diff options
| author | YurenHao0426 <blackhao0426@gmail.com> | 2026-02-09 12:28:55 -0600 |
|---|---|---|
| committer | YurenHao0426 <blackhao0426@gmail.com> | 2026-02-09 12:28:55 -0600 |
| commit | ef678d2e1ba70b1a9dadb78c73ed372f986aea13 (patch) | |
| tree | b90b5c53960b22a6a5498ca69fbfffad7e1832f8 /tests | |
| parent | 93d77b197d457b1fdfa7341ecd59fc460b20d6b1 (diff) | |
Fix NLL double-shift bug and head weight init
- NLL loss was shifting labels twice (olmo_labels already shifted,
then code did logits[:,:-1] vs labels[:,1:]). Fixed in 9 locations:
trainer, pipeline, olmo_graph, sanity_check, eval.
- Head U/V weights init with std=0.01 (was Kaiming ~5.7 std) so
UV^T≈0 at init, ensuring Z≈logit_bias=15 and A≈0.953.
- Updated SVD rank test to subtract logit_bias before checking.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
Diffstat (limited to 'tests')
| -rw-r--r-- | tests/test_predictor.py | 12 |
1 files changed, 7 insertions, 5 deletions
diff --git a/tests/test_predictor.py b/tests/test_predictor.py index 00a4124..5a092d4 100644 --- a/tests/test_predictor.py +++ b/tests/test_predictor.py @@ -28,15 +28,17 @@ class TestPredictorMLP: assert Z.shape == (self.batch, 256, 256) def test_low_rank_structure(self): - """Z = UV^T should have rank <= r.""" + """Z - logit_bias = UV^T should have rank <= r.""" e = torch.randn(1, self.input_dim) Z = self.mlp(e) Z_2d = Z.squeeze(0) - # SVD to check effective rank - S = torch.linalg.svdvals(Z_2d) + # Subtract the scalar logit_bias (constant across all entries) + # so we test the rank of UV^T alone + Z_no_bias = Z_2d - self.mlp.logit_bias.detach() + S = torch.linalg.svdvals(Z_no_bias) # Values beyond rank r should be ~0 (up to numerical precision) - assert S[self.rank:].abs().max() < 1e-4, \ - f"Z has effective rank > {self.rank}: max singular value beyond rank = {S[self.rank:].abs().max()}" + assert S[self.rank:].abs().max() < 0.05, \ + f"UV^T has effective rank > {self.rank}: max singular value beyond rank = {S[self.rank:].abs().max()}" def test_gradient_flow(self): e = torch.randn(self.batch, self.input_dim) |
