1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
import argparse
import random
import string
from pathlib import Path
import torch.nn.functional as F
import os, math, torch, pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.utils import set_seed
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, AdamW
parser = argparse.ArgumentParser()
parser.add_argument("--temperature", type=float, default=0.5)
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument("--bsz", type=int)
parser.add_argument("--seed", type=int, default=15)
args = parser.parse_args()
set_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
temp_str = str(args.temperature).replace(".", "")
lr_str = f"{args.lr:.0e}"
bsz_str = str(args.effective_batch)
save_root = f"/volume/ailab4sci/ztgao/em/checkpoints/qwen25math7b/t{temp_str}_lr{lr_str}_bsz{bsz_str}_seed{args.seed}"
temperature = args.temperature
learning_rate = args.lr
effective_batch = args.effective_batch
micro_batch_size = 2
world_size = int(os.environ.get("WORLD_SIZE", 1))
accum_steps = max(1, effective_batch // (micro_batch_size * world_size))
DEEPSPEED_CONFIG = {
"train_micro_batch_size_per_gpu": micro_batch_size,
"train_batch_size": effective_batch,
"gradient_accumulation_steps": accum_steps,
"bf16": {"enabled": True},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {"device": "cpu"},
"offload_param": {"device": "none"}
},
"gradient_clipping": 1.0,
}
ds_plugin = DeepSpeedPlugin(hf_ds_config=DEEPSPEED_CONFIG)
accelerator = Accelerator(
mixed_precision="bf16",
gradient_accumulation_steps=accum_steps,
deepspeed_plugin=ds_plugin,
)
print = accelerator.print
model_name = "Qwen2.5-Math-7B"
model_path = f"/volume/ailab4sci/models/{model_name}"
config = AutoConfig.from_pretrained(model_path)
config.use_cache = False
model = AutoModelForCausalLM.from_pretrained(model_path, config=config)
model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
class FTDataset(Dataset):
def __init__(self, rows): self.rows = rows
def __len__(self): return len(self.rows)
def __getitem__(self, idx): return self.rows[idx]
def custom_collate(batch):
return {"input": [item["input"] for item in batch]}
def apply_chat_template(problem: str) -> str:
return tokenizer.apply_chat_template(
[{"role": "user", "content": problem}],
tokenize=False, add_generation_prompt=True
)
df = pd.read_parquet("/volume/ailab4sci/ztgao/em/dataset/1shot_rlvr/pi1_r1280.parquet")
data = [{"input": apply_chat_template(p)} for p in df["problem"].dropna().tolist()]
dataset = FTDataset(data)
data_loader = DataLoader(
dataset,
batch_size=micro_batch_size,
shuffle=True,
collate_fn=custom_collate,
)
optimizer = AdamW(model.parameters(), lr=learning_rate)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
model.train()
for step, batch in enumerate(data_loader, start=1):
if step > 30:
break
with accelerator.accumulate(model):
enc = tokenizer(
batch["input"],
return_tensors="pt",
padding="longest",
truncation=True,
max_length=2048,
).to(accelerator.device)
with torch.no_grad():
gen_ids = accelerator.unwrap_model(model).generate(
**enc,
max_new_tokens=2048,
do_sample=True,
top_p=0.95,
temperature=temperature,
synced_gpus=True,
repetition_penalty=1.15,
pad_token_id=151643,
use_cache=False
)
seq = torch.cat(
[enc.input_ids, gen_ids[:, enc.input_ids.shape[1]:]],
dim=1
)[:, :4096]
pad_mask = seq.ne(tokenizer.pad_token_id)
prompt_len = pad_mask[:, :enc.input_ids.shape[1]].sum(-1)
token_idx = torch.arange(seq.size(1), device=seq.device)
gen_mask = (token_idx.unsqueeze(0) >= prompt_len.unsqueeze(1)) & pad_mask
logits = model(seq, attention_mask=pad_mask).logits
probs = F.softmax(logits / temperature, dim=-1)
H_tok = -(probs * torch.log(probs + 1e-12)).sum(-1)
loss = (H_tok * gen_mask).sum() / gen_mask.sum().clamp_min(1)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step(); optimizer.zero_grad()
print(f"Step {step} | loss={loss.item():.8f}")
if accelerator.is_main_process:
ckpt_dir = Path(save_root) / f"step_{step}"
ckpt_dir.mkdir(parents=True, exist_ok=True)
accelerator.unwrap_model(model).save_pretrained(ckpt_dir, safe_serialization=True)
tokenizer.save_pretrained(ckpt_dir)
accelerator.wait_for_everyone()
print(f"Checkpoint saved to {ckpt_dir}")
if accelerator.is_main_process:
final_dir = Path(save_root) / "final"
final_dir.mkdir(parents=True, exist_ok=True)
accelerator.unwrap_model(model).save_pretrained(final_dir, safe_serialization=True)
tokenizer.save_pretrained(final_dir)
print(f"Final checkpoint saved to {final_dir}")
|