/9zirIsAwCAfDp1LwAAwGQIPQCApIQeAEBSQg8AICmhBwCQVO+A647kAgA0W3G/C36jBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEAJCX0AACSEnoAAEkJPQCApIQeAEBSQg8AICmhBwCQlNADAEhK6AEpDfsbcef6yzHe243x3jDK8ajulQAOXVGW5X7X970I0FTbH7wTr//938TU/PGIKOL440/HwiOXIiJidulCzJ95IoqiiCg69/4L0F73/RITekBKH1z7Ubz94t995LXu9Hz05hYjoohHrn41Tl15IXoz84e7IMDDc9/Qc+sWSGn1xs/ue220ux2DtdsxWFuOW7/4fox2+4e4GcDhEXpAOgfcqfg9i4/+QcwcOz3BbQDqI/SAdHZW34/N5TfrXgOgdkIPSGe0uxOjwfbBg0URpz/1wuQXAqiJ0AOOsCJmjp2pewmAiRF6QDp333yl0lxvZj6Kbm/C2wDUR+gB6fTvvl9p7sQTz8b0ooMYQF5CD0hlvDeMcjSsOF14WDKQmtADUtlauRmbt6qduO1MzUx4G4B6CT0gmTKqvNSn6PTikatfnfg2AHUSekAqG+9dqzxbdLoT3ASgfkIPSGXj3WqhN3f6sehOe78tkJvQA46khbOXoje7UPcaABMl9IA0drdWY9hfr3sNgMYQekAaO3ffi8Ha8sGDRSdmly5MfiGAmgk94MjpdHtx8tJzda8BMHFCD0ihLMtY+dVLda8B0ChCD0hjuLVaae7kpc9Eb/bYhLcBqJ/QA46cqfkT0en26l4DYOKEHpDC9srN2Fm9dfBgUURv7vjkFwJoAKEHpDDsb8Rot3/gXKc3E6evvHAIGwHUT+gBrVeWZeztbFb/H4rJ7QLQJEIPSGHl1R9WmutOz0ZR+OoDjgbfdkAKZTmuNHf6ygvRnfHqM+BoEHpA6+3cfS+G29UerVJ0ulEU7t0CR4PQA1pvZ/VW7PU3DpwrulOx8MgnD2EjgGYQesCR0elNx8K5y3WvAXBohB7QamVZxtbKzbrXAGgkoQe0W1nG2ju/rDQ6t3Qhio43YgBHh9ADWq6MKKtNHr94NbpTM5NdB6BBhB7Qamu/eTUGGyt1rwHQSEIPaLXRYDvK0d6Bc92ZhVi6/NlD2AigOYQecCQUnW5MzR2vew2AQyX0gNYqx6P48I2X614DoLGEHtBaZVnGYL3a3+ctXf5sdHpTE94IoFmEHtBao93tKMejSrMzx89G0elOeCOAZhF6QGut3vxF7G5+ePBg0Ynu9OzkFwJoGKEHtFi1B+hNzZ+IpcvPT3gXgOYRekArlWUZ4+Gg8nxRFBPcBqCZhB7QSuVoGCuvvVRp9tiFp/x9HnAkCT2gtcajYaW5xUefFHrAkST0gFbqf/jux7p1C3AUCT2glTaX34rR7vaBc52p2Zg98eghbATQPEIPaJ2yLCPKiidu547FwrnLE94IoJmEHtA6473d+ODav1acdtoWOLqEHtA+ZRl7O5uVRs98+osOYgBHltADUpuaO+EZesCRJfSA1lm9+fMYDbbqXgOg8YQe0Dq7W6tRjkcHzk0vnopjF546hI0AmknoAa1Sjsext7NRabbTm4mp+RMT3giguYQe0CqjYT8+vP5ypdne7OKEtwFoNqEHtE5Z8Rl6Z69+JcJBDOAIE3pAq4yHg8oPSy6KjhO3wJEm9IBW+eDajyq9+iyKThTd3uQXAmgwoQe0SzmuNDa3dD6OP351wssANJvQA1pjNBzE1srNasNFxxsxgCNP6AGtMd4bxOatNyvNLp67POFtAJpP6AEpHb/4jIMYwJEn9IDW2Ln7fqU3YgBwj9ADWmPtnV9GORoeODd36rE4dv7KIWwE0GxCD2iFqg9Jjojo9KajMzU7wW0A2kHoAa2wt7MZd2/8vO41AFpF6AGtUI73Yq+/Xmn29FNfmPA2AO0g9IBWGG6vVb59O3PsjBO3ACH0gJa4c+3HlQ5i3Pv7vJlD2Aig+YQe0BLVfps3f+aJWHjEw5IBIoQe0ALleBSj4aDitFu2AL8l9IDG2926G6s3flZptjvtsSoAvyX0gOYryyjH40qjjzzzNQcxAP6b0AMab+P961GW1UKv6HYnvA1Aewg9oPE2378eUSH0phdPxfTC0iFsBNAOQg9IY+bEuZg5frbuNQAaQ+gBjbY32I7B+u1Ks/42D+D3CT2g0fb667G5/Fal2bNX/2zC2wC0i9AD0ujNLta9AkCjCD2g0VZ+9c+VDmIA8P8JPaDRhttrleYWzj0Zc0sXJrwNQLsIPaCxRsNB7O1sVprtzcx7KwbA/yH0gMYarK/ExruvV5qdmj854W0A2kfoASmcffrLda8A0DhCD2is0WCr7hUAWk3oAY11+9UfRER54FynNx1Fpzf5hQBaRugBzVUeHHkREccffzpml85PeBmA9hF6QCPtbt6N/t33qg0XHa8/A/gIQg9opGF/LQZr1d5xe+z8pya8DUA7CT2g3Yoijl14qu4tABpJ6AGNtHX7Zt0rALSe0AMaae2df680N3PsbHRn5ie8DUA7CT2gccqyrPJUlYiIWDj3yZhe8FYMgI8i9IDG6d/5z9hcfrPuNQBaT+gBjTPeG8R4uHPwYNGJM099cfILAbSU0ANaqyiKmHLbFuC+hB7QOHd+/eNKc73ZY9HpTk14G4D2EnpA4wzWVyrNnXjiWb/RA9iH0AMaZTQcxGg4qDzv1WcA9yf0gEbZXrkZ2ys3K816fh7A/oQe0ChlWe0BekV3Ks5++ssT3gag3YQe0BhlWcb6b/6j8nzR8RUGsB/fkkCjbC6/VWlu4eyl6E7PTXgbgHYTekArzZ+5KPQADiD0gMbY3bgTw+3VutcASEPoAY2xs3ordjfuHDhXdLoxd/riIWwE0G5CD2iEe6dtq5647cWJi1cnuxBAAkIPaIzbr/6g4qSHJANUIfSAxtjrb1aaO/Xk89GbXZzwNgDtJ/SA1unNLkbR6da9BkDjCT2gETZvvRE7a7cOHiw6MbWwNPmFABIQekAj7O1sxng4OHCuOzUbp558/hA2Amg/oQfUrizL2Ouv170GQDpCD2iAMlZee6nSZG92IaLw1QVQhW9LoCGqPUPv1JXPe/UZQEVCD6jdeG83yvGo4nQRReE5egBV9OpeAGiP9fX12N7efuif23/v1dhZXT54sDMV/e6JuHWrwuncAxRFEadPn45ez9cgkJdvOKCyb33rW/Gd73znoX/u1/7oE/HXf/WFA+furm3EX3z9L2Ozv/vAP3NmZiZeeeWVuHTp0gN/FkBTCT2gsp2dndjY2Hion1kUEU89dqLSbFmWsb6+Hls7wwf+ubu7uzEejx/4cwCaTOgBteoURfzJHz4WZVnE1uh43B5cjIiI6c5OnJ+9EZ0YR1HcO6jx2tsrMRyJM4CqhB5Qq05RREQRb2x+Jm5sPxO743snaosYxeudz8XF+V/HlcWfRqco4yfX3ovdYdVDGwAIPaBWX3ruUmzPfilubP5xlPG799eW0Y2d8WK8sflcRJRxZfGnUZbVHsECwD0erwLUquidincHz/5e5P1vZXTj7e2n4zd3p+OffvLWIW8H0G5CD6jVnd3zMRgv7DuzO56L5f75WN8++F24APyO0ANq0+t2488//3zdawCkJfSA2hRFxLml+Uqz//jyGw5iAHxMQg+ozdLibJyZuxud2Nt3rhOj+HB1JcYOYwB8LEIPqM1XnvtEXD13J05O3953bq5YjrnRtUPaCiAPoQfUZn17EB+ub8VnTrwYx3srHzlzrHcnHot/iJf+zYlbgI/Lc/SA2nz/J2/G6+98EM9ePhf90Q+jXPxcPPPM1yMi4rGliE+dfCNOTd+K1btrUYbbtgAfl9ADalOWEW8vr8Xby2sREVEUP4sXX/zbiIj406cfj0dP3XtLxlZ/N0YjoQfwce0besvLy4e1B9AC/X5/op9flmWMRsOIiPiXX96Y+M+6c+dOLCzs/ww/gKY7d+7cfa/tG3rf/e53H/oyQHtdv3697hUemvF4HN/73vfi9OnTda8C8EC++c1v3vdaccC7I90rAf7HN77xjfj2t79d9xoPxczMTLz22mtx+fLlulcBeFDF/S44dQsAkJTQAwBISugBACQl9AAAkhJ6AABJCT0AgKSEHgBAUkIPACApoQcAkJTQAwBISugBACQl9AAAkhJ6AABJ9epeAGiPubm5OHnyZN1rPBTT09PR6fi3LpBbUZblftf3vQgcLRsbG9Hv9+te46EoiiJOnToV3W637lUAHlRx3wtCDwCg1e4beu5bAAAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJCU0AMASEroAQAkJfQAAJISegAASQk9AICkhB4AQFJCDwAgqd4B14tD2QIAgIfOb/QAAJISegAASQk9AICkhB4AQFJCDwAgKaEHAJDUfwF1OP9O0Cq2lQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 800x1200 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "display_frames_to_video(frames)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}