diff options
| author | YurenHao0426 <blackhao0426@gmail.com> | 2026-02-09 14:40:31 -0600 |
|---|---|---|
| committer | YurenHao0426 <blackhao0426@gmail.com> | 2026-02-09 14:40:31 -0600 |
| commit | 80579d6cc254d337a23e71404ae7ecab1849d1e5 (patch) | |
| tree | bc6790229c20af516da662d7a4b7c8c7f1c4cb8c /src/model | |
| parent | ef678d2e1ba70b1a9dadb78c73ed372f986aea13 (diff) | |
Layer 0 has no incoming edges structurally (no prior layers), but
receives the embedding as input. The cascading gate was killing its
outgoing edges (hard: g=0, soft: g=0.5), causing nll_hard to be
~2x worse than baseline. Fix: set g=1 for layer 0 nodes.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
Diffstat (limited to 'src/model')
| -rw-r--r-- | src/model/predictor.py | 10 |
1 files changed, 10 insertions, 0 deletions
diff --git a/src/model/predictor.py b/src/model/predictor.py index b5f9674..9ce5711 100644 --- a/src/model/predictor.py +++ b/src/model/predictor.py @@ -168,6 +168,7 @@ def cascading_gate( A: torch.Tensor, k: float = 5.0, hard: bool = False, + heads_per_layer: int = 16, ) -> torch.Tensor: """Apply cascading activation gate: kill outgoing edges from disconnected nodes. @@ -176,6 +177,9 @@ def cascading_gate( 2. Compute gates: g_j = σ(k * inc_j) (soft) or (inc_j > 0) (hard) 3. Apply: A[j, :] *= g_j + Layer 0 nodes are exempted: they have inc=0 structurally (no prior layers) + but receive the embedding as input, so they are NOT disconnected. + Uses ORIGINAL A values for incoming sums (before any gates applied). See CLAUDE.md §2.3 cascading gate section. @@ -183,6 +187,7 @@ def cascading_gate( A: [batch, 256, 256] — gate matrix k: steepness of sigmoid gate (default: 5.0) hard: if True, use binary gates (for eval_hard mode) + heads_per_layer: number of heads per layer (default: 16) Returns: A_gated: [batch, 256, 256] — A with cascading gate applied @@ -195,6 +200,11 @@ def cascading_gate( else: g = torch.sigmoid(k * inc) # [batch, 256] + # Exempt layer 0: always g=1 (they receive embedding, not disconnected) + # Use non-in-place op to preserve autograd graph + exempt = torch.arange(g.shape[1], device=g.device) < heads_per_layer + g = torch.where(exempt.unsqueeze(0), torch.ones_like(g), g) + # Gate outgoing edges: A[j, :] *= g[j] # g: [B, 256] → [B, 256, 1] to broadcast with A: [B, 256, 256] return A * g.unsqueeze(2) |
