summaryrefslogtreecommitdiff
path: root/train.py
blob: 9d5828ffec1f5c784afa357e3db3527ef95cbaa3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import os
import random
import time
from pathlib import Path

import psutil
import torch
import torch.nn.functional as F
from torch.optim import AdamW
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader

# import wandb

from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.utils import set_seed
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM


os.environ.setdefault("NCCL_TIMEOUT", "2700")
os.environ.setdefault("TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC", "2700")

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='Qwen3-8B', help='Model name')
    parser.add_argument('--model_path', type=str, default=None, help='Local model path')
    parser.add_argument('--train_data', type=str, default='dataset/1shot_rlvr/pi1_r1280.parquet', help='Training data file path')
    parser.add_argument('--save_root', type=str, default=None, help='Checkpoint save root directory')
    parser.add_argument('--effective_batch', type=int, default=64, help='Global batch size')
    parser.add_argument('--micro_batch_size', type=str, default=2, help='Micro batch size or "auto"')
    parser.add_argument('--temperature', type=float, default=0.9, help='Temperature coefficient')
    parser.add_argument('--learning_rate', type=float, default=2e-5, help='Learning rate')
    parser.add_argument('--log_steps', type=int, default=1, help='Logging step interval')
    parser.add_argument('--save_steps', type=int, default=1, help='Checkpoint saving step interval')
    parser.add_argument('--max_steps', type=int, default=1000, help='Maximum training steps')
    parser.add_argument('--sample_temp', type=float, default=0.5, help='Generation temperature parameter')
    parser.add_argument('--run_name', type=str, default=None, help='Experiment run name')
    # parser.add_argument('--wandb_project', type=str, default='entropy-maximization-ft', help='W&B project name')
    # parser.add_argument('--wandb_name', type=str, default=None, help='W&B run name')
    parser.add_argument('--seed', type=int, default=42, help='Random seed')
    return parser.parse_args()

class FTDataset(Dataset):
    def __init__(self, rows): self.rows = rows
    def __len__(self): return len(self.rows)
    def __getitem__(self, idx): return self.rows[idx]

def custom_collate(batch):
    return {"input": [item["input"] for item in batch]}

def get_optimal_micro_batch_size(model_name: str, world_size: int = 1) -> int:
    model_configs = {
        "1.5B": {"base_batch": 4, "keywords": ["1.5B", "1B"]},
        "2B": {"base_batch": 4, "keywords": ["2B"]},
        "3B": {"base_batch": 2, "keywords": ["3B"]},
        "7B": {"base_batch": 2, "keywords": ["7B"]},
        "8B+": {"base_batch": 1, "keywords": ["8B", "9B", "10B", "11B", "12B", "13B", "14B"]},
    }
    model_name_upper = model_name.upper()
    detected = next((cfg for cfg in model_configs.values() if any(k in model_name_upper for k in cfg["keywords"])), None)
    base_batch = detected["base_batch"] if detected else 2
    if world_size > 1:
        return min(base_batch + 1, int(base_batch * 1.5))
    return base_batch

def apply_chat_template(tokenizer, problem: str) -> str:
    return tokenizer.apply_chat_template(
        [{"role": "user", "content": problem}],
        tokenize=False, add_generation_prompt=True
    )

def main():
    args = parse_args()
    set_seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    world_size = int(os.getenv("WORLD_SIZE", "1"))
    micro_bs = int(args.micro_batch_size)
    eff_bs = args.effective_batch
    accum_steps = max(1, eff_bs // (micro_bs * world_size))
    temp = args.temperature
    lr = args.learning_rate

    save_root = args.save_root or (f"checkpoints/{args.model_name}/{args.run_name}" if args.run_name else f"checkpoints/{args.model_name}")
    ds_config = {
        "train_micro_batch_size_per_gpu": micro_bs,
        "train_batch_size": eff_bs,
        "gradient_accumulation_steps": accum_steps,
        "bf16": {"enabled": True},
        "zero_optimization": {
                              "stage": 2, 
                              "offload_optimizer": {"device": "cpu"}, 
                              "offload_param": {"device": "none"}
                             },
        "gradient_clipping": 1.0,
    }
    accelerator = Accelerator(mixed_precision="bf16", 
                              gradient_accumulation_steps=accum_steps, 
                              deepspeed_plugin=DeepSpeedPlugin(hf_ds_config=ds_config))
    print = accelerator.print

    model_path = args.model_path or f"/volume/pt-train/models/{args.model_name}"
    config = AutoConfig.from_pretrained(model_path)
    config.use_cache = False
    model = AutoModelForCausalLM.from_pretrained(model_path, config=config)
    model.gradient_checkpointing_enable()
    tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left")
    tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token

    # if accelerator.is_main_process:
    #     wandb.init(project=args.wandb_project, name=args.run_name or args.wandb_name or args.model_name, config=vars(args))

    df = pd.read_parquet(args.train_data)
    train_data = [{"input": apply_chat_template(tokenizer, p)} for p in df["problem"].dropna().tolist()]
    train_loader = DataLoader(FTDataset(train_data), batch_size=micro_bs, shuffle=True, collate_fn=custom_collate)

    optimizer = AdamW(model.parameters(), lr=lr)
    model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
    prev_logits = None
    model.train()
    
    for step, batch in enumerate(train_loader, start=1):
        if step > args.max_steps:
            print(f"Exceed max step {args.max_steps}, training stopped.")
            break
        
        with accelerator.accumulate(model):
            enc = tokenizer(batch["input"], 
                            return_tensors="pt", 
                            padding="longest", 
                            truncation=True, 
                            max_length=2048).to(accelerator.device)
            
            with torch.no_grad():
                gen_ids = accelerator.unwrap_model(model).generate(**enc, 
                                                                   max_new_tokens=512, 
                                                                   do_sample=True, 
                                                                   top_p=0.95, 
                                                                   temperature=args.sample_temp, 
                                                                   synced_gpus=True, 
                                                                   pad_token_id=tokenizer.pad_token_id, 
                                                                   use_cache=False)
                
            seq = torch.cat([enc.input_ids, gen_ids[:, enc.input_ids.shape[1]:]], dim=1)[:, :4096]
            pad_mask = seq.ne(tokenizer.pad_token_id)
            prompt_len = pad_mask[:, :enc.input_ids.shape[1]].sum(-1)
            token_idx = torch.arange(seq.size(1), device=seq.device)
            gen_mask = (token_idx.unsqueeze(0) >= prompt_len.unsqueeze(1)) & pad_mask

            logits = model(seq, attention_mask=pad_mask).logits
            probs = F.softmax(logits / temp, dim=-1)
            H_tok = -(probs * torch.log(probs + 1e-12)).sum(-1)
            loss = (H_tok * gen_mask).sum() / gen_mask.sum().clamp_min(1)

            prev_logits = logits.detach()
            accelerator.backward(loss)
            accelerator.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            optimizer.zero_grad()

        if accelerator.is_main_process:
            if step % args.log_steps == 0:
                print(f"Step {step} | loss={loss.item():.6f}")
                # wandb.log({"step": step, "loss": loss.item()})
                
            if step % args.save_steps == 0:
                ckpt = Path(save_root) / f"step_{step}"
                ckpt.mkdir(parents=True, exist_ok=True)
                accelerator.unwrap_model(model).save_pretrained(ckpt, safe_serialization=True)
                tokenizer.save_pretrained(ckpt)
                print(f"Checkpoint saved to {ckpt}")

    if accelerator.is_main_process:
        final = Path(save_root) / "final"
        final.mkdir(parents=True, exist_ok=True)
        accelerator.unwrap_model(model).save_pretrained(final, safe_serialization=True)
        tokenizer.save_pretrained(final)
        print(f"Final checkpoint saved to {final}")
        # wandb.finish()

if __name__ == "__main__":
    main()