diff options
| author | YurenHao0426 <blackhao0426@gmail.com> | 2026-02-09 12:28:55 -0600 |
|---|---|---|
| committer | YurenHao0426 <blackhao0426@gmail.com> | 2026-02-09 12:28:55 -0600 |
| commit | ef678d2e1ba70b1a9dadb78c73ed372f986aea13 (patch) | |
| tree | b90b5c53960b22a6a5498ca69fbfffad7e1832f8 /scripts/sanity_check.py | |
| parent | 93d77b197d457b1fdfa7341ecd59fc460b20d6b1 (diff) | |
Fix NLL double-shift bug and head weight init
- NLL loss was shifting labels twice (olmo_labels already shifted,
then code did logits[:,:-1] vs labels[:,1:]). Fixed in 9 locations:
trainer, pipeline, olmo_graph, sanity_check, eval.
- Head U/V weights init with std=0.01 (was Kaiming ~5.7 std) so
UV^T≈0 at init, ensuring Z≈logit_bias=15 and A≈0.953.
- Updated SVD rank test to subtract logit_bias before checking.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
Diffstat (limited to 'scripts/sanity_check.py')
| -rw-r--r-- | scripts/sanity_check.py | 17 |
1 files changed, 10 insertions, 7 deletions
diff --git a/scripts/sanity_check.py b/scripts/sanity_check.py index f30bd58..9745482 100644 --- a/scripts/sanity_check.py +++ b/scripts/sanity_check.py @@ -48,11 +48,14 @@ def get_test_batch(tokenizer, seq_len: int = 64, device: str = "cpu"): def compute_dagformer_nll(wrapper: DAGFormerOLMo, input_ids: torch.Tensor, labels: torch.Tensor, A: torch.Tensor) -> torch.Tensor: - """Compute NLL using DAGFormer modified forward.""" + """Compute NLL using DAGFormer modified forward. + + labels is already shifted (chunk[1:seq_len+1]), no additional shift needed. + """ logits = wrapper.forward(input_ids, A) nll = F.cross_entropy( - logits[:, :-1].contiguous().view(-1, logits.size(-1)), - labels[:, 1:].contiguous().view(-1), + logits.contiguous().view(-1, logits.size(-1)), + labels.contiguous().view(-1), ) return nll @@ -132,8 +135,8 @@ def check_4_gradient_flow(wrapper, tokenizer, device): logits = wrapper.forward(input_ids, A) nll = F.cross_entropy( - logits[:, :-1].contiguous().view(-1, logits.size(-1)), - labels[:, 1:].contiguous().view(-1), + logits.contiguous().view(-1, logits.size(-1)), + labels.contiguous().view(-1), ) nll.backward() @@ -176,8 +179,8 @@ def check_5_normalization_smoke(wrapper_factory, tokenizer, device): logits = wrapper.forward(input_ids, A) is_finite = torch.isfinite(logits).all().item() nll = F.cross_entropy( - logits[:, :-1].contiguous().view(-1, logits.size(-1)), - labels[:, 1:].contiguous().view(-1), + logits.contiguous().view(-1, logits.size(-1)), + labels.contiguous().view(-1), ).item() print(f" {method:12s}: NLL={nll:.4f}, finite={is_finite}") if not is_finite: |
