1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
"""Modified OLMo2-1B forward pass with adjacency matrix A injection.
This module implements the core DAGFormer modification: per-head input
assembly controlled by a 256x256 adjacency matrix A. Each head receives
its own input (a gated combination of prior heads' outputs), rather than
the shared residual stream.
Key design decisions:
- Uses proportional attribution for post_attention_layernorm decomposition
(OLMo2 is post-norm, not pre-norm as CLAUDE.md §2.1 assumes)
- Concatenate→q_norm→split pattern for per-head Q/K normalization
- Weight slices via .view() (not .clone()) for Phase 2 compatibility
- When A=all-ones and input_norm="none", output is identical to vanilla OLMo2
"""
from __future__ import annotations
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import AutoModelForCausalLM
from transformers.models.olmo2.modeling_olmo2 import (
apply_rotary_pos_emb,
)
def create_block_upper_triangular_mask(num_nodes: int = 256, heads_per_layer: int = 16) -> torch.Tensor:
"""Create block-upper-triangular mask based on LAYER indices.
mask[i,j] = 1 iff layer(j) > layer(i), i.e. j//16 > i//16.
Same-layer and backward connections are 0.
Do NOT use torch.triu() — it allows same-layer connections.
Returns:
mask: [num_nodes, num_nodes] float tensor with 0s and 1s
"""
layer_idx = torch.arange(num_nodes) // heads_per_layer
mask = (layer_idx.unsqueeze(1) < layer_idx.unsqueeze(0)).float() # [256, 256]
return mask
class InputNormalizer(nn.Module):
"""Normalization methods for gated head output sums (CLAUDE.md §6.1).
Applied ONLY to the gated_sum component, not the base (embedding + MLPs).
"""
def __init__(self, method: str, model_dim: int = 2048, num_nodes: int = 256):
super().__init__()
self.method = method
self.model_dim = model_dim
if method == "none":
pass
elif method == "gate_mean":
pass # no learnable params
elif method == "rms_post":
self.norm = nn.RMSNorm(model_dim)
elif method == "ln_post":
self.norm = nn.LayerNorm(model_dim)
elif method == "rms_pre":
self.norms = nn.ModuleList([nn.RMSNorm(model_dim) for _ in range(num_nodes)])
else:
raise ValueError(f"Unknown input_norm method: {method}")
def forward(
self,
gated_sum: torch.Tensor,
A_slice: Optional[torch.Tensor] = None,
prior_head_outs: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Normalize the gated sum of prior head outputs.
Args:
gated_sum: [batch, num_heads, seq, model_dim] — gated sum for this layer's heads
A_slice: [batch, num_prior_nodes, num_heads] — gate values (for gate_mean)
prior_head_outs: [batch, num_prior_nodes, seq, model_dim] — for rms_pre
Returns:
Normalized gated_sum, same shape
"""
if self.method == "none":
return gated_sum
elif self.method == "gate_mean":
assert A_slice is not None
# Sum of gates per target head: [batch, num_heads]
gate_sum = A_slice.sum(dim=1) # [batch, num_heads]
# Divide gated_sum by gate_sum (avoid div by zero)
divisor = gate_sum.clamp(min=1e-8) # [batch, num_heads]
return gated_sum / divisor[:, :, None, None] # broadcast over [seq, model_dim]
elif self.method == "rms_post":
return self.norm(gated_sum)
elif self.method == "ln_post":
return self.norm(gated_sum)
elif self.method == "rms_pre":
# Apply per-source-node RMSNorm before gating, then recompute gated sum
# This requires prior_head_outs and A_slice
assert prior_head_outs is not None and A_slice is not None
num_prior = prior_head_outs.shape[1]
# Normalize each source node's output
normed_sources = []
for i in range(num_prior):
normed_sources.append(self.norms[i](prior_head_outs[:, i]))
normed_sources = torch.stack(normed_sources, dim=1) # [B, num_prior, S, D]
# Recompute gated sum with normed sources
return torch.einsum('bih,bisd->bhsd', A_slice, normed_sources)
raise ValueError(f"Unknown method: {self.method}")
class DAGFormerOLMo(nn.Module):
"""Wraps OLMo2-1B with adjacency matrix A injection for per-head routing.
When A is all-ones and input_norm is "none", this produces output
identical to vanilla OLMo2-1B (baseline reproduction invariant).
"""
def __init__(
self,
model: AutoModelForCausalLM,
input_norm: str = "none",
num_layers: int = 16,
num_heads: int = 16,
):
super().__init__()
self.olmo = model
self.num_layers = num_layers
self.num_heads = num_heads
self.num_nodes = num_layers * num_heads
self.model_dim = model.config.hidden_size
self.head_dim = self.model_dim // num_heads
self.rms_norm_eps = model.config.rms_norm_eps
# Runtime assertions
assert model.config.num_attention_heads == num_heads, \
f"Expected {num_heads} attention heads, got {model.config.num_attention_heads}"
assert model.config.num_key_value_heads == num_heads, \
f"Expected MHA ({num_heads} KV heads), got {model.config.num_key_value_heads} — GQA detected"
# Verify no bias
layer0_attn = model.model.layers[0].self_attn
assert layer0_attn.o_proj.bias is None, \
"Expected no bias in o_proj — update per-head splitting if bias exists"
# Block-upper-triangular mask: [256, 256]
self.register_buffer('dag_mask', create_block_upper_triangular_mask(self.num_nodes, num_heads))
# Input normalization
self.input_normalizer = InputNormalizer(input_norm, self.model_dim, self.num_nodes)
# Attention scaling factor
self.scaling = self.head_dim ** -0.5
def _get_head_weight_views(self, layer_idx: int) -> dict:
"""Get per-head weight views for a given layer.
Uses .view() which returns views of the same storage — no copy,
gradients flow through for Phase 2 compatibility.
"""
layer = self.olmo.model.layers[layer_idx]
attn = layer.self_attn
# Q, K, V projections: [model_dim, model_dim] → [num_heads, head_dim, model_dim]
W_q = attn.q_proj.weight.view(self.num_heads, self.head_dim, self.model_dim)
W_k = attn.k_proj.weight.view(self.num_heads, self.head_dim, self.model_dim)
W_v = attn.v_proj.weight.view(self.num_heads, self.head_dim, self.model_dim)
# O projection: [model_dim, model_dim]
# Split by INPUT dimension (columns): [model_dim, num_heads, head_dim]
# Permute to [num_heads, model_dim, head_dim] for einsum
W_o = attn.o_proj.weight.view(self.model_dim, self.num_heads, self.head_dim)
W_o = W_o.permute(1, 0, 2) # [num_heads, model_dim, head_dim]
return {
'W_q': W_q, 'W_k': W_k, 'W_v': W_v, 'W_o': W_o,
'q_norm': attn.q_norm,
'k_norm': attn.k_norm,
'post_attn_norm': layer.post_attention_layernorm,
'post_ff_norm': layer.post_feedforward_layernorm,
'mlp': layer.mlp,
}
def forward(
self,
olmo_ids: torch.Tensor,
A: torch.Tensor,
) -> torch.Tensor:
"""Modified OLMo2-1B forward pass with per-head routing via A.
Args:
olmo_ids: [batch, seq_len] — tokenized by OLMo's tokenizer
A: [batch, 256, 256] — block-upper-triangular gate matrix
Returns:
logits: [batch, seq_len, vocab_size]
"""
batch, seq_len = olmo_ids.shape
device = olmo_ids.device
assert A.shape == (batch, self.num_nodes, self.num_nodes), \
f"A shape mismatch: expected ({batch}, {self.num_nodes}, {self.num_nodes}), got {A.shape}"
# Cast A to model dtype (predictor outputs float32, OLMo uses bfloat16)
model_dtype = self.olmo.model.embed_tokens.weight.dtype
A = A.to(dtype=model_dtype)
# Token embedding
embedding = self.olmo.model.embed_tokens(olmo_ids) # [B, S, D]
# Position embeddings (computed once, shared across all layers)
position_ids = torch.arange(seq_len, device=device).unsqueeze(0) # [1, S]
position_embeddings = self.olmo.model.rotary_emb(embedding, position_ids)
cos, sin = position_embeddings
# Causal attention mask: [1, 1, S, S]
causal_mask = torch.zeros(1, 1, seq_len, seq_len, device=device, dtype=embedding.dtype)
causal_mask.masked_fill_(
torch.triu(torch.ones(seq_len, seq_len, device=device, dtype=torch.bool), diagonal=1),
float('-inf'),
)
# Storage for outputs across layers
# We accumulate head_outputs as a list of [B, 16, S, D] tensors (one per layer)
all_head_outputs: list[torch.Tensor] = [] # each: [B, 16, S, D]
mlp_outputs: list[torch.Tensor] = [] # each: [B, S, D]
# Running base: embedding + accumulated MLP outputs (for per-head assembly)
base = embedding.clone() # [B, S, D]
# Accumulated ungated attention outputs (for MLP input)
attn_accumulated = torch.zeros_like(embedding) # [B, S, D]
for l in range(self.num_layers):
weights = self._get_head_weight_views(l)
# === ASSEMBLE PER-HEAD INPUTS ===
if l == 0:
# Layer 0: all heads see only the embedding (no prior heads or MLPs)
assembled = embedding.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
# assembled: [B, 16, S, D]
else:
# base_l = embedding + Σ_{l'<l} mlp_outputs[l']
# (base is updated incrementally after each layer's MLP)
# Stack all prior head outputs: [B, l*16, S, D]
prior_head_outs = torch.cat(all_head_outputs, dim=1)
# Slice A for connections into this layer's heads
# A[:, source_nodes, target_nodes]
# source: nodes 0..(l*16-1), target: nodes l*16..(l*16+15)
A_slice = A[:, :l * self.num_heads, l * self.num_heads:(l + 1) * self.num_heads]
# A_slice: [B, l*16, 16]
# Batched gated sum via einsum
gated_sum = torch.einsum('bih,bisd->bhsd', A_slice, prior_head_outs)
# gated_sum: [B, 16, S, D]
# Apply input normalization (only to gated_sum, not base)
if self.input_normalizer.method == "rms_pre":
gated_sum = self.input_normalizer(
gated_sum, A_slice=A_slice, prior_head_outs=prior_head_outs
)
elif self.input_normalizer.method == "gate_mean":
gated_sum = self.input_normalizer(gated_sum, A_slice=A_slice)
else:
gated_sum = self.input_normalizer(gated_sum)
# assembled = base + gated_sum
assembled = base.unsqueeze(1) + gated_sum # [B, 16, S, D]
# === PER-HEAD Q/K/V PROJECTION ===
W_q, W_k, W_v, W_o = weights['W_q'], weights['W_k'], weights['W_v'], weights['W_o']
# Per-head projections via einsum
# assembled: [B, H, S, D], W_q: [H, head_dim, D]
q_per_head = torch.einsum('bhsd,hod->bhso', assembled, W_q) # [B, H, S, head_dim]
k_per_head = torch.einsum('bhsd,hod->bhso', assembled, W_k)
v_per_head = torch.einsum('bhsd,hod->bhso', assembled, W_v)
# === Q_NORM / K_NORM ===
# OLMo2 applies RMSNorm to concatenated Q/K (2048-dim) AFTER projection.
# Concat all heads → norm → split back.
# When A=1 (all heads same input), this equals q_norm(q_proj(shared_input)).
q_concat = rearrange(q_per_head, 'b h s d -> b s (h d)') # [B, S, 2048]
q_normed = weights['q_norm'](q_concat)
q_per_head = rearrange(q_normed, 'b s (h d) -> b h s d', h=self.num_heads)
k_concat = rearrange(k_per_head, 'b h s d -> b s (h d)')
k_normed = weights['k_norm'](k_concat)
k_per_head = rearrange(k_normed, 'b s (h d) -> b h s d', h=self.num_heads)
# V has NO norm in OLMo2
# === APPLY RoPE ===
q_per_head, k_per_head = apply_rotary_pos_emb(q_per_head, k_per_head, cos, sin)
# === ATTENTION COMPUTATION ===
# q,k,v: [B, H, S, head_dim]
attn_weights = torch.matmul(q_per_head, k_per_head.transpose(-2, -1)) * self.scaling
# attn_weights: [B, H, S, S]
attn_weights = attn_weights + causal_mask # [1, 1, S, S] broadcasts
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q_per_head.dtype)
attn_values = torch.matmul(attn_weights, v_per_head) # [B, H, S, head_dim]
# === PER-HEAD O_PROJ ===
# attn_values: [B, H, S, head_dim], W_o: [H, model_dim, head_dim]
raw_head_outs = torch.einsum('bhsd,hod->bhso', attn_values, W_o)
# raw_head_outs: [B, H, S, model_dim]
# === PROPORTIONAL ATTRIBUTION WITH POST_ATTN_NORM ===
# OLMo2 applies post_attention_layernorm to the COMBINED attention output.
# RMSNorm(Σ_h x_h) = weight * (Σ_h x_h) / RMS(Σ_h x_h)
# = Σ_h [weight * x_h / RMS(Σ_h x_h)]
# We attribute each head's normed output proportionally.
raw_sum = raw_head_outs.sum(dim=1) # [B, S, D]
# Compute RMS of the sum
variance = raw_sum.to(torch.float32).pow(2).mean(-1, keepdim=True)
rms = torch.sqrt(variance + self.rms_norm_eps) # [B, S, 1]
# Apply post_attn_norm weight and scale
norm_weight = weights['post_attn_norm'].weight # [D]
# head_output[h] = norm_weight * raw_head_out[h] / rms
scale = (norm_weight / rms).unsqueeze(1) # [B, 1, S, D]
head_outputs_l = raw_head_outs.float() * scale # [B, H, S, D]
head_outputs_l = head_outputs_l.to(raw_head_outs.dtype)
# Store for routing to later layers
all_head_outputs.append(head_outputs_l)
# === MLP COMPUTATION (standard, ungated) ===
# attn_normed = Σ_h head_output[l,h] = post_attn_norm(raw_sum)
attn_normed = head_outputs_l.sum(dim=1) # [B, S, D]
# MLP input = full residual stream (embedding + all prior MLPs + all attn up to current)
# In vanilla OLMo2: mlp_input = residual + post_attn_norm(attn_output)
# where residual includes ALL prior components (embedding + prior MLPs + prior attns)
mlp_in = base + attn_accumulated + attn_normed
# Update accumulated attention for next layer
attn_accumulated = attn_accumulated + attn_normed
# MLP forward + post_feedforward_layernorm
mlp_raw = weights['mlp'](mlp_in)
mlp_output_l = weights['post_ff_norm'](mlp_raw)
mlp_outputs.append(mlp_output_l)
# Update running base for next layer
# base_{l+1} = base_l + mlp_output_l = embedding + Σ_{l'<=l} mlp_output[l']
base = base + mlp_output_l
# === FINAL OUTPUT ===
# final_state = embedding + Σ_l mlp_output[l] + Σ_l Σ_h head_output[l,h]
# = embedding + Σ_l [post_attn_norm(attn_out_l) + post_ff_norm(mlp_out_l)]
# 'base' = embedding + Σ_l mlp_output[l]
# 'attn_accumulated' = Σ_l attn_output[l] (ungated sum of all attention outputs)
final_state = base + attn_accumulated
# Apply final norm and lm_head
final_state = self.olmo.model.norm(final_state)
logits = self.olmo.lm_head(final_state)
return logits
def compute_vanilla_nll(
model: AutoModelForCausalLM,
input_ids: torch.Tensor,
labels: torch.Tensor,
) -> torch.Tensor:
"""Compute NLL using vanilla OLMo2 forward pass (no A injection).
Used for baseline comparison in sanity checks.
"""
with torch.no_grad():
outputs = model(input_ids=input_ids)
logits = outputs.logits
nll = F.cross_entropy(
logits[:, :-1].contiguous().view(-1, logits.size(-1)),
labels[:, 1:].contiguous().view(-1),
)
return nll
def create_all_ones_A(batch_size: int, num_nodes: int = 256, num_heads: int = 16) -> torch.Tensor:
"""Create A matrix with 1.0 for all valid (cross-layer) entries.
When used with input_norm="none", this should reproduce vanilla OLMo2.
"""
A = torch.zeros(batch_size, num_nodes, num_nodes)
mask = create_block_upper_triangular_mask(num_nodes, num_heads)
A = A + mask.unsqueeze(0) # broadcast mask to batch
return A
|