1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
"""Structure predictor: Qwen encoder + MLP decoder + Gumbel-Sigmoid + cascading gate.
Takes raw text, produces a 256x256 adjacency matrix A controlling per-head
routing in OLMo2-1B. See CLAUDE.md §2.3 for full specification.
Components:
- QwenEncoder: frozen Qwen3-Embedding-0.6B, mean-pooled to single vector
- PredictorMLP: trainable MLP with low-rank output heads (U, V → Z = UV^T)
- Gumbel-Sigmoid: differentiable relaxation of binary gates (3 modes)
- Cascading gate: kill outgoing edges from disconnected nodes
- Block-upper-triangular mask: enforce DAG constraint (layer(j) > layer(i))
"""
from __future__ import annotations
from typing import Optional
import torch
import torch.nn as nn
from transformers import AutoModel, AutoTokenizer
from src.model.olmo_graph import create_block_upper_triangular_mask
class QwenEncoder(nn.Module):
"""Frozen Qwen3-Embedding-0.6B encoder.
Produces a single fixed-size vector per sequence via mean pooling.
Uses its OWN tokenizer (separate from OLMo's).
"""
def __init__(self, model_id: str = "Qwen/Qwen3-Embedding-0.6B", device: Optional[torch.device] = None):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
self.model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
self.model.eval()
for p in self.model.parameters():
p.requires_grad_(False)
self.embed_dim: int = self.model.config.hidden_size # 1024 for Qwen3-Embedding-0.6B
if device is not None:
self.model = self.model.to(device)
def encode(self, raw_texts: list[str], prefix: str = "") -> torch.Tensor:
"""Encode raw text strings to pooled embeddings.
Args:
raw_texts: list of raw text strings (one per sequence in batch)
prefix: optional prefix for Qwen input (default: "" — no prefix)
Returns:
pooled: [batch, embed_dim] — mean-pooled embedding per sequence
"""
if prefix:
raw_texts = [prefix + t for t in raw_texts]
device = next(self.model.parameters()).device
inputs = self.tokenizer(
raw_texts,
padding=True,
truncation=True,
max_length=8192,
return_tensors="pt",
).to(device)
with torch.no_grad():
outputs = self.model(**inputs)
# Mean pooling over sequence dimension (masking padding tokens)
attention_mask = inputs["attention_mask"].unsqueeze(-1) # [B, S, 1]
last_hidden = outputs.last_hidden_state # [B, S, embed_dim]
pooled = (last_hidden * attention_mask).sum(dim=1) / attention_mask.sum(dim=1).clamp(min=1e-8)
# pooled: [B, embed_dim]
return pooled
class PredictorMLP(nn.Module):
"""Trainable MLP decoder with low-rank output heads.
Maps Qwen embedding → logit matrix Z = UV^T ∈ R^{256×256}.
See CLAUDE.md §2.3 for architecture.
"""
def __init__(self, input_dim: int, hidden_dim: int = 1024, rank: int = 32, num_nodes: int = 256,
init_logit: float = 15.0):
super().__init__()
self.rank = rank
self.num_nodes = num_nodes
self.trunk = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim),
nn.GELU(),
)
self.head_U = nn.Linear(hidden_dim, num_nodes * rank)
self.head_V = nn.Linear(hidden_dim, num_nodes * rank)
# Learnable bias added to Z logits. Initialized positive so that
# σ(init_logit / τ_init) ≈ 1, reproducing dense connectivity (A≈1)
# at init. With τ_init=5.0: σ(15/5) = σ(3) ≈ 0.95.
# Training can decrease this to enable sparsity.
self.logit_bias = nn.Parameter(torch.tensor(init_logit))
def forward(self, e: torch.Tensor) -> torch.Tensor:
"""Map embedding to logit matrix.
Args:
e: [batch, input_dim] — pooled Qwen embedding
Returns:
Z: [batch, 256, 256] — raw logit matrix (before mask/Gumbel)
"""
h = self.trunk(e) # [batch, hidden_dim]
U = self.head_U(h).view(-1, self.num_nodes, self.rank) # [B, 256, r]
V = self.head_V(h).view(-1, self.num_nodes, self.rank) # [B, 256, r]
Z = torch.bmm(U, V.transpose(-1, -2)) # [B, 256, 256]
Z = Z + self.logit_bias # shift logits positive → A≈1 at init
return Z
def gumbel_sigmoid(
Z_masked: torch.Tensor,
tau: float,
mode: str = "train",
) -> torch.Tensor:
"""Apply Gumbel-Sigmoid relaxation to masked logits.
Three modes (CLAUDE.md §2.3):
- "train": Gumbel noise + temperature → differentiable continuous relaxation
- "eval_soft": σ(Z/τ) — deterministic soft gates, no noise
- "eval_hard": (Z > 0).float() — deterministic binary 0/1
Args:
Z_masked: [batch, 256, 256] — logits with invalid positions at -1e9
tau: temperature (τ > 0 for train/eval_soft)
mode: one of "train", "eval_soft", "eval_hard"
Returns:
A: [batch, 256, 256] — gate values in [0, 1] (or {0, 1} for hard mode)
"""
if mode == "train":
# Sample from Logistic(0, 1): G = log(U) - log(1-U), U ~ Uniform(0,1)
U = torch.rand_like(Z_masked).clamp(1e-8, 1 - 1e-8)
G = torch.log(U) - torch.log(1 - U)
return torch.sigmoid((Z_masked + G) / tau)
elif mode == "eval_soft":
return torch.sigmoid(Z_masked / tau)
elif mode == "eval_hard":
return (Z_masked > 0).float()
else:
raise ValueError(f"Unknown Gumbel-Sigmoid mode: {mode}. Expected: train, eval_soft, eval_hard")
def cascading_gate(
A: torch.Tensor,
k: float = 5.0,
hard: bool = False,
) -> torch.Tensor:
"""Apply cascading activation gate: kill outgoing edges from disconnected nodes.
One-pass computation (not layer-by-layer):
1. Compute incoming sums: inc_j = Σ_i A[i, j]
2. Compute gates: g_j = σ(k * inc_j) (soft) or (inc_j > 0) (hard)
3. Apply: A[j, :] *= g_j
Uses ORIGINAL A values for incoming sums (before any gates applied).
See CLAUDE.md §2.3 cascading gate section.
Args:
A: [batch, 256, 256] — gate matrix
k: steepness of sigmoid gate (default: 5.0)
hard: if True, use binary gates (for eval_hard mode)
Returns:
A_gated: [batch, 256, 256] — A with cascading gate applied
"""
# Incoming sum per node: [batch, 256]
inc = A.sum(dim=1) # sum over source dimension (rows)
if hard:
g = (inc > 0).float() # [batch, 256]
else:
g = torch.sigmoid(k * inc) # [batch, 256]
# Gate outgoing edges: A[j, :] *= g[j]
# g: [B, 256] → [B, 256, 1] to broadcast with A: [B, 256, 256]
return A * g.unsqueeze(2)
class StructurePredictor(nn.Module):
"""Full structure predictor: raw text → adjacency matrix A.
Pipeline: raw_text → [Qwen encoder] → e → [MLP] → Z → [mask] → [Gumbel] → [cascade] → A
The only trainable component is the PredictorMLP. Qwen is frozen.
"""
def __init__(
self,
qwen_model_id: str = "Qwen/Qwen3-Embedding-0.6B",
hidden_dim: int = 1024,
rank: int = 32,
cascading_gate_k: float = 5.0,
qwen_input_prefix: str = "",
init_logit: float = 15.0,
num_nodes: int = 256,
heads_per_layer: int = 16,
device: Optional[torch.device] = None,
):
super().__init__()
self.cascading_gate_k = cascading_gate_k
self.qwen_input_prefix = qwen_input_prefix
self.num_nodes = num_nodes
self.heads_per_layer = heads_per_layer
# Frozen Qwen encoder
self.qwen_encoder = QwenEncoder(model_id=qwen_model_id, device=device)
# Trainable MLP decoder
self.mlp = PredictorMLP(
input_dim=self.qwen_encoder.embed_dim,
hidden_dim=hidden_dim,
rank=rank,
init_logit=init_logit,
num_nodes=num_nodes,
)
# Block-upper-triangular mask (registered as buffer — moves with .to(device))
self.register_buffer(
'dag_mask',
create_block_upper_triangular_mask(num_nodes, heads_per_layer),
)
# Move all components to device (buffers + trainable MLP)
if device is not None:
self.to(device)
def forward(
self,
raw_texts: list[str],
tau: float,
mode: str = "train",
) -> torch.Tensor:
"""Predict adjacency matrix A from raw text.
Args:
raw_texts: list of raw text strings (batch)
tau: Gumbel-Sigmoid temperature
mode: "train", "eval_soft", or "eval_hard"
Returns:
A: [batch, 256, 256] — block-upper-triangular gate matrix
"""
# Step 1: Qwen encoding (frozen, no grad)
e = self.qwen_encoder.encode(raw_texts, prefix=self.qwen_input_prefix)
# e: [batch, qwen_embed_dim]
# Step 2: MLP decoder → logits
Z = self.mlp(e) # [batch, 256, 256]
assert Z.shape[1:] == (self.num_nodes, self.num_nodes), \
f"Z shape mismatch: expected (*, {self.num_nodes}, {self.num_nodes}), got {Z.shape}"
# Step 3: Apply block-upper-triangular mask
# Force invalid positions to -inf so sigmoid → 0
mask = self.dag_mask # [256, 256]
Z_masked = Z * mask + (-1e9) * (1 - mask)
# Step 4: Gumbel-Sigmoid
hard = (mode == "eval_hard")
A = gumbel_sigmoid(Z_masked, tau=tau, mode=mode)
# Step 5: Cascading activation gate
A = cascading_gate(A, k=self.cascading_gate_k, hard=hard)
assert A.shape[1:] == (self.num_nodes, self.num_nodes), \
f"A shape mismatch: expected (*, {self.num_nodes}, {self.num_nodes}), got {A.shape}"
return A
def get_trainable_parameters(self) -> list[nn.Parameter]:
"""Return only the trainable MLP parameters (not Qwen)."""
return list(self.mlp.parameters())
|