blob: 92d4a2462f86505a90aeaaf8a3b833e9eb19ffb9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
# Sanity check config — verify baseline NLL reproduction and basic training
# Run: python scripts/train.py --config configs/sanity_check.yaml
# Model
olmo_model_id: "allenai/OLMo-2-0425-1B"
qwen_model_id: "Qwen/Qwen3-Embedding-0.6B"
# Predictor
predictor_hidden_dim: 1024
predictor_rank: 32
cascading_gate_k: 5.0
input_norm: "none" # use "none" to verify baseline reproduction
# Data
dataset: "allenai/dolma"
dataset_name: "v1_7"
seq_len: 1024
batch_size: 4
micro_batch_size: 2 # gradient accumulation: effective batch=4, micro=2
qwen_input_prefix: ""
# Eval
eval_skip: 10000 # reduced for sanity check (1M too slow for streaming)
eval_size: 50 # small eval set for sanity check
# Training
total_steps: 1000
lr: 3e-4
weight_decay: 0.01
optimizer: "adamw"
# Schedules
tau_init: 5.0
tau_final: 0.2
tau_schedule: "cosine"
lambda_max: 0.0 # no sparsity for sanity check
lambda_warmup_frac: 0.2
# Logging
wandb_project: "dagformer"
wandb_run_name: "sanity-check"
log_every: 10
eval_every: 100
# Checkpointing
save_every: 500
save_dir: "checkpoints/"
# Hardware
num_gpus: 1
|