blob: 3e1f8ea40014c77cb681c6865dbb2101da1ecb77 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
## One-shot Entropy Minimization
<a href='https://arxiv.org/abs/2505.20282'><img src='https://img.shields.io/badge/arXiv-2505.20282-b31b1b.svg'></a>
### Overview
This repository provides code and instructions to reproduce the results of the **One-shot Entropy Minimization (EM)** method presented in our paper. It includes both 1-shot and multi-shot training setups, as well as evaluation using the Qwen2.5-Math benchmark.
---
### Reproducing One-shot EM Training (SOTA)
```bash
accelerate launch train.py --lr 2e-5 --temperature 0.5 --bsz 64
```
---
### Reproducing Multi-shot EM Training
```bash
accelerate launch train.py --lr 2e-5 --temperature 0.5 --bsz 64 --data_path "dataset/numina/numina_00.parquet"
```
---
### Evaluation
```bash
cd Qwen2.5-Eval/evaluation
bash sh/eval_all_math.sh
```
---
### Acknowledgements
Our dataset references and builds upon the following open-source contributions:
- [NuminaMath-CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT)
- [DeepScaler](https://github.com/agentica-project/deepscaler)
- [One-shot RLVR](https://github.com/ypwang61/One-Shot-RLVR/) – for data selection strategies
- [Qwen2.5-Eval](https://github.com/QwenLM/Qwen2.5-Math/) – for evaluation benchmarks
We sincerely thank the authors and maintainers of these projects for their excellent contributions to the research community!
---
### Citation
```
@misc{gao2025oneshotentropyminimization,
title={One-shot Entropy Minimization},
author={Zitian Gao and Lynx Chen and Joey Zhou and Bryan Dai},
year={2025},
eprint={2505.20282},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.20282},
}
```
|