1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
"""Streaming dataloader for Dolma v1.7 with sequence packing.
Produces packed sequences of fixed length for both OLMo and Qwen tokenizers.
See CLAUDE.md §3.1.1 for sequence packing specification.
"""
from __future__ import annotations
import os
from typing import Iterator, Optional
import torch
from datasets import load_dataset
from torch.utils.data import IterableDataset
from transformers import AutoTokenizer
class DolmaPackedDataset(IterableDataset):
"""Streaming Dolma dataset with sequence packing.
Concatenates documents with EOS separators, then chunks into fixed-length
sequences. No padding — every token contributes to NLL.
Each sample yields:
olmo_ids: [seq_len] — OLMo input token IDs
olmo_labels: [seq_len] — shifted labels (next-token prediction)
raw_text: str — decoded text for Qwen encoder
"""
def __init__(
self,
olmo_tokenizer: AutoTokenizer,
seq_len: int = 1024,
dataset_name: str = "allenai/dolma",
dataset_version: str = "v1_7",
rank: int = 0,
world_size: int = 1,
max_samples: Optional[int] = None,
):
super().__init__()
self.olmo_tokenizer = olmo_tokenizer
self.seq_len = seq_len
self.dataset_name = dataset_name
self.dataset_version = dataset_version
self.rank = rank
self.world_size = world_size
self.max_samples = max_samples
self.eos_id = olmo_tokenizer.eos_token_id
assert self.eos_id is not None, "OLMo tokenizer must have an EOS token"
def __iter__(self) -> Iterator[dict]:
"""Yield packed sequences from Dolma stream."""
try:
dataset = load_dataset(
self.dataset_name,
name=self.dataset_version,
split="train",
streaming=True,
trust_remote_code=True,
)
except Exception:
# Fallback if specific version not available
dataset = load_dataset(
self.dataset_name,
split="train",
streaming=True,
trust_remote_code=True,
)
# Shard for multi-GPU
if self.world_size > 1:
dataset = dataset.shard(num_shards=self.world_size, index=self.rank)
buffer: list[int] = []
sample_count = 0
for doc in dataset:
if self.max_samples is not None and sample_count >= self.max_samples:
break
text = doc.get("text", "")
if not text.strip():
continue
tokens = self.olmo_tokenizer(text, add_special_tokens=False)["input_ids"]
buffer.extend(tokens)
buffer.append(self.eos_id)
# Yield packed sequences as buffer fills
while len(buffer) >= self.seq_len + 1:
chunk = buffer[:self.seq_len + 1]
buffer = buffer[self.seq_len + 1:]
olmo_ids = torch.tensor(chunk[:self.seq_len], dtype=torch.long)
olmo_labels = torch.tensor(chunk[1:self.seq_len + 1], dtype=torch.long)
raw_text = self.olmo_tokenizer.decode(chunk[:self.seq_len], skip_special_tokens=False)
yield {
"olmo_ids": olmo_ids,
"olmo_labels": olmo_labels,
"raw_text": raw_text,
}
sample_count += 1
if self.max_samples is not None and sample_count >= self.max_samples:
break
def build_train_dataloader(
olmo_tokenizer: AutoTokenizer,
seq_len: int = 1024,
batch_size: int = 4,
dataset_name: str = "allenai/dolma",
dataset_version: str = "v1_7",
rank: int = 0,
world_size: int = 1,
num_workers: int = 0,
) -> torch.utils.data.DataLoader:
"""Build training dataloader with sequence packing."""
dataset = DolmaPackedDataset(
olmo_tokenizer=olmo_tokenizer,
seq_len=seq_len,
dataset_name=dataset_name,
dataset_version=dataset_version,
rank=rank,
world_size=world_size,
)
return torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=_collate_packed,
)
def build_eval_dataloader(
olmo_tokenizer: AutoTokenizer,
seq_len: int = 1024,
batch_size: int = 4,
dataset_name: str = "allenai/dolma",
dataset_version: str = "v1_7",
eval_skip: int = 1_000_000,
eval_size: int = 1_000,
cache_path: Optional[str] = None,
) -> list[dict]:
"""Build eval batches (cached in memory).
Skips eval_skip examples in the stream, then takes eval_size packed sequences.
Caches to disk to avoid repeated skip on restart.
"""
# Try loading from cache
if cache_path and os.path.exists(cache_path):
print(f"Loading eval cache from {cache_path}")
return torch.load(cache_path)
print(f"Building eval set (skip={eval_skip}, size={eval_size})...")
try:
dataset = load_dataset(
dataset_name,
name=dataset_version,
split="train",
streaming=True,
trust_remote_code=True,
)
except Exception:
dataset = load_dataset(
dataset_name,
split="train",
streaming=True,
trust_remote_code=True,
)
# Skip to held-out region
dataset = dataset.skip(eval_skip)
eos_id = olmo_tokenizer.eos_token_id
buffer: list[int] = []
eval_samples: list[dict] = []
for doc in dataset:
if len(eval_samples) >= eval_size:
break
text = doc.get("text", "")
if not text.strip():
continue
tokens = olmo_tokenizer(text, add_special_tokens=False)["input_ids"]
buffer.extend(tokens)
buffer.append(eos_id)
while len(buffer) >= seq_len + 1 and len(eval_samples) < eval_size:
chunk = buffer[:seq_len + 1]
buffer = buffer[seq_len + 1:]
eval_samples.append({
"olmo_ids": torch.tensor(chunk[:seq_len], dtype=torch.long),
"olmo_labels": torch.tensor(chunk[1:seq_len + 1], dtype=torch.long),
"raw_text": olmo_tokenizer.decode(chunk[:seq_len], skip_special_tokens=False),
})
print(f"Built {len(eval_samples)} eval sequences")
# Batch the samples
eval_batches = []
for i in range(0, len(eval_samples), batch_size):
batch_items = eval_samples[i:i + batch_size]
eval_batches.append(_collate_packed(batch_items))
# Cache to disk
if cache_path:
os.makedirs(os.path.dirname(cache_path) or ".", exist_ok=True)
torch.save(eval_batches, cache_path)
print(f"Eval cache saved to {cache_path}")
return eval_batches
def _collate_packed(batch: list[dict]) -> dict:
"""Collate packed samples into a batch dict."""
return {
"olmo_ids": torch.stack([s["olmo_ids"] for s in batch]),
"olmo_labels": torch.stack([s["olmo_labels"] for s in batch]),
"raw_text": [s["raw_text"] for s in batch],
}
|