1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
import numpy as np
from kk_prompt import system_instruction, demonstration_2char, system_instruction_no_reason, demonstration_2char_no_reason
from compute_score import extract_solution, parse_solution_text_format, parse_model_answer, validate_response_structure
def num_tokens_from_string(string):
import tiktoken
"""Returns the number of tokens in a text string."""
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
num_tokens = len(encoding.encode(string))
return num_tokens
def parse_cot_eval(pred_str, ans,
conclusion_patterns=['CONCLUSION:'],
verbose=False,
finish_patterns=["### Reason", "Let's think step by step again", "let's go back and check", "###"],
reformat_gold_conditions=None):
def judge_string(input_str, reformat_gold_conditions, wrong_reason, finish_patterns):
correct_count = 0
is_correct = False
beyond_id = len(reformat_gold_conditions)+1
beyond_id_pattern = f"({beyond_id})"
for finish_pattern in finish_patterns:
if finish_pattern in input_str:
input_str = input_str.split(finish_pattern)[0]
if beyond_id_pattern in input_str:
is_correct = False
wrong_reason = "beyond_list"
elif "if" in input_str:
is_correct = False
wrong_reason = "contain_if"
else:
is_correct = True
for gold_condition in reformat_gold_conditions:
if gold_condition not in input_str:
is_correct = False
wrong_reason = "wrong_identity"
else:
correct_count += 1
correct_ratio = correct_count/len(reformat_gold_conditions)
return is_correct, wrong_reason, correct_ratio
def check_numbers_in_string(s, N):
for i in range(1, N + 1):
if f"({i})" not in s:
return False
return True
original_str = pred_str
pred_str = pred_str.split("### Question")[0]
pred_answer = pred_str
is_correct = False
correct_ratio = 0
if reformat_gold_conditions is None:
gold = ans.replace(" and ", "").replace(".", "")
gold_conditions = gold.split(",")
reformat_gold_conditions = []
for condition in gold_conditions:
gold_condition = condition.strip() # Remove leading and trailing spaces
reformat_gold_conditions.append(gold_condition)
wrong_reason = "no_conclusion_matched"
for pattern in conclusion_patterns:
pred = pred_str.split(pattern)
if len(pred) > 1:
if len(pred[1]) > 0: # if the matched the answer is not empty
pred_answer = pred[1]
is_correct, wrong_reason, correct_ratio = judge_string(
pred_answer, reformat_gold_conditions, wrong_reason, finish_patterns)
break
if is_correct == False and wrong_reason == "no_conclusion_matched":
if check_numbers_in_string(pred_str, len(reformat_gold_conditions)): # the answer contains (1)..(2)..
is_correct, wrong_reason, correct_ratio = judge_string(
pred_str, reformat_gold_conditions, wrong_reason, finish_patterns)
if is_correct == False and verbose == True:
print("wrong_reason:",wrong_reason)
print("********* \nprediction before parse:\n", original_str)
print("********* \nprediction after parse:\n", pred_answer)
return is_correct, pred_answer, wrong_reason, correct_ratio, reformat_gold_conditions
def parse_cot_eval_instruct(pred_str, ans,
conclusion_patterns=['<answer>'],
verbose=False,
finish_patterns=["</answer>"],
reformat_gold_conditions=None,
expected_names=None,
solution_text_format=None):
print("\n" + "="*80)
print(" Processing New Sample ".center(80, '='))
# Parse ground truth data
gt_status = parse_solution_text_format(solution_text_format)
expected_names = list(gt_status.keys())
print(f"[Ground Truth] Final identities: {gt_status}")
# Extract model answer
answer_text, processed_str = extract_solution(pred_str)
print(f"\n[Model Response]\n{processed_str}")
# Validate response structure
format_correct = validate_response_structure(processed_str)
print(f"\n Format validation: {'PASS' if format_correct else 'FAIL'}")
# Validate answer content
answer_score = 0
is_correct = False
correct_ratio = 0
wrong_reason = "no_conclusion_matched"
if format_correct and answer_text:
pred_status = parse_model_answer(answer_text, expected_names)
if pred_status:
print(f"\n[Content Validation]")
print(f" Expected: {gt_status}")
print(f" Predicted: {pred_status}")
if pred_status == gt_status:
answer_score = 2
is_correct = True
correct_ratio = 1
print(" Content validation: FULL MATCH")
else:
answer_score = -1.5
correct_ratio = 0
wrong_reason = "wrong_identity"
print(" Content validation: MISMATCH")
else:
answer_score = -2
correct_ratio = 0
wrong_reason = "no_conclusion_matched"
print( "Fail to parse answer")
else:
print("\n[Content Validation] Skipped due to format errors or missing answer")
if is_correct == False and verbose == True:
print("wrong_reason:",wrong_reason)
print("********* \nprediction before parse:\n", pred_str)
print("********* \nprediction after parse:\n", answer_text)
return is_correct, answer_text, wrong_reason, correct_ratio, reformat_gold_conditions
class KKProcessor:
def __init__(self, cot=True, no_linebreak=True):
self.cot = cot
self.no_linebreak = no_linebreak
def format_example(self, test_records, idx, model_name=None):
item = test_records[idx]
prompt = "### Question: "+item["quiz"] + "\n"
if self.cot:
if model_name in ["deepseek-ai/deepseek-math-7b-instruct", "AI-MO/NuminaMath-7B-CoT"]:
prompt += "Please reason step by step, and put your final answer within \\boxed{}."
else:
prompt += "### Answer: Let's think step by step. "
else:
if self.no_linebreak:
prompt += "### Answer:"
else:
prompt += "### Answer:\n"
answer = item["solution_text"]
return prompt, answer
def gen_test_prompt(self, ntrain, test_records, idx, model_name=None):
if self.cot:
train_prompt = system_instruction
else:
train_prompt = system_instruction_no_reason
if ntrain == 1:
if self.cot:
train_prompt += "\n\n"+demonstration_2char
else:
train_prompt += "\n\n"+demonstration_2char_no_reason
elif ntrain > 1:
raise NotImplementedError
prompt_end, answer = self.format_example(test_records, idx, model_name)
prompt = train_prompt + "\n\n" + prompt_end
return prompt, answer
def _parse_cot_eval(self, pred_str, ans, model_name=None):
conclusion_patterns = ['CONCLUSION:', 'Conclusion:', 'conclusion:']
if model_name in ["deepseek-ai/deepseek-math-7b-instruct", "AI-MO/NuminaMath-7B-CoT"]:
conclusion_patterns = ['boxed{', 'CONCLUSION:', 'Conclusion:', 'conclusion:']
is_correct, pred_answer, wrong_reason, correct_ratio, reformat_gold_conditions = parse_cot_eval(
pred_str, ans, conclusion_patterns=conclusion_patterns, verbose=False)
return is_correct, pred_answer, reformat_gold_conditions
def _parse_cot_eval_instruct(self, pred_str, ans, model_name=None, expected_names=None, solution_text_format=None):
conclusion_patterns = ['<answer>']
is_correct, pred_answer, wrong_reason, correct_ratio, reformat_gold_conditions = parse_cot_eval_instruct(
pred_str, ans, conclusion_patterns=conclusion_patterns, verbose=True, expected_names=expected_names, solution_text_format=solution_text_format)
return is_correct, pred_answer, reformat_gold_conditions
|