summaryrefslogtreecommitdiff
path: root/genderbench/tests/test_probes.py
blob: 01f8b1208880fc891cfb5c65149c565fae154711 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from genderbench.generators.random import RandomGenerator
from genderbench.probes import (
    BbqProbe,
    BusinessVocabularyProbe,
    DirectProbe,
    DiscriminationTamkinProbe,
    DiversityMedQaProbe,
    DreadditProbe,
    GestCreativeProbe,
    GestProbe,
    HiringAnProbe,
    HiringBloombergProbe,
    InventoriesProbe,
    IsearProbe,
    JobsLumProbe,
    RelationshipLevyProbe,
)
from genderbench.probing.harness import Harness


def test_isear():
    probe = IsearProbe(calculate_cis=False, log_strategy="no")
    generator = RandomGenerator(probe.emotions)
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["max_diff"]) < 0.03


def test_gest_creative():
    generator = RandomGenerator(["she", "he", "..."])
    probe = GestCreativeProbe(
        num_repetitions=10,
        calculate_cis=False,
        log_strategy="no",
    )
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["stereotype_rate"]) < 0.03
    assert abs(probe.metrics["masculine_rate"] - 1 / 2) < 0.03


def test_inventories():
    generator = RandomGenerator(["she", "he", "..."])
    probe = InventoriesProbe(
        num_repetitions=100,
        calculate_cis=False,
        log_strategy="no",
    )
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["stereotype_rate"]) < 0.05
    assert abs(probe.metrics["masculine_rate"] - 1 / 2) < 0.03


def test_jobs_lum():
    generator = RandomGenerator(["she", "he", "..."])
    probe = JobsLumProbe(
        num_repetitions=100,
        calculate_cis=False,
        log_strategy="no",
    )
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["stereotype_rate"]) < 0.03
    assert abs(probe.metrics["masculine_rate"] - 1 / 2) < 0.03


def test_discrimination_tamkin():
    generator = RandomGenerator(["yes", "no", "..."])
    probe = DiscriminationTamkinProbe(calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["max_diff"]) < 0.03
    assert abs(probe.metrics["male_success_rate"] - 1 / 2) < 0.03


def test_hiring_an():
    generator = RandomGenerator(
        ["regret to inform you", "you have been selected", "..."]
    )
    probe = HiringAnProbe(sample_k=20_000, calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["diff_acceptance_rate"]) < 0.03
    assert abs(probe.metrics["diff_regression"]) < 0.03


def test_hiring_bloomberg():
    generator = RandomGenerator(["A1", "A2", "A3", "A4", "B1", "B2", "B3", "B4", "..."])
    probe = HiringBloombergProbe(calculate_cis=False, log_strategy="no")
    probe.names = {
        "A1": ("male", "asian"),
        "A2": ("male", "asian"),
        "A3": ("male", "asian"),
        "A4": ("male", "asian"),
        "B1": ("female", "asian"),
        "B2": ("female", "asian"),
        "B3": ("female", "asian"),
        "B4": ("female", "asian"),
    }
    probe.races = ["asian"]
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["masculine_rate"] - 0.5) < 0.03
    assert abs(probe.metrics["stereotype_rate"]) < 0.03


def test_dreaddit():
    generator = RandomGenerator(["yes", "no", "..."])
    probe = DreadditProbe(num_repetitions=5, calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["max_diff_tpr"]) < 0.03
    assert abs(probe.metrics["max_diff_tnr"]) < 0.03


def test_bbq():
    generator = RandomGenerator(["(a)", "(b)", "(c)", "..."])
    probe = BbqProbe(calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["stereotype_rate"] - 1 / 3) < 0.03
    assert abs(probe.metrics["logical_rate"] - 1 / 3) < 0.03


def test_direct():
    generator = RandomGenerator(["yes", "no", "..."])
    probe = DirectProbe(num_repetitions=10, calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["sbic_fail_rate"] - 1 / 2) < 0.03


def test_gest():
    generator = RandomGenerator(["(a)", "(b)", "(c)", "..."])
    probe = GestProbe(calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["stereotype_rate"]) < 0.03
    assert abs(probe.metrics["frequency_male_option"] - 1 / 3) < 0.03


def test_diversitymedqa():
    generator = RandomGenerator(["(a)", "(b)", "(c)", "..."])
    probe = DiversityMedQaProbe(calculate_cis=False, log_strategy="no")
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["diff_abs_success_rate"]) < 0.03
    assert abs(probe.metrics["male_success_rate"] - 1 / 5) < 0.03


def test_relationship_levy():
    generator = RandomGenerator(["(a)", "(b)", "..."])
    probe = RelationshipLevyProbe(calculate_cis=False, log_strategy="no", sample_k=5000)
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["diff_abs_success_rate"]) < 0.03
    assert abs(probe.metrics["male_success_rate"] - 1 / 2) < 0.03


def test_business_vocabulary():
    generator = RandomGenerator(["ambitious", "warm", "shy", "..."])
    probe = BusinessVocabularyProbe(
        calculate_cis=False, log_strategy="no", num_repetitions=3
    )
    probe.run(generator)
    print(probe.__class__, probe.metrics, end="\n\n")
    assert abs(probe.metrics["bsri_male"] - 1 / 3) < 0.03
    assert abs(probe.metrics["mean_diff"]) < 0.03


def test_marks():
    generator = RandomGenerator(["(a)", "(b)", "(c)", "..."])
    probe = GestProbe(calculate_cis=False, log_strategy="no")
    probe.run(generator)
    assert probe.marks["stereotype_rate"]["mark_value"] == 0

    probe = BbqProbe(calculate_cis=True, log_strategy="no")
    probe.run(generator)
    assert probe.marks["stereotype_rate"]["mark_value"] == 2


def test_harness():

    class TestHarness(Harness):

        def __init__(self, **kwargs):
            probes = [
                DiscriminationTamkinProbe(),
                DreadditProbe(),
                DirectProbe(),
            ]
            super().__init__(probes=probes, **kwargs)

        def log_results(self, results):
            pass

    harness = TestHarness(calculate_cis=False, log_strategy="no")
    generator = RandomGenerator(["yes", "no", "..."])
    marks, _ = harness.run(generator)
    print(marks)

    assert 2 <= marks["DirectProbe"]["fail_rate"]["mark_value"] <= 3
    assert 0 <= marks["DiscriminationTamkinProbe"]["max_diff"]["mark_value"] <= 1