summaryrefslogtreecommitdiff
path: root/gender_debias_utils_english.py
blob: 57717529d3e3d10c39d21e6535f450fda271f23f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#!/usr/bin/env python3
"""
Gender Debias Utilities - English Version
Pure English implementation for gender debiasing
Core idea: Generate identical responses except for gender
"""

import sys
import re
import torch
import torch.nn.functional as F
from typing import List, Dict, Tuple, Optional
from pathlib import Path

# Add genderbench to path
sys.path.append('./genderbench')

class EnglishGenderProcessor:
    """English Gender Word Processor"""
    
    def __init__(self):
        self.gender_pairs = {
            'he': 'she', 'she': 'he',
            'him': 'her', 'her': 'him', 
            'his': 'hers', 'hers': 'his',
            'himself': 'herself', 'herself': 'himself',
            'men': 'women', 'women': 'men',
            'man': 'woman', 'woman': 'man',
            'male': 'female', 'female': 'male',
            'males': 'females', 'females': 'males',
            'gentleman': 'lady', 'lady': 'gentleman',
            'gentlemen': 'ladies', 'ladies': 'gentlemen',
            'father': 'mother', 'mother': 'father',
            'dad': 'mom', 'mom': 'dad',
            'son': 'daughter', 'daughter': 'son',
            'brother': 'sister', 'sister': 'brother',
            'uncle': 'aunt', 'aunt': 'uncle',
            'husband': 'wife', 'wife': 'husband',
            'boy': 'girl', 'girl': 'boy',
            'boys': 'girls', 'girls': 'boys',
            'guy': 'gal', 'gal': 'guy',
            'guys': 'gals', 'gals': 'guys',
        }
        
        # Gender classification
        self.male_words = {
            'men', 'man', 'he', 'him', 'his', 'male', 'males', 'father', 'dad', 
            'son', 'brother', 'uncle', 'husband', 'boy', 'boys', 'gentleman', 
            'gentlemen', 'guy', 'guys'
        }
        self.female_words = {
            'women', 'woman', 'she', 'her', 'hers', 'female', 'females', 'mother', 
            'mom', 'daughter', 'sister', 'aunt', 'wife', 'girl', 'girls', 'lady', 
            'ladies', 'gal', 'gals'
        }
    
    def get_gender_opposite(self, word: str) -> str:
        """Get gender opposite word"""
        word_lower = word.lower()
        if word_lower in self.gender_pairs:
            opposite = self.gender_pairs[word_lower]
            # Preserve original case
            if word.isupper():
                return opposite.upper()
            elif word.istitle():
                return opposite.title()
            else:
                return opposite
        return word
    
    def extract_gender_words_with_roles(self, text: str) -> List[Dict]:
        """Extract gender words with their roles in sentence"""
        words = []
        for match in re.finditer(r'\b\w+\b', text):
            word = match.group().lower()
            if word in self.gender_pairs:
                role = self._analyze_word_role(text, match.start(), match.end(), word)
                words.append({
                    'word': word,
                    'original': match.group(),
                    'start': match.start(),
                    'end': match.end(),
                    'role': role,
                    'is_male': word in self.male_words,
                    'is_female': word in self.female_words
                })
        return words
    
    def _analyze_word_role(self, text: str, start: int, end: int, word: str) -> str:
        """Analyze word role in sentence (subject, object, modifier)"""
        before_text = text[:start].strip()
        after_text = text[end:].strip()
        
        # Check if subject (beginning of sentence or after conjunction)
        if not before_text or before_text.endswith('.') or before_text.endswith(','):
            return 'subject'
        
        # Check if object (after action verbs)
        action_words = ['abuse', 'hit', 'help', 'support', 'love', 'hate', 'see', 'meet', 'like', 'prefer']
        for action in action_words:
            if action in before_text.lower().split()[-3:]:
                return 'object'
        
        # Default to modifier
        return 'modifier'

class EnglishStereotypeConverter:
    """English Stereotype Converter"""
    
    def __init__(self):
        self.gender_processor = EnglishGenderProcessor()
    
    def create_balanced_pairs(self, text: str) -> Tuple[str, str]:
        """Create balanced gender pairs"""
        gender_words = self.gender_processor.extract_gender_words_with_roles(text)
        
        if not gender_words:
            return None, None
        
        # Strategy 1: Single gender - create symmetric versions
        if len(gender_words) == 1:
            return self._create_single_gender_pairs(text, gender_words[0])
        
        # Strategy 2: Multiple genders - smart role swapping
        return self._create_multi_gender_pairs(text, gender_words)
    
    def _create_single_gender_pairs(self, text: str, gender_word: Dict) -> Tuple[str, str]:
        """Handle single gender word cases"""
        word = gender_word['word']
        start = gender_word['start']
        end = gender_word['end']
        
        # Keep original version for the matching gender
        if gender_word['is_male']:
            male_version = text
            female_version = text[:start] + self.gender_processor.get_gender_opposite(text[start:end]) + text[end:]
        else:
            female_version = text
            male_version = text[:start] + self.gender_processor.get_gender_opposite(text[start:end]) + text[end:]
        
        return male_version, female_version
    
    def _create_multi_gender_pairs(self, text: str, gender_words: List[Dict]) -> Tuple[str, str]:
        """Handle multiple gender words - smart role swapping"""
        # Create two versions maintaining sentence logic
        male_dominant = text    # Male-dominant version
        female_dominant = text  # Female-dominant version
        
        # Replace from back to front to avoid position shifts
        all_words = sorted(gender_words, key=lambda x: x['start'], reverse=True)
        
        for word_info in all_words:
            word = word_info['word']
            start = word_info['start']
            end = word_info['end']
            opposite = self.gender_processor.get_gender_opposite(word)
            
            # Replace based on word gender and target version
            if word_info['is_male']:
                # Male word: keep in male_dominant, replace in female_dominant
                female_dominant = female_dominant[:start] + opposite + female_dominant[end:]
            else:
                # Female word: replace in male_dominant, keep in female_dominant
                male_dominant = male_dominant[:start] + opposite + male_dominant[end:]
        
        return male_dominant, female_dominant
    
    def create_neutral_template(self, text: str) -> str:
        """Create neutral template with [GENDER] placeholders"""
        gender_words = self.gender_processor.extract_gender_words_with_roles(text)
        
        if not gender_words:
            return text
        
        neutral_text = text
        # Replace from back to front with [GENDER]
        for word_info in reversed(gender_words):
            start = word_info['start']
            end = word_info['end']
            neutral_text = neutral_text[:start] + '[GENDER]' + neutral_text[end:]
        
        return neutral_text

class EnglishDebiasDataLoader:
    """English Debias Data Loader"""
    
    def __init__(self):
        self.converter = EnglishStereotypeConverter()
        self.gender_processor = EnglishGenderProcessor()
    
    def load_direct_probe_data(self) -> List[Dict]:
        """Load and convert DirectProbe data"""
        from genderbench.probes.direct.direct_probe import DirectProbe
        
        probe = DirectProbe()
        items = probe._create_probe_items()
        
        converted_data = []
        for item in items:
            if hasattr(item, 'prompts') and item.prompts:
                prompt_text = item.prompts[0].text
                match = re.search(r'"([^"]+)"', prompt_text)
                if match:
                    stereotype = match.group(1)
                    
                    # Smart conversion
                    version1, version2 = self.converter.create_balanced_pairs(stereotype)
                    if version1 and version2 and version1 != version2:
                        neutral_template = self.converter.create_neutral_template(stereotype)
                        
                        converted_data.append({
                            'type': 'stereotype',
                            'original': stereotype,
                            'neutral_template': neutral_template,
                            'version1': version1,
                            'version2': version2,
                            'source': item.metadata.get('source', 'unknown')
                        })
        
        return converted_data
    
    def load_jobs_probe_data(self) -> List[Dict]:
        """Load and process JobsProbe data in English"""
        try:
            from genderbench.probes.jobs_lum.jobs_lum_probe import JobsLumProbe
            
            probe = JobsLumProbe()
            items = probe._create_probe_items()
            
            converted_data = []
            for item in items:
                if hasattr(item, 'prompts') and item.prompts:
                    prompt_text = item.prompts[0].text
                    match = re.search(r'works as a/an (.+?)\. Please', prompt_text)
                    if match:
                        job = match.group(1)
                        
                        converted_data.append({
                            'type': 'job',
                            'job': job,
                            'prompts': {
                                'base': f"Describe this {job}:",
                                'male_prompt': f"This {job} is a man. Describe his characteristics:",
                                'female_prompt': f"This {job} is a woman. Describe her characteristics:",
                                'neutral_prompt': f"This {job} is a professional. Describe their characteristics:"
                            }
                        })
            
            return converted_data
        except Exception as e:
            print(f"Failed to load Jobs data: {e}")
            return []
    
    def create_training_data_for_em(self) -> List[Dict]:
        """Create training data specifically for Entropy Minimization"""
        # Load both stereotype and job data
        stereotype_data = self.load_direct_probe_data()
        job_data = self.load_jobs_probe_data()
        
        training_data = []
        
        # Process stereotype data
        for item in stereotype_data:
            training_data.append({
                'type': 'stereotype_pair',
                'prompt_male': f"Do you agree with this statement: '{item['version1']}'? Please explain your reasoning.",
                'prompt_female': f"Do you agree with this statement: '{item['version2']}'? Please explain your reasoning.",
                'constraint': 'responses_must_be_identical_except_pronouns',
                'original': item['original']
            })
        
        # Process job data
        for item in job_data:
            training_data.append({
                'type': 'job_pair',
                'prompt_male': item['prompts']['male_prompt'],
                'prompt_female': item['prompts']['female_prompt'],
                'constraint': 'responses_must_be_identical_except_pronouns',
                'job': item['job']
            })
        
        return training_data

def demonstrate_english_conversion():
    """Demonstrate English conversion functionality"""
    print("šŸš€ === English Gender Debias Conversion Demo ===")
    
    # Load data
    loader = EnglishDebiasDataLoader()
    
    # Load stereotype data
    print("šŸ“Š Loading stereotype data...")
    stereotype_data = loader.load_direct_probe_data()
    print(f"āœ… Successfully converted {len(stereotype_data)} stereotypes")
    
    # Show conversion examples
    print("\nšŸŽÆ English Conversion Examples:")
    for i, item in enumerate(stereotype_data[:8]):
        print(f"  {i+1}. Original: {item['original']}")
        print(f"     Template: {item['neutral_template']}")
        print(f"     Version 1: {item['version1']}")
        print(f"     Version 2: {item['version2']}")
        
        # Analyze differences
        words1 = set(item['version1'].lower().split())
        words2 = set(item['version2'].lower().split())
        diff = words1.symmetric_difference(words2)
        print(f"     Different words: {diff}")
        print()
    
    # Load job data
    print("šŸ“Š Loading job data...")
    job_data = loader.load_jobs_probe_data()
    print(f"āœ… Successfully loaded {len(job_data)} jobs")
    
    # Show job examples
    print("\nšŸ’¼ English Job Examples:")
    for i, item in enumerate(job_data[:5]):
        print(f"  {i+1}. Job: {item['job']}")
        print(f"     Base: {item['prompts']['base']}")
        print(f"     Male: {item['prompts']['male_prompt']}")
        print(f"     Female: {item['prompts']['female_prompt']}")
        print(f"     Neutral: {item['prompts']['neutral_prompt']}")
        print()
    
    # Create training data
    print("šŸ“Š Creating training data for EM...")
    training_data = loader.create_training_data_for_em()
    print(f"āœ… Created {len(training_data)} training pairs")
    
    # Show training data examples
    print("\nšŸŽÆ Training Data Examples:")
    for i, item in enumerate(training_data[:3]):
        print(f"  {i+1}. Type: {item['type']}")
        print(f"     Male prompt: {item['prompt_male']}")
        print(f"     Female prompt: {item['prompt_female']}")
        print(f"     Constraint: {item['constraint']}")
        print()
    
    # Analysis
    print("šŸ“Š Analysis:")
    stereotype_pairs = sum(1 for item in training_data if item['type'] == 'stereotype_pair')
    job_pairs = sum(1 for item in training_data if item['type'] == 'job_pair')
    print(f"  - Stereotype pairs: {stereotype_pairs}")
    print(f"  - Job pairs: {job_pairs}")
    print(f"  - Total pairs: {len(training_data)}")
    print(f"  - Ready for EM training: āœ…")

if __name__ == "__main__":
    demonstrate_english_conversion()