1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
"""Training loop for DAGFormer Phase 1.
Pure PyTorch + DDP. Only the predictor MLP is trainable.
See CLAUDE.md §3.1 for training specification.
"""
from __future__ import annotations
import math
import os
import warnings
from dataclasses import dataclass, field
from typing import Any, Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import AutoModelForCausalLM, AutoTokenizer
from src.data.dolma import build_eval_dataloader, build_train_dataloader
from src.model.olmo_graph import DAGFormerOLMo, create_all_ones_A
from src.model.predictor import StructurePredictor
from src.training.checkpointing import load_checkpoint, save_checkpoint
from src.training.schedulers import lambda_schedule, tau_schedule
from src.utils.logging import finish_wandb, init_wandb, log_metrics
from src.utils.topology import compute_topology_metrics
import torch.nn.functional as F
@dataclass
class TrainConfig:
"""Training configuration. Parsed from YAML."""
# Model
olmo_model_id: str = "allenai/OLMo-2-0425-1B"
qwen_model_id: str = "Qwen/Qwen3-Embedding-0.6B"
# Predictor
predictor_hidden_dim: int = 1024
predictor_rank: int = 32
cascading_gate_k: float = 5.0
input_norm: str = "none"
qwen_input_prefix: str = ""
init_logit: float = 15.0 # bias on Z logits so A≈1 at init (dense connectivity)
# Data
dataset: str = "allenai/dolma"
dataset_name: str = "v1_7"
seq_len: int = 1024
batch_size: int = 4
micro_batch_size: int = 4
# Eval
eval_skip: int = 1_000_000
eval_size: int = 1_000
# Training
total_steps: int = 1000
lr: float = 3e-4
weight_decay: float = 0.01
optimizer: str = "adamw"
# Schedules
tau_init: float = 5.0
tau_final: float = 0.2
tau_schedule: str = "cosine"
lambda_max: float = 0.0
lambda_warmup_frac: float = 0.2
# Logging
wandb_project: str = "dagformer"
wandb_run_name: str = "default"
log_every: int = 10
eval_every: int = 100
# Checkpointing
save_every: int = 500
save_dir: str = "checkpoints/"
resume_from: str = ""
# Hardware
num_gpus: int = 1
@classmethod
def from_yaml(cls, path: str) -> TrainConfig:
import yaml
with open(path) as f:
data = yaml.safe_load(f)
known_keys = {f.name for f in cls.__dataclass_fields__.values()}
unknown = set(data.keys()) - known_keys
if unknown:
raise ValueError(f"Unknown config keys: {unknown}")
# Coerce types to match dataclass field annotations
import dataclasses
for f in dataclasses.fields(cls):
if f.name in data:
expected_type = f.type
if expected_type == "float" or expected_type is float:
data[f.name] = float(data[f.name])
elif expected_type == "int" or expected_type is int:
data[f.name] = int(data[f.name])
return cls(**data)
def to_dict(self) -> dict[str, Any]:
from dataclasses import asdict
return asdict(self)
class Trainer:
"""DAGFormer Phase 1 training loop."""
def __init__(self, config: TrainConfig, local_rank: int = 0, world_size: int = 1):
self.config = config
self.local_rank = local_rank
self.world_size = world_size
self.is_main = (local_rank == 0)
self.device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu")
# Gradient accumulation
assert config.batch_size % config.micro_batch_size == 0, \
f"batch_size ({config.batch_size}) must be divisible by micro_batch_size ({config.micro_batch_size})"
self.accum_steps = config.batch_size // config.micro_batch_size
self._build_models()
self._build_optimizer()
self._build_data()
self._setup_logging()
self.global_step = 0
self.best_eval_nll = float("inf")
self.collapse_counter = 0 # consecutive steps with collapsed A
# Resume from checkpoint if specified
if config.resume_from:
state = load_checkpoint(
config.resume_from,
self.predictor,
self.optimizer,
self.lr_scheduler,
device=self.device,
)
self.global_step = state["step"]
self.best_eval_nll = state["best_eval_nll"]
if self.is_main:
print(f"Resumed from step {self.global_step}")
def _build_models(self) -> None:
config = self.config
# Load frozen OLMo2-1B
if self.is_main:
print(f"Loading {config.olmo_model_id}...")
self.olmo = AutoModelForCausalLM.from_pretrained(
config.olmo_model_id,
torch_dtype=torch.bfloat16,
).to(self.device)
self.olmo.eval()
for p in self.olmo.parameters():
p.requires_grad_(False)
# Verify frozen
assert all(not p.requires_grad for p in self.olmo.parameters()), \
"OLMo parameters should be frozen"
# OLMo tokenizer
self.olmo_tokenizer = AutoTokenizer.from_pretrained(config.olmo_model_id)
# DAGFormer OLMo wrapper
self.olmo_wrapper = DAGFormerOLMo(
model=self.olmo,
input_norm=config.input_norm,
).to(self.device)
# Structure predictor (includes frozen Qwen + trainable MLP)
if self.is_main:
print(f"Loading {config.qwen_model_id}...")
self.predictor = StructurePredictor(
qwen_model_id=config.qwen_model_id,
hidden_dim=config.predictor_hidden_dim,
rank=config.predictor_rank,
cascading_gate_k=config.cascading_gate_k,
qwen_input_prefix=config.qwen_input_prefix,
init_logit=config.init_logit,
device=self.device,
)
# DDP wrapping — only the predictor MLP (trainable component)
if self.world_size > 1:
self.predictor.mlp = DDP(
self.predictor.mlp,
device_ids=[self.local_rank],
)
if self.is_main:
trainable = sum(p.numel() for p in self.predictor.get_trainable_parameters())
norm_params = sum(p.numel() for p in self.olmo_wrapper.input_normalizer.parameters())
print(f"Trainable params: predictor={trainable:,}, norm={norm_params:,}")
def _build_optimizer(self) -> None:
config = self.config
# Collect all trainable parameters
params = list(self.predictor.get_trainable_parameters())
params.extend(self.olmo_wrapper.input_normalizer.parameters())
assert config.optimizer == "adamw", f"Only adamw supported, got {config.optimizer}"
self.optimizer = torch.optim.AdamW(
params,
lr=config.lr,
betas=(0.9, 0.999),
weight_decay=config.weight_decay,
)
self.lr_scheduler = CosineAnnealingLR(
self.optimizer,
T_max=config.total_steps,
eta_min=0.0,
)
def _build_data(self) -> None:
config = self.config
self.train_loader = build_train_dataloader(
olmo_tokenizer=self.olmo_tokenizer,
seq_len=config.seq_len,
batch_size=config.micro_batch_size,
dataset_name=config.dataset,
dataset_version=config.dataset_name,
rank=self.local_rank,
world_size=self.world_size,
)
# Eval data: only on main rank
if self.is_main:
cache_path = os.path.join(config.save_dir, "eval_cache.pt")
self.eval_batches = build_eval_dataloader(
olmo_tokenizer=self.olmo_tokenizer,
seq_len=config.seq_len,
batch_size=config.micro_batch_size,
dataset_name=config.dataset,
dataset_version=config.dataset_name,
eval_skip=config.eval_skip,
eval_size=config.eval_size,
cache_path=cache_path,
)
else:
self.eval_batches = []
def _setup_logging(self) -> None:
if self.is_main:
self.wandb_run = init_wandb(
project=self.config.wandb_project,
run_name=self.config.wandb_run_name,
config=self.config.to_dict(),
)
else:
self.wandb_run = None
def train(self) -> None:
"""Main training loop."""
config = self.config
train_iter = iter(self.train_loader)
if self.is_main:
print(f"\nStarting training: {config.total_steps} steps")
print(f" batch_size={config.batch_size}, micro_batch={config.micro_batch_size}, accum={self.accum_steps}")
print(f" tau: {config.tau_init} → {config.tau_final}")
print(f" lambda: 0 → {config.lambda_max}")
print()
while self.global_step < config.total_steps:
# Schedule values
tau = tau_schedule(self.global_step, config.total_steps, config.tau_init, config.tau_final)
lam = lambda_schedule(self.global_step, config.total_steps, config.lambda_max, config.lambda_warmup_frac)
# Gradient accumulation
self.optimizer.zero_grad()
total_nll = 0.0
total_sparsity = 0.0
total_mean_A = 0.0
for micro_step in range(self.accum_steps):
try:
batch = next(train_iter)
except StopIteration:
train_iter = iter(self.train_loader)
batch = next(train_iter)
olmo_ids = batch["olmo_ids"].to(self.device)
olmo_labels = batch["olmo_labels"].to(self.device)
raw_texts = batch["raw_text"]
# Forward: predictor → A → OLMo → loss
A = self.predictor(raw_texts, tau=tau, mode="train")
logits = self.olmo_wrapper(olmo_ids, A)
# NLL loss
nll = F.cross_entropy(
logits[:, :-1].contiguous().view(-1, self.olmo.config.vocab_size),
olmo_labels[:, 1:].contiguous().view(-1),
)
# Sparsity loss
sparsity = lam * A.mean()
loss = (nll + sparsity) / self.accum_steps
loss.backward()
total_nll += nll.item() / self.accum_steps
total_sparsity += sparsity.item() / self.accum_steps
total_mean_A += A.mean().item() / self.accum_steps
# Optimizer step
self.optimizer.step()
self.lr_scheduler.step()
# Logging
if self.is_main and self.global_step % config.log_every == 0:
# Gradient norm
grad_norm = 0.0
for p in self.predictor.get_trainable_parameters():
if p.grad is not None:
grad_norm += p.grad.data.norm(2).item() ** 2
for p in self.olmo_wrapper.input_normalizer.parameters():
if p.grad is not None:
grad_norm += p.grad.data.norm(2).item() ** 2
grad_norm = grad_norm ** 0.5
metrics = {
"train/nll": total_nll,
"train/sparsity_loss": total_sparsity,
"train/total_loss": total_nll + total_sparsity,
"topology/mean_A": total_mean_A,
"schedule/tau": tau,
"schedule/lambda": lam,
"grad/predictor_norm": grad_norm,
}
log_metrics(metrics, self.global_step, self.wandb_run)
# Collapse alarm
if total_mean_A < 0.01 or total_mean_A > 0.99:
self.collapse_counter += 1
if self.collapse_counter >= 100:
warnings.warn(
f"COLLAPSE ALARM: mean_A={total_mean_A:.4f} for {self.collapse_counter} steps"
)
else:
self.collapse_counter = 0
# Eval
if self.is_main and self.global_step > 0 and self.global_step % config.eval_every == 0:
self._run_eval(tau)
# Checkpoint
if self.is_main and self.global_step > 0 and self.global_step % config.save_every == 0:
save_checkpoint(
config.save_dir,
self.global_step,
self.predictor,
self.optimizer,
self.lr_scheduler,
self.best_eval_nll,
)
self.global_step += 1
# Barrier for multi-GPU sync
if self.world_size > 1:
dist.barrier()
# Final eval and checkpoint
if self.is_main:
self._run_eval(tau_schedule(config.total_steps, config.total_steps, config.tau_init, config.tau_final))
save_checkpoint(
config.save_dir,
self.global_step,
self.predictor,
self.optimizer,
self.lr_scheduler,
self.best_eval_nll,
)
finish_wandb(self.wandb_run)
if self.is_main:
print("\nTraining complete.")
@torch.no_grad()
def _run_eval(self, tau: float) -> None:
"""Run evaluation on held-out data (rank 0 only).
Reports: eval/nll_soft, eval/nll_hard, eval/nll_baseline
"""
if not self.eval_batches:
return
self.predictor.eval()
nll_soft_total = 0.0
nll_hard_total = 0.0
nll_baseline_total = 0.0
n_batches = 0
topology_metrics_accum: dict[str, float] = {}
for batch in self.eval_batches:
olmo_ids = batch["olmo_ids"].to(self.device)
olmo_labels = batch["olmo_labels"].to(self.device)
raw_texts = batch["raw_text"]
vocab_size = self.olmo.config.vocab_size
# Eval soft
A_soft = self.predictor(raw_texts, tau=tau, mode="eval_soft")
logits_soft = self.olmo_wrapper(olmo_ids, A_soft)
nll_soft = F.cross_entropy(
logits_soft[:, :-1].contiguous().view(-1, vocab_size),
olmo_labels[:, 1:].contiguous().view(-1),
)
nll_soft_total += nll_soft.item()
# Eval hard
A_hard = self.predictor(raw_texts, tau=tau, mode="eval_hard")
logits_hard = self.olmo_wrapper(olmo_ids, A_hard)
nll_hard = F.cross_entropy(
logits_hard[:, :-1].contiguous().view(-1, vocab_size),
olmo_labels[:, 1:].contiguous().view(-1),
)
nll_hard_total += nll_hard.item()
# Baseline (A=1)
A_ones = create_all_ones_A(olmo_ids.shape[0]).to(self.device)
logits_base = self.olmo_wrapper(olmo_ids, A_ones)
nll_base = F.cross_entropy(
logits_base[:, :-1].contiguous().view(-1, vocab_size),
olmo_labels[:, 1:].contiguous().view(-1),
)
nll_baseline_total += nll_base.item()
# Topology metrics (from soft A)
topo = compute_topology_metrics(A_soft)
for k, v in topo.items():
topology_metrics_accum[k] = topology_metrics_accum.get(k, 0.0) + v
n_batches += 1
# Average
metrics = {
"eval/nll_soft": nll_soft_total / n_batches,
"eval/nll_hard": nll_hard_total / n_batches,
"eval/nll_baseline": nll_baseline_total / n_batches,
}
for k, v in topology_metrics_accum.items():
metrics[k] = v / n_batches
log_metrics(metrics, self.global_step, self.wandb_run)
# Track best
eval_nll = metrics["eval/nll_soft"]
if eval_nll < self.best_eval_nll:
self.best_eval_nll = eval_nll
print(f" New best eval NLL: {eval_nll:.4f}")
self.predictor.train()
|