summaryrefslogtreecommitdiff
path: root/Qwen2.5-Eval/evaluation/latex2sympy
diff options
context:
space:
mode:
authorYuren Hao <yurenh2@timan108.cs.illinois.edu>2025-09-04 22:16:22 -0500
committerYuren Hao <yurenh2@timan108.cs.illinois.edu>2025-09-04 22:16:22 -0500
commitfc6d57ffb8d5ddb5820fcc00b5491a585c259ebc (patch)
treee9841f93a353e2107225cfc721d1ce57c0e594dc /Qwen2.5-Eval/evaluation/latex2sympy
Initial commit
Diffstat (limited to 'Qwen2.5-Eval/evaluation/latex2sympy')
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/.coveragerc31
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/.gitignore132
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/LICENSE.txt21
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/PS.g4638
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/README.md196
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/__init__.py1
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/antlr-4.11.1-complete.jarbin0 -> 3547867 bytes
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/asciimath_printer.py50
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/description.txt152
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/dev-requirements.in8
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/dev-requirements.txt60
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PS.interp462
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PS.tokens357
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.interp612
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.py1446
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.tokens357
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PSListener.py573
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/PSParser.py6486
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/gen/__init__.py0
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/icon.pngbin0 -> 11786 bytes
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/latex2sympy2.py1162
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/requirements.in2
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/requirements.txt12
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_equations.py10
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_span.py19
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix.py46
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix_placeholders.py65
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox.py23
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox_equality.py75
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/sectan.py51
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/sandbox/vector.py75
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/compile.sh9
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/coverage-ci.sh3
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/coverage.sh23
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/pre-commit28
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/pre-push28
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/publish.sh3
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/setup-hooks.sh3
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/setup.sh42
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/scripts/test.sh31
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/setup.cfg3
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/setup.py45
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/__init__.py0
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/abs_test.py19
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/all_bad_test.py70
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/all_good_test.py284
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/atom_expr_test.py58
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/binomial_test.py36
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/ceil_test.py29
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/complex_test.py21
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/context.py84
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/exp_test.py57
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/floor_test.py29
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/gcd_test.py161
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/greek_test.py19
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/grouping_test.py52
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/lcm_test.py161
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/left_right_cdot_test.py9
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/linalg_test.py15
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/max_test.py79
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/min_test.py79
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/mod_test.py70
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/overline_test.py9
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/pi_test.py15
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/trig_test.py21
-rwxr-xr-xQwen2.5-Eval/evaluation/latex2sympy/tests/variable_test.py92
66 files changed, 14809 insertions, 0 deletions
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/.coveragerc b/Qwen2.5-Eval/evaluation/latex2sympy/.coveragerc
new file mode 100755
index 0000000..3aeb83f
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/.coveragerc
@@ -0,0 +1,31 @@
+# .coveragerc to control coverage.py
+[run]
+branch = True
+include =
+ latex2sympy.py
+omit =
+ sandbox/*
+ gen/*
+ asciimath_printer.py
+ setup.py
+ __init__.py
+
+[report]
+# Regexes for lines to exclude from consideration
+exclude_lines =
+ # Have to re-enable the standard pragma
+ pragma: no cover
+
+ # Don't complain about missing debug-only code:
+ def __repr__
+ if self\.debug
+
+ # Don't complain if tests don't hit defensive assertion code:
+ raise AssertionError
+ raise NotImplementedError
+
+ # Don't complain if non-runnable code isn't run:
+ if 0:
+ if __name__ == .__main__.:
+
+ignore_errors = True
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/.gitignore b/Qwen2.5-Eval/evaluation/latex2sympy/.gitignore
new file mode 100755
index 0000000..e49e834
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/.gitignore
@@ -0,0 +1,132 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+.antlr
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don’t work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# Azure Functions artifacts
+bin
+obj
+appsettings.json
+local.settings.json
+.python_packages
+stemgen-solution-engine.zip \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/LICENSE.txt b/Qwen2.5-Eval/evaluation/latex2sympy/LICENSE.txt
new file mode 100755
index 0000000..6bbfda9
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/LICENSE.txt
@@ -0,0 +1,21 @@
+The MIT License (MIT)
+
+Copyright 2016, latex2sympy
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/PS.g4 b/Qwen2.5-Eval/evaluation/latex2sympy/PS.g4
new file mode 100755
index 0000000..51834a2
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/PS.g4
@@ -0,0 +1,638 @@
+grammar PS;
+
+options {
+ language=Python2;
+}
+
+WS: [ \t\r\n]+ -> skip;
+DOLLAR_SIGN: '\\$' -> skip;
+
+ADD: '+';
+SUB: '-';
+MUL: '*';
+DIV: '/' | '\\over';
+
+L_PAREN: '(';
+R_PAREN: ')';
+L_GROUP: '\\lgroup';
+R_GROUP: '\\rgroup';
+L_BRACE: '{';
+R_BRACE: '}';
+L_BRACE_VISUAL: '\\{';
+R_BRACE_VISUAL: '\\}';
+L_BRACE_CMD: '\\lbrace';
+R_BRACE_CMD: '\\rbrace';
+L_BRACKET: '[';
+R_BRACKET: ']';
+L_BRACK: '\\lbrack';
+R_BRACK: '\\rbrack';
+
+BAR: '|';
+L_VERT: '\\lvert';
+R_VERT: '\\rvert';
+VERT: '\\vert';
+
+NORM: '\\|';
+
+L_FLOOR: '\\lfloor';
+R_FLOOR: '\\rfloor';
+LL_CORNER: '\\llcorner';
+LR_CORNER: '\\lrcorner';
+
+L_CEIL: '\\lceil';
+R_CEIL: '\\rceil';
+UL_CORNER: '\\ulcorner';
+UR_CORNER: '\\urcorner';
+
+L_LEFT: '\\left';
+R_RIGHT: '\\right';
+ML_LEFT: '\\mleft';
+MR_RIGHT: '\\mright';
+
+//functions
+FUNC_LIM: '\\lim';
+LIM_APPROACH_SYM: '\\to' | '\\rightarrow' | '\\Rightarrow' | '\\longrightarrow' | '\\Longrightarrow';
+FUNC_INT: '\\int';
+FUNC_SUM: '\\sum';
+FUNC_PROD: '\\prod';
+
+FUNC_LOG: '\\log';
+FUNC_LN: '\\ln';
+FUNC_EXP: '\\exp';
+FUNC_SIN: '\\sin';
+FUNC_COS: '\\cos';
+FUNC_TAN: '\\tan';
+FUNC_CSC: '\\csc';
+FUNC_SEC: '\\sec';
+FUNC_COT: '\\cot';
+
+FUNC_ARCSIN: '\\arcsin';
+FUNC_ARCCOS: '\\arccos';
+FUNC_ARCTAN: '\\arctan';
+FUNC_ARCCSC: '\\arccsc';
+FUNC_ARCSEC: '\\arcsec';
+FUNC_ARCCOT: '\\arccot';
+
+FUNC_SINH: '\\sinh';
+FUNC_COSH: '\\cosh';
+FUNC_TANH: '\\tanh';
+FUNC_ARSINH: '\\arsinh';
+FUNC_ARCOSH: '\\arcosh';
+FUNC_ARTANH: '\\artanh';
+FUNC_ARCSINH: '\\arcsinh';
+FUNC_ARCCOSH: '\\arccosh';
+FUNC_ARCTANH: '\\arctanh';
+
+FUNC_ARSINH_NAME: 'arsinh';
+FUNC_ARCSINH_NAME: 'arcsinh';
+FUNC_ARCOSH_NAME: 'arcosh';
+FUNC_ARCCOSH_NAME: 'arccosh';
+FUNC_ARTANH_NAME: 'artanh';
+FUNC_ARCTANH_NAME: 'arctanh';
+FUNC_GCD_NAME: 'gcd';
+FUNC_LCM_NAME: 'lcm';
+FUNC_FLOOR_NAME: 'floor';
+FUNC_CEIL_NAME: 'ceil';
+
+FUNC_SQRT: '\\sqrt';
+FUNC_GCD: '\\gcd';
+FUNC_LCM: '\\lcm';
+FUNC_FLOOR: '\\floor';
+FUNC_CEIL: '\\ceil';
+FUNC_MAX: '\\max';
+FUNC_MIN: '\\min';
+
+FUNC_DET: '\\det';
+
+FUNC_EYE_NAME: 'eye';
+FUNC_ZEROS_NAME: 'zeros';
+FUNC_ONES_NAME: 'ones';
+FUNC_COLS_NAME: 'cols';
+FUNC_ROWS_NAME: 'rows';
+FUNC_DIAG_NAME: 'diag';
+FUNC_NORM_NAME: 'norm';
+FUNC_RANK_NAME: 'rank';
+FUNC_TRACE_NAME: 'trace' | 'tr';
+FUNC_RREF_NAME: 'rref';
+FUNC_HSTACK_NAME: 'hstack';
+FUNC_VSTACK_NAME: 'vstack';
+FUNC_ORTHOGONALIZE_NAME: 'orth' | 'ortho' | 'orthogonal' | 'orthogonalize';
+FUNC_NULLSPACE_NAME: 'nullspace';
+FUNC_DIAGONALIZE_NAME: 'eig' | 'eigen' | 'diagonalize';
+FUNC_EIGENVALS_NAME: 'eigenvals' | 'eigenvalues';
+FUNC_EIGENVECTORS_NAME: 'eigenvects' | 'eigenvectors';
+FUNC_SVD_NAME: 'svd' | 'SVD';
+
+//commands
+CMD_TIMES: '\\times';
+CMD_CDOT: '\\cdot';
+CMD_DIV: '\\div';
+CMD_FRAC: '\\frac';
+CMD_BINOM: '\\binom' | '\\tbinom' | '\\dbinom';
+CMD_CHOOSE: '\\choose';
+CMD_MOD: '\\mod';
+
+CMD_MATHIT: '\\mathit';
+
+CMD_OPERATORNAME: '\\operatorname';
+
+//matrix test
+MATRIX_TYPE_MATRIX: 'matrix';
+MATRIX_TYPE_PMATRIX: 'pmatrix';
+MATRIX_TYPE_BMATRIX: 'bmatrix';
+MATRIX_TYPE_DET: 'vmatrix';
+MATRIX_TYPES: MATRIX_TYPE_MATRIX | MATRIX_TYPE_PMATRIX | MATRIX_TYPE_BMATRIX;
+CMD_MATRIX_START: '\\begin' L_BRACE MATRIX_TYPES R_BRACE;
+CMD_MATRIX_END: '\\end' L_BRACE MATRIX_TYPES R_BRACE;
+CMD_DET_START: '\\begin' L_BRACE MATRIX_TYPE_DET R_BRACE;
+CMD_DET_END: '\\end' L_BRACE MATRIX_TYPE_DET R_BRACE;
+MATRIX_DEL_COL: '&';
+MATRIX_DEL_ROW: '\\\\';
+
+UNDERSCORE: '_';
+CARET: '^';
+COLON: ':';
+SEMICOLON: ';';
+COMMA: ',';
+PERIOD: '.';
+
+fragment WS_CHAR: [ \t\r\n];
+DIFFERENTIAL: 'd' WS_CHAR*? ([a-zA-Z] | '\\' [a-zA-Z]+);
+
+EXP_E: 'e' | '\\exponentialE';
+E_NOTATION_E: 'E';
+LETTER_NO_E: [a-df-zA-DF-Z]; // exclude e for exponential function and e notation
+fragment LETTER: [a-zA-Z];
+fragment DIGIT: [0-9];
+
+MATRIX_XRIGHTARROW: '\\xrightarrow' | '\\xRightarrow';
+TRANSFORM_EXCHANGE: '<->' | '<=>' | '\\leftrightarrow' | '\\Leftrightarrow';
+
+NUMBER:
+ DIGIT+ (COMMA DIGIT DIGIT DIGIT)*
+ | DIGIT* (COMMA DIGIT DIGIT DIGIT)* PERIOD DIGIT+;
+
+E_NOTATION: NUMBER E_NOTATION_E (SUB | ADD)? DIGIT+;
+
+IN: '\\in';
+ASSIGNMENT: '=';
+EQUAL: '==' | '\\equiv';
+LT: '<';
+LTE: '\\leq' | '\\le' | '\\leqslant';
+GT: '>';
+GTE: '\\geq' | '\\ge' | '\\geqslant';
+UNEQUAL: '!=' | '!==' | '\\ne' | '\\neq' | '\\not\\equiv';
+
+BANG: '!';
+
+fragment PERCENT_SIGN: '\\%';
+PERCENT_NUMBER: NUMBER PERCENT_SIGN;
+
+//Excludes some letters for use as e.g. constants in SYMBOL
+fragment GREEK_LETTER:
+ '\\char"000391' | //Alpha
+ '\\alpha' |
+ '\\char"000392' | //Beta
+ '\\beta' |
+ '\\Gamma' |
+ '\\gamma' |
+ '\\Delta' |
+ '\\delta' |
+ '\\char"000190' | //Epsilon
+ '\\epsilon' |
+ '\\varepsilon' |
+ '\\char"000396' | //Zeta
+ '\\zeta' |
+ '\\char"000397' | //Eta
+ '\\eta' |
+ '\\Theta' |
+ '\\theta' |
+ '\\vartheta' |
+ '\\char"000399' | //Iota
+ '\\iota' |
+ '\\char"00039A' | //Kappa
+ '\\kappa' |
+ '\\Lambda' |
+ '\\lambda' |
+ '\\char"00039C' | //Mu
+ '\\mu' |
+ '\\char"00039D' | //Nu
+ '\\nu' |
+ '\\Xi' |
+ '\\xi' |
+ '\\char"00039F' | //Omicron
+ '\\omicron' |
+ '\\Pi' |
+ '\\varpi' |
+ '\\char"0003A1' | //Rho
+ '\\rho' |
+ '\\varrho' |
+ '\\Sigma' |
+ '\\sigma' |
+ '\\varsigma' |
+ '\\char"0003A4' | //Tau
+ '\\tau' |
+ '\\Upsilon' |
+ '\\upsilon' |
+ '\\Phi' |
+ '\\phi' |
+ '\\varphi' |
+ '\\char"0003A7' | //Chi
+ '\\chi' |
+ '\\Psi' |
+ '\\psi' |
+ '\\Omega' |
+ '\\omega';
+
+GREEK_CMD: GREEK_LETTER [ ]?;
+
+fragment OTHER_SYMBOL:
+ '\\Bbbk' |
+ '\\wp' |
+ '\\nabla' |
+ '\\bigstar' |
+ '\\angle' |
+ '\\nexists' |
+ '\\diagdown' |
+ '\\measuredangle' |
+ '\\eth' |
+ '\\emptyset' |
+ '\\diagup' |
+ '\\sphericalangle' |
+ '\\clubsuit' |
+ '\\varnothing' |
+ '\\Diamond' |
+ '\\complement' |
+ '\\diamondsuit' |
+ '\\imath' |
+ '\\Finv' |
+ '\\triangledown' |
+ '\\heartsuit' |
+ '\\jmath' |
+ '\\Game' |
+ '\\triangle' |
+ '\\spadesuit' |
+ '\\ell' |
+ '\\hbar' |
+ '\\vartriangle' |
+ '\\hslash' |
+ '\\blacklozenge' |
+ '\\lozenge' |
+ '\\blacksquare' |
+ '\\mho' |
+ '\\blacktriangle' |
+ '\\sharp' |
+ '\\prime' |
+ '\\Im' |
+ '\\flat' |
+ '\\square' |
+ '\\backprime' |
+ '\\Re' |
+ '\\natural' |
+ '\\surd' |
+ '\\circledS';
+OTHER_SYMBOL_CMD: OTHER_SYMBOL [ ]?;
+
+fragment PI: '\\pi';
+fragment INFTY_CMD: '\\infty';
+fragment PARTIAL_CMD: '\\partial';
+fragment INFTY: INFTY_CMD | DOLLAR_SIGN INFTY_CMD | INFTY_CMD PERCENT_SIGN;
+fragment EMPTYSET: '\\emptyset';
+SYMBOL: PI | PARTIAL_CMD | INFTY | EMPTYSET;
+
+fragment VARIABLE_CMD: '\\variable';
+fragment VARIABLE_SYMBOL: (GREEK_CMD | OTHER_SYMBOL_CMD | LETTER | DIGIT)+ (UNDERSCORE ((L_BRACE (GREEK_CMD | OTHER_SYMBOL_CMD | LETTER | DIGIT | COMMA)+ R_BRACE) | (GREEK_CMD | OTHER_SYMBOL_CMD | LETTER | DIGIT)))?;
+VARIABLE: VARIABLE_CMD L_BRACE VARIABLE_SYMBOL R_BRACE PERCENT_SIGN?;
+
+//collection of accents
+accent_symbol:
+ '\\acute' |
+ '\\bar' |
+ '\\overline' |
+ '\\breve' |
+ '\\check' |
+ '\\widecheck' |
+ '\\dot' |
+ '\\ddot' |
+ '\\grave' |
+ '\\hat' |
+ '\\tilde' |
+ '\\widetilde' |
+ '\\vec' |
+ '\\overrightarrow' |
+ '\\bm' |
+ '\\boldsymbol' |
+ '\\text' |
+ '\\textit' |
+ '\\mathbb' |
+ '\\mathbin' |
+ '\\mathbf' |
+ '\\mathcal' |
+ '\\mathclap' |
+ '\\mathclose' |
+ '\\mathellipsis' |
+ '\\mathfrak' |
+ '\\mathinner' |
+ '\\mathit' |
+ '\\mathnormal' |
+ '\\mathop' |
+ '\\mathopen' |
+ '\\mathord' |
+ '\\mathpunct' |
+ '\\mathrel' |
+ '\\mathring' |
+ '\\mathrlap' |
+ '\\mathrm' |
+ '\\mathscr' |
+ '\\mathsf' |
+ '\\mathsterling' |
+ '\\mathtt';
+
+math: relation | relation_list;
+
+transpose: '^T' | '^{T}' | '^{\\top}' | '\'';
+
+transform_atom: LETTER_NO_E UNDERSCORE (NUMBER | L_BRACE NUMBER R_BRACE);
+transform_scale: (expr | group | ADD | SUB) transform_atom;
+transform_swap: transform_atom TRANSFORM_EXCHANGE transform_atom;
+transform_assignment: transform_atom transform_scale;
+elementary_transform: transform_assignment | transform_scale | transform_swap;
+elementary_transforms: elementary_transform (COMMA elementary_transform)*;
+
+matrix:
+ CMD_MATRIX_START
+ matrix_row (MATRIX_DEL_ROW matrix_row)* MATRIX_DEL_ROW?
+ CMD_MATRIX_END
+ (MATRIX_XRIGHTARROW (L_BRACKET elementary_transforms R_BRACKET)? L_BRACE elementary_transforms R_BRACE)?;
+
+det:
+ CMD_DET_START
+ matrix_row (MATRIX_DEL_ROW matrix_row)* MATRIX_DEL_ROW?
+ CMD_DET_END;
+
+matrix_row:
+ expr (MATRIX_DEL_COL expr)*;
+
+relation:
+ relation (IN | ASSIGNMENT | EQUAL | LT | LTE | GT | GTE | UNEQUAL) relation
+ | expr;
+
+relation_list:
+ relation_list_content
+ | L_BRACKET relation_list_content R_BRACKET
+ | L_BRACE relation_list_content R_BRACE
+ | L_BRACE_VISUAL relation_list_content R_BRACE_VISUAL
+ | L_LEFT L_BRACKET relation_list_content R_RIGHT R_BRACKET
+ | L_LEFT L_BRACE_VISUAL relation_list_content R_RIGHT R_BRACE_VISUAL
+ | ML_LEFT L_BRACKET relation_list_content MR_RIGHT R_BRACKET
+ | ML_LEFT L_BRACE_VISUAL relation_list_content MR_RIGHT R_BRACE_VISUAL;
+
+relation_list_content:
+ relation COMMA relation (COMMA relation)*
+ | relation SEMICOLON relation (SEMICOLON relation)*;
+
+equality:
+ expr (EQUAL | ASSIGNMENT) expr;
+
+expr: additive;
+
+additive:
+ additive (ADD | SUB) additive
+ | mp;
+
+// mult part
+mp:
+ mp (MUL | CMD_TIMES | CMD_CDOT | DIV | CMD_DIV | COLON | CMD_MOD) mp
+ | unary;
+
+mp_nofunc:
+ mp_nofunc (MUL | CMD_TIMES | CMD_CDOT | DIV | CMD_DIV | COLON | CMD_MOD) mp_nofunc
+ | unary_nofunc;
+
+unary:
+ (ADD | SUB) unary
+ | postfix+;
+
+unary_nofunc:
+ (ADD | SUB) unary_nofunc
+ | postfix postfix_nofunc*;
+
+postfix: exp postfix_op*;
+postfix_nofunc: exp_nofunc postfix_op*;
+postfix_op: BANG | eval_at | transpose;
+
+eval_at:
+ BAR (eval_at_sup | eval_at_sub | eval_at_sup eval_at_sub);
+
+eval_at_sub:
+ UNDERSCORE L_BRACE
+ (expr | equality)
+ R_BRACE;
+
+eval_at_sup:
+ CARET L_BRACE
+ (expr | equality)
+ R_BRACE;
+
+exp:
+ exp CARET (atom | L_BRACE expr R_BRACE) subexpr?
+ | comp;
+
+exp_nofunc:
+ exp_nofunc CARET (atom | L_BRACE expr R_BRACE) subexpr?
+ | comp_nofunc;
+
+comp:
+ group
+ | norm_group
+ | abs_group
+ | floor_group
+ | ceil_group
+ | func
+ | atom
+ | frac
+ | binom
+ | matrix
+ | det;
+
+comp_nofunc:
+ group
+ | norm_group
+ | abs_group
+ | floor_group
+ | ceil_group
+ | atom
+ | frac
+ | binom
+ | matrix
+ | det;
+
+group:
+ L_PAREN expr R_PAREN
+ | L_GROUP expr R_GROUP
+ | L_BRACE expr R_BRACE
+ | L_BRACE_VISUAL expr R_BRACE_VISUAL
+ | L_BRACE_CMD expr R_BRACE_CMD
+ | L_BRACKET expr R_BRACKET
+ | L_BRACK expr R_BRACK
+ | L_LEFT L_PAREN expr R_RIGHT R_PAREN
+ | L_LEFT L_GROUP expr R_RIGHT R_GROUP
+ | L_LEFT L_BRACE expr R_RIGHT R_BRACE
+ | L_LEFT L_BRACE_VISUAL expr R_RIGHT R_BRACE_VISUAL
+ | L_LEFT L_BRACE_CMD expr R_RIGHT R_BRACE_CMD
+ | L_LEFT L_BRACKET expr R_RIGHT R_BRACKET
+ | L_LEFT L_BRACK expr R_RIGHT R_BRACK
+ | ML_LEFT L_PAREN expr MR_RIGHT R_PAREN
+ | ML_LEFT L_GROUP expr MR_RIGHT R_GROUP
+ | ML_LEFT L_BRACE expr MR_RIGHT R_BRACE
+ | ML_LEFT L_BRACE_VISUAL expr MR_RIGHT R_BRACE_VISUAL
+ | ML_LEFT L_BRACE_CMD expr MR_RIGHT R_BRACE_CMD
+ | ML_LEFT L_BRACKET expr MR_RIGHT R_BRACKET
+ | ML_LEFT L_BRACK expr MR_RIGHT R_BRACK;
+
+
+norm_group:
+ NORM expr NORM
+ | L_LEFT NORM expr R_RIGHT NORM
+ | ML_LEFT NORM expr MR_RIGHT NORM;
+
+
+abs_group:
+ BAR expr BAR
+ | L_VERT expr R_VERT
+ | VERT expr VERT
+ | L_LEFT BAR expr R_RIGHT BAR
+ | L_LEFT L_VERT expr R_RIGHT R_VERT
+ | L_LEFT VERT expr R_RIGHT VERT
+ | ML_LEFT BAR expr MR_RIGHT BAR
+ | ML_LEFT L_VERT expr MR_RIGHT R_VERT
+ | ML_LEFT VERT expr MR_RIGHT VERT;
+
+
+floor_group:
+ L_FLOOR expr R_FLOOR
+ | LL_CORNER expr LR_CORNER
+ | L_LEFT L_FLOOR expr R_RIGHT R_FLOOR
+ | L_LEFT LL_CORNER expr R_RIGHT LR_CORNER
+ | ML_LEFT L_FLOOR expr MR_RIGHT R_FLOOR
+ | ML_LEFT LL_CORNER expr MR_RIGHT LR_CORNER;
+
+
+ceil_group:
+ L_CEIL expr R_CEIL
+ | UL_CORNER expr UR_CORNER
+ | L_LEFT L_CEIL expr R_RIGHT R_CEIL
+ | L_LEFT UL_CORNER expr R_RIGHT UR_CORNER
+ | ML_LEFT L_CEIL expr MR_RIGHT R_CEIL
+ | ML_LEFT UL_CORNER expr MR_RIGHT UR_CORNER;
+
+
+//indicate an accent
+accent:
+ accent_symbol
+ L_BRACE base=expr R_BRACE;
+
+atom_expr_no_supexpr: (LETTER_NO_E | GREEK_CMD | OTHER_SYMBOL_CMD | accent) subexpr?;
+atom_expr: (LETTER_NO_E | GREEK_CMD | OTHER_SYMBOL_CMD | accent) (supexpr subexpr | subexpr supexpr | subexpr | supexpr)?;
+atom: atom_expr | SYMBOL | NUMBER | PERCENT_NUMBER | E_NOTATION | DIFFERENTIAL | mathit | VARIABLE;
+
+mathit: CMD_MATHIT L_BRACE mathit_text R_BRACE;
+mathit_text: (LETTER_NO_E | E_NOTATION_E | EXP_E)+;
+
+frac:
+ CMD_FRAC L_BRACE
+ upper=expr
+ R_BRACE L_BRACE
+ lower=expr
+ R_BRACE;
+
+//a binomial expression
+binom:
+ L_BRACE upper=expr CMD_CHOOSE lower=expr R_BRACE
+ | CMD_BINOM L_BRACE upper=expr R_BRACE L_BRACE lower=expr R_BRACE;
+
+func_normal_functions_single_arg:
+ FUNC_LOG | FUNC_LN | FUNC_EXP
+ | FUNC_SIN | FUNC_COS | FUNC_TAN
+ | FUNC_CSC | FUNC_SEC | FUNC_COT
+ | FUNC_ARCSIN | FUNC_ARCCOS | FUNC_ARCTAN
+ | FUNC_ARCCSC | FUNC_ARCSEC | FUNC_ARCCOT
+ | FUNC_SINH | FUNC_COSH | FUNC_TANH
+ | FUNC_ARSINH | FUNC_ARCOSH | FUNC_ARTANH
+ | FUNC_ARCSINH | FUNC_ARCCOSH | FUNC_ARCTANH
+ | FUNC_FLOOR | FUNC_CEIL | FUNC_DET;
+
+func_normal_functions_multi_arg:
+ FUNC_GCD | FUNC_LCM | FUNC_MAX | FUNC_MIN;
+
+func_operator_names_single_arg:
+ FUNC_ARSINH_NAME | FUNC_ARCOSH_NAME | FUNC_ARTANH_NAME
+ | FUNC_ARCSINH_NAME | FUNC_ARCCOSH_NAME | FUNC_ARCTANH_NAME
+ | FUNC_FLOOR_NAME | FUNC_CEIL_NAME | FUNC_EYE_NAME | FUNC_RANK_NAME | FUNC_TRACE_NAME
+ | FUNC_RREF_NAME | FUNC_NULLSPACE_NAME | FUNC_DIAGONALIZE_NAME | FUNC_NORM_NAME
+ | FUNC_EIGENVALS_NAME | FUNC_EIGENVECTORS_NAME | FUNC_SVD_NAME | FUNC_COLS_NAME | FUNC_ROWS_NAME;
+
+func_operator_names_multi_arg:
+ FUNC_GCD_NAME | FUNC_LCM_NAME | FUNC_ZEROS_NAME | FUNC_ORTHOGONALIZE_NAME
+ | FUNC_ONES_NAME | FUNC_DIAG_NAME | FUNC_HSTACK_NAME | FUNC_VSTACK_NAME;
+
+func_normal_single_arg:
+ (func_normal_functions_single_arg)
+ |
+ (CMD_OPERATORNAME L_BRACE func_operator_name=func_operator_names_single_arg R_BRACE);
+
+func_normal_multi_arg:
+ (func_normal_functions_multi_arg)
+ |
+ (CMD_OPERATORNAME L_BRACE func_operator_name=func_operator_names_multi_arg R_BRACE);
+
+func:
+ func_normal_single_arg
+ (subexpr? supexpr? | supexpr? subexpr?)
+ (L_LEFT? L_PAREN func_single_arg R_RIGHT? R_PAREN | ML_LEFT? L_PAREN func_single_arg MR_RIGHT? R_PAREN | func_single_arg_noparens)
+
+ | func_normal_multi_arg
+ (subexpr? supexpr? | supexpr? subexpr?)
+ (L_LEFT? L_PAREN func_multi_arg R_RIGHT? R_PAREN | ML_LEFT? L_PAREN func_multi_arg MR_RIGHT? R_PAREN | func_multi_arg_noparens)
+
+ | atom_expr_no_supexpr supexpr?
+ L_LEFT? (L_PAREN | L_BRACKET) func_common_args (R_PAREN | R_BRACKET) R_RIGHT?
+ | atom_expr_no_supexpr supexpr?
+ L_BRACE L_LEFT? (L_PAREN | L_BRACKET) func_common_args (R_PAREN | R_BRACKET) R_RIGHT? R_BRACE
+
+ | FUNC_INT
+ (subexpr supexpr | supexpr subexpr | (UNDERSCORE L_BRACE R_BRACE) (CARET L_BRACE R_BRACE) | (CARET L_BRACE R_BRACE) (UNDERSCORE L_BRACE R_BRACE) )?
+ (additive? DIFFERENTIAL | frac | additive)
+
+ | FUNC_SQRT
+ (L_BRACKET root=expr R_BRACKET)?
+ L_BRACE base=expr R_BRACE
+
+ | (FUNC_SUM | FUNC_PROD)
+ (subeq supexpr | supexpr subeq)
+ mp
+ | FUNC_LIM limit_sub mp
+ | EXP_E supexpr?; //Exponential function e^x
+
+args: (expr ',' args) | expr;
+
+func_common_args: atom | (expr ',') | (expr ',' args);
+
+limit_sub:
+ UNDERSCORE L_BRACE
+ (LETTER_NO_E | GREEK_CMD | OTHER_SYMBOL_CMD)
+ LIM_APPROACH_SYM
+ expr (CARET L_BRACE (ADD | SUB) R_BRACE)?
+ R_BRACE;
+
+func_single_arg: expr;
+func_single_arg_noparens: mp_nofunc;
+
+func_multi_arg: expr | (expr ',' func_multi_arg);
+func_multi_arg_noparens: mp_nofunc;
+
+subexpr: UNDERSCORE (atom | L_BRACE (expr | args) R_BRACE);
+supexpr: CARET (atom | L_BRACE expr R_BRACE);
+
+subeq: UNDERSCORE L_BRACE equality R_BRACE;
+supeq: UNDERSCORE L_BRACE equality R_BRACE;
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/README.md b/Qwen2.5-Eval/evaluation/latex2sympy/README.md
new file mode 100755
index 0000000..2e8b92c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/README.md
@@ -0,0 +1,196 @@
+![Logo](https://picgo-1258602555.cos.ap-nanjing.myqcloud.com/icon.png)
+
+# [latex2sympy2](https://github.com/OrangeX4/latex2sympy)
+
+## About
+
+`latex2sympy2` parses **LaTeX math expressions** and converts it into the equivalent **SymPy form**. The latex2sympy2 is adapted from [augustt198/latex2sympy](https://github.com/augustt198/latex2sympy) and [purdue-tlt / latex2sympy](https://github.com/purdue-tlt/latex2sympy).
+
+This project is a part of a VS Code extension called [Latex Sympy Calculator](https://marketplace.visualstudio.com/items?itemName=OrangeX4.latex-sympy-calculator). It is designed for providing people writing in latex or markdown a ability to calculate something when writing math expression.
+
+[ANTLR](http://www.antlr.org/) is used to generate the parser.
+
+## Features
+
+* **Arithmetic:** Add (+), Sub (-), Dot Mul (·), Cross Mul (×), Frac (/), Power (^), Abs (|x|), Sqrt (√), etc...
+* **Alphabet:** a - z, A - Z, α - ω, Subscript (x_1), Accent Bar(ā), etc...
+* **Common Functions:** gcd, lcm, floor, ceil, max, min, log, ln, exp, sin, cos, tan, csc, sec, cot, arcsin, sinh, arsinh, etc...
+* **Funcion Symbol:** f(x), f(x-1,), g(x,y), etc...
+* **Calculous:** Limit ($lim_{n\to\infty}$), Derivation ($\frac{d}{dx}(x^2+x)$), Integration ($\int xdx$), etc...
+* **Linear Algebra:** Matrix, Determinant, Transpose, Inverse, Elementary Transformation, etc...
+* **Other:** Binomial...
+
+**NOTICE:** It will do some irreversible calculations when converting determinants, transposed matrixes and elementary transformations...
+
+## Installation
+
+```
+pip install latex2sympy2
+```
+
+**Requirements:** `sympy` and `antlr4-python3-runtime` packages.
+
+## Usage
+
+### Basic
+
+In Python:
+
+```python
+from latex2sympy2 import latex2sympy, latex2latex
+
+tex = r"\frac{d}{dx}(x^{2}+x)"
+# Or you can use '\mathrm{d}' to replace 'd'
+latex2sympy(tex)
+# => "Derivative(x**2 + x, x)"
+latex2latex(tex)
+# => "2 x + 1"
+```
+
+### Examples
+
+|LaTeX|Converted SymPy|Calculated Latex|
+|-----|-----|---------------|
+|`x^{3}` $x^{3}$| `x**3`|`x^{3}` $x^{3}$|
+|`\frac{d}{dx} tx` $\frac{d}{dx}tx$|`Derivative(x*t, x)`|`t` $t$|
+|`\sum_{i = 1}^{n} i` $\sum_{i = 1}^{n} i$|`Sum(i, (i, 1, n))`|`\frac{n \left(n + 1\right)}{2}` $\frac{n \left(n + 1\right)}{2}$|
+|`\int_{a}^{b} \frac{dt}{t}`|`Integral(1/t, (t, a, b))`|`-\log{(a)} + \log{(b)}` $-\log{(a)} + \log{(b)}$|
+|`(2x^3 - x + z)|_{x=3}` $(2x^3 - x + z)\|_{x=3}$|`z + 51`| `z + 51` $z + 51$ |
+
+If you want to read the math formula, you can click [GitNotes](https://notes.orangex4.cool/?git=github&github=OrangeX4/latex2sympy).
+
+### Solve Equation
+
+``` latex
+# Before
+x + y = 1
+
+# After
+[ y = 1 - x, \ x = 1 - y]
+```
+
+### Eval At
+
+``` latex
+# Before
+(x+2)|_{x=y+1}
+
+# After
+y + 3
+```
+
+### Matrix
+
+#### Identity matrix
+
+```
+tex = r"\bm{I}_3"
+latex2sympy(tex)
+# => "Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])"
+```
+
+#### Determinant
+
+``` python
+from latex2sympy2 import latex2sympy
+
+tex = r"\begin{vmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}"
+latex2sympy(tex)
+# => "x^{3}"
+```
+
+#### Transpose
+
+``` python
+from latex2sympy2 import latex2sympy
+
+tex = r"\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T"
+# Or you can use "\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}'"
+latex2sympy(tex)
+# => "Matrix([[1, 4, 7], [2, 5, 8], [3, 6, 9]])"
+```
+
+#### Elementary Transformation
+
+``` python
+from latex2sympy2 import latex2sympy
+
+matrix = r'''
+ \begin{pmatrix}
+ 1 & 2 & 3 \\
+ 4 & 5 & 6 \\
+ 7 & 8 & 9 \\
+ \end{pmatrix}
+'''
+
+# Scale the row with grammar "\xrightarrow{kr_n}"
+tex = matrix + r'\xrightarrow{3r_1}'
+latex2sympy(tex)
+# => "Matrix([[3, 6, 9], [4, 5, 6], [7, 8, 9]])"
+
+# Swap the cols with grammar "\xrightarrow{c_1<=>c_2}"
+# Of course, you can use "\leftrightarrow" to replace "<=>"
+tex = matrix + r'\xrightarrow{c_1<=>c_2}'
+latex2sympy(tex)
+# => "Matrix([[2, 1, 3], [5, 4, 6], [8, 7, 9]])"
+
+# Scale the second row and add it to the first row
+# with grammar "\xrightarrow{r_1+kr_2}"
+tex = matrix + r'\xrightarrow{r_1+kr_2}'
+latex2sympy(tex)
+# => "Matrix([[4*k + 1, 5*k + 2, 6*k + 3], [4, 5, 6], [7, 8, 9]])"
+
+# You can compose the transform with comma ","
+# and grammar "\xrightarrow[4r_3]{2r_1, 3r_2}"
+# Remember the priority of "{}" is higher than "[]"
+tex = matrix + r'\xrightarrow[4r_3]{2r_1, 3r_2}'
+latex2sympy(tex)
+# => "Matrix([[2, 4, 6], [12, 15, 18], [28, 32, 36]])"
+```
+
+### Variances
+
+``` python
+from latex2sympy2 import latex2sympy, variances, var, set_variances
+
+# Assign x a value of 1
+latex2sympy(r"x = 1")
+
+# Assign x a matrix symbol with dimension of n x m
+latex2sympy(r"x \in \mathbb{R}^{n \times m}")
+
+# Calculate x + y
+latex2sympy(r"x + y")
+# => "y + 1"
+
+# Get all variances
+print(variances)
+# => "{x: 1}"
+
+# Get variance of "x"
+print(var["x"])
+# => "1"
+
+# Reset all variances
+set_variances({})
+latex2sympy(r"x + y")
+# => "x + y"
+```
+
+### Complex Number Support
+
+``` python
+from latex2sympy2 import set_real
+
+set_real(False)
+```
+
+
+## Contributing
+
+If you want to add a new grammar, you can fork the code from [OrangeX4/latex2sympy](https://github.com/OrangeX4/latex2sympy).
+
+* To modify parser grammar, view the existing structure in `PS.g4`.
+* To modify the action associated with each grammar, look into `latex2sympy.py`.
+
+Contributors are welcome! Feel free to open a pull request or an issue.
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/__init__.py b/Qwen2.5-Eval/evaluation/latex2sympy/__init__.py
new file mode 100755
index 0000000..28a11cf
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/__init__.py
@@ -0,0 +1 @@
+import latex2sympy \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/antlr-4.11.1-complete.jar b/Qwen2.5-Eval/evaluation/latex2sympy/antlr-4.11.1-complete.jar
new file mode 100755
index 0000000..bb96df9
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/antlr-4.11.1-complete.jar
Binary files differ
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/asciimath_printer.py b/Qwen2.5-Eval/evaluation/latex2sympy/asciimath_printer.py
new file mode 100755
index 0000000..dd1b676
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/asciimath_printer.py
@@ -0,0 +1,50 @@
+from sympy.printing.str import StrPrinter
+from sympy.core import S
+
+class AsciiMathPrinter(StrPrinter):
+
+ def _print_Limit(self, expr):
+ e, z = expr.args
+
+ return "lim_(%s -> %s) %s" % (self._print(z), self._print(z), self._print(e))
+
+ def _print_Integral(self, expr):
+ e, lims = expr.args
+ if len(lims) > 1:
+ return "int_(%s)^(%s) %s d%s" % (self._print(lims[1]), self._print(lims[2]), self._print(e), self._print(lims[0]))
+ else:
+ return "int %s d%s" % (self._print(e), self._print(lims))
+
+ def _print_Sum(self, expr):
+ e, lims = expr.args
+ return "sum_(%s = %s)^(%s) %s" % (self._print(lims[0]), self._print(lims[1]), self._print(lims[2]), self._print(e))
+
+ def _print_Product(self, expr):
+ e, lims = expr.args
+ return "prod_(%s = %s)^(%s) %s" % (self._print(lims[0]), self._print(lims[1]), self._print(lims[2]), self._print(e))
+
+ def _print_factorial(self, expr):
+ return "%s!" % self._print(expr.args[0])
+
+ def _print_Derivative(self, expr):
+ e = expr.args[0]
+ wrt = expr.args[1]
+ return "d/d%s %s" % (self._print(wrt), self._print(e))
+
+ def _print_Abs(self, expr):
+ return "|%s|" % self._print(expr.args[0])
+
+ def _print_Equality(self, expr):
+ return "%s = %s" % (self._print(expr.args[0]), self._print(expr.args[1]))
+
+ def _print_Pow(self, expr):
+ b = self._print(expr.base)
+ if expr.exp is S.Half:
+ return "sqrt(%s)" % b
+
+ if -expr.exp is S.Half:
+ return "1/sqrt(%s)" % b
+ if expr.exp is -S.One:
+ return "1/%s" % b
+
+ return "%s^(%s)" % (b, self._print(expr.exp))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/description.txt b/Qwen2.5-Eval/evaluation/latex2sympy/description.txt
new file mode 100755
index 0000000..0064c1f
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/description.txt
@@ -0,0 +1,152 @@
+latex2sympy2: https://github.com/OrangeX4/latex2sympy
+
+About
+
+`latex2sympy2` parses **LaTeX math expressions** and converts it into the equivalent **SymPy form**. The latex2sympy2 is adapted from [augustt198/latex2sympy](https://github.com/augustt198/latex2sympy) and [purdue-tlt / latex2sympy](https://github.com/purdue-tlt/latex2sympy).
+
+[ANTLR](http://www.antlr.org/) is used to generate the parser.
+
+Features
+
+* **Arithmetic:** Add (+), Sub (-), Dot Mul (·), Cross Mul (×), Frac (/), Power (^), Abs (|x|), Sqrt (√), etc...
+* **Alphabet:** a - z, A - Z, α - ω, Subscript (x_1), Accent Bar(ā), etc...
+* **Common Functions:** gcd, lcm, floor, ceil, max, min, log, ln, exp, sin, cos, tan, csc, sec, cot, arcsin, sinh, arsinh, etc...
+* **Calculous:** Limit ($lim_{n\to\infty}$), Derivation ($\frac{d}{dx}(x^2+x)$), Integration ($\int xdx$), etc...
+* **Linear Algebra:** Matrix, Determinant, Transpose, Inverse, Elementary Transformation, etc...
+* **Other:** Binomial...
+
+**NOTICE:** It will do some irreversible calculations when converting determinants, transposed matrixes and elementary transformations...
+
+Installation
+
+```
+pip install latex2sympy2
+```
+
+**Requirements:** `sympy` and `antlr4-python3-runtime` packages.
+
+Usage
+
+ Basic
+
+In Python:
+
+```python
+from latex2sympy2 import latex2sympy, latex2latex
+
+tex = r"\frac{d}{dx}(x^{2}+x)"
+# Or you can use '\mathrm{d}' to replace 'd'
+latex2sympy(tex)
+# => "Derivative(x**2 + x, x)"
+latex2latex(tex)
+# => "2 x + 1"
+```
+
+ Examples
+
+|LaTeX|Converted SymPy|Calculated Latex|
+|-----|-----|---------------|
+|`x^{3}` $x^{3}$| `x**3`|`x^{3}` $x^{3}$|
+|`\frac{d}{dx} tx` $\frac{d}{dx}tx$|`Derivative(x*t, x)`|`t` $t$|
+|`\sum_{i = 1}^{n} i` $\sum_{i = 1}^{n} i$|`Sum(i, (i, 1, n))`|`\frac{n \left(n + 1\right)}{2}` $\frac{n \left(n + 1\right)}{2}$|
+|`\int_{a}^{b} \frac{dt}{t}`|`Integral(1/t, (t, a, b))`|`-\log{(a)} + \log{(b)}` $-\log{(a)} + \log{(b)}$|
+|`(2x^3 - x + z)|_{x=3}` $(2x^3 - x + z)\|_{x=3}$|`z + 51`| `z + 51` $z + 51$ |
+
+If you want to read the math formula, you can click [GitNotes](https://notes.orangex4.cool/?git=github&github=OrangeX4/latex2sympy).
+
+ Matrix
+
+Determinant
+
+``` python
+from latex2sympy2 import latex2sympy
+
+tex = r"\begin{vmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}"
+latex2sympy(tex)
+# => "x^{3}"
+```
+
+Transpose
+
+``` python
+from latex2sympy2 import latex2sympy
+
+tex = r"\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T"
+# Or you can use "\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}'"
+latex2sympy(tex)
+# => "Matrix([[1, 4, 7], [2, 5, 8], [3, 6, 9]])"
+```
+
+Elementary Transformation
+
+``` python
+from latex2sympy2 import latex2sympy
+
+matrix = r'''
+ \begin{pmatrix}
+ 1 & 2 & 3 \\
+ 4 & 5 & 6 \\
+ 7 & 8 & 9 \\
+ \end{pmatrix}
+'''
+
+# Scale the row with grammar "\xrightarrow{kr_n}"
+tex = matrix + r'\xrightarrow{3r_1}'
+latex2sympy(tex)
+# => "Matrix([[3, 6, 9], [4, 5, 6], [7, 8, 9]])"
+
+# Swap the cols with grammar "\xrightarrow{c_1<=>c_2}"
+# Of course, you can use "\leftrightarrow" to replace "<=>"
+tex = matrix + r'\xrightarrow{c_1<=>c_2}'
+latex2sympy(tex)
+# => "Matrix([[2, 1, 3], [5, 4, 6], [8, 7, 9]])"
+
+# Scale the second row and add it to the first row
+# with grammar "\xrightarrow{r_1+kr_2}"
+tex = matrix + r'\xrightarrow{r_1+kr_2}'
+latex2sympy(tex)
+# => "Matrix([[4*k + 1, 5*k + 2, 6*k + 3], [4, 5, 6], [7, 8, 9]])"
+
+# You can compose the transform with comma ","
+# and grammar "\xrightarrow[4r_3]{2r_1, 3r_2}"
+# Remember the priority of "{}" is higher than "[]"
+tex = matrix + r'\xrightarrow[4r_3]{2r_1, 3r_2}'
+latex2sympy(tex)
+# => "Matrix([[2, 4, 6], [12, 15, 18], [28, 32, 36]])"
+```
+
+ Variances
+
+``` python
+from latex2sympy2 import latex2sympy, variances, var, set_variances
+
+# Assign x a value of 1
+latex2sympy(r"x = 1")
+
+# Calculate x + y
+latex2sympy(r"x + y")
+# => "y + 1"
+
+# Get all variances
+print(variances)
+# => "{x: 1}"
+
+# Get variance of "x"
+print(var["x"])
+# => "1"
+
+# Reset all variances
+set_variances({})
+latex2sympy(r"x + y")
+# => "x + y"
+```
+
+
+Contributing
+
+If you want to add a new grammar, you can fork the code from [OrangeX4/latex2sympy](https://github.com/OrangeX4/latex2sympy).
+
+* To modify parser grammar, view the existing structure in `PS.g4`.
+* To modify the action associated with each grammar, look into `latex2sympy.py`.
+
+Contributors are welcome! Feel free to open a pull request or an issue.
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/dev-requirements.in b/Qwen2.5-Eval/evaluation/latex2sympy/dev-requirements.in
new file mode 100755
index 0000000..80a4877
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/dev-requirements.in
@@ -0,0 +1,8 @@
+-r requirements.txt
+# Development
+pip-tools
+pytest
+pytest-cov
+pycodestyle
+autopep8
+-e .
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/dev-requirements.txt b/Qwen2.5-Eval/evaluation/latex2sympy/dev-requirements.txt
new file mode 100755
index 0000000..4e2c43c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/dev-requirements.txt
@@ -0,0 +1,60 @@
+#
+# This file is autogenerated by pip-compile with Python 3.10
+# by the following command:
+#
+# pip-compile dev-requirements.in
+#
+ # via -r dev-requirements.in
+antlr4-python3-runtime==4.11.1
+ # via
+ # -r requirements.txt
+ # latex2sympy2
+atomicwrites==1.3.0
+ # via pytest
+attrs==19.3.0
+ # via pytest
+autopep8==1.4.4
+ # via -r dev-requirements.in
+click==7.0
+ # via pip-tools
+coverage==4.5.4
+ # via pytest-cov
+more-itertools==7.2.0
+ # via pytest
+mpmath==1.3.0
+ # via
+ # -r requirements.txt
+ # sympy
+packaging==19.2
+ # via pytest
+pip-tools==4.2.0
+ # via -r dev-requirements.in
+pluggy==0.13.0
+ # via pytest
+py==1.8.0
+ # via pytest
+pycodestyle==2.5.0
+ # via
+ # -r dev-requirements.in
+ # autopep8
+pyparsing==2.4.4
+ # via packaging
+pytest==5.2.2
+ # via
+ # -r dev-requirements.in
+ # pytest-cov
+pytest-cov==2.8.1
+ # via -r dev-requirements.in
+six==1.13.0
+ # via
+ # packaging
+ # pip-tools
+sympy==1.12
+ # via
+ # -r requirements.txt
+ # latex2sympy2
+wcwidth==0.1.7
+ # via pytest
+
+# THIS MUST BE MAINTAINED AS-IS
+-e . \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PS.interp b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PS.interp
new file mode 100755
index 0000000..82d050c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PS.interp
@@ -0,0 +1,462 @@
+token literal names:
+null
+'\\acute'
+'\\bar'
+'\\overline'
+'\\breve'
+'\\check'
+'\\widecheck'
+'\\dot'
+'\\ddot'
+'\\grave'
+'\\hat'
+'\\tilde'
+'\\widetilde'
+'\\vec'
+'\\overrightarrow'
+'\\bm'
+'\\boldsymbol'
+'\\text'
+'\\textit'
+'\\mathbb'
+'\\mathbin'
+'\\mathbf'
+'\\mathcal'
+'\\mathclap'
+'\\mathclose'
+'\\mathellipsis'
+'\\mathfrak'
+'\\mathinner'
+'\\mathnormal'
+'\\mathop'
+'\\mathopen'
+'\\mathord'
+'\\mathpunct'
+'\\mathrel'
+'\\mathring'
+'\\mathrlap'
+'\\mathrm'
+'\\mathscr'
+'\\mathsf'
+'\\mathsterling'
+'\\mathtt'
+'^T'
+'^{T}'
+'^{\\top}'
+'\''
+null
+'\\$'
+'+'
+'-'
+'*'
+null
+'('
+')'
+'\\lgroup'
+'\\rgroup'
+'{'
+'}'
+'\\{'
+'\\}'
+'\\lbrace'
+'\\rbrace'
+'['
+']'
+'\\lbrack'
+'\\rbrack'
+'|'
+'\\lvert'
+'\\rvert'
+'\\vert'
+'\\|'
+'\\lfloor'
+'\\rfloor'
+'\\llcorner'
+'\\lrcorner'
+'\\lceil'
+'\\rceil'
+'\\ulcorner'
+'\\urcorner'
+'\\left'
+'\\right'
+'\\mleft'
+'\\mright'
+'\\lim'
+null
+'\\int'
+'\\sum'
+'\\prod'
+'\\log'
+'\\ln'
+'\\exp'
+'\\sin'
+'\\cos'
+'\\tan'
+'\\csc'
+'\\sec'
+'\\cot'
+'\\arcsin'
+'\\arccos'
+'\\arctan'
+'\\arccsc'
+'\\arcsec'
+'\\arccot'
+'\\sinh'
+'\\cosh'
+'\\tanh'
+'\\arsinh'
+'\\arcosh'
+'\\artanh'
+'\\arcsinh'
+'\\arccosh'
+'\\arctanh'
+'arsinh'
+'arcsinh'
+'arcosh'
+'arccosh'
+'artanh'
+'arctanh'
+'gcd'
+'lcm'
+'floor'
+'ceil'
+'\\sqrt'
+'\\gcd'
+'\\lcm'
+'\\floor'
+'\\ceil'
+'\\max'
+'\\min'
+'\\det'
+'eye'
+'zeros'
+'ones'
+'cols'
+'rows'
+'diag'
+'norm'
+'rank'
+null
+'rref'
+'hstack'
+'vstack'
+null
+'nullspace'
+null
+null
+null
+null
+'\\times'
+'\\cdot'
+'\\div'
+'\\frac'
+null
+'\\choose'
+'\\mod'
+'\\mathit'
+'\\operatorname'
+'matrix'
+'pmatrix'
+'bmatrix'
+'vmatrix'
+null
+null
+null
+null
+null
+'&'
+'\\\\'
+'_'
+'^'
+':'
+';'
+','
+'.'
+null
+null
+'E'
+null
+null
+null
+null
+null
+'\\in'
+'='
+null
+'<'
+null
+'>'
+null
+null
+'!'
+null
+null
+null
+null
+null
+
+token symbolic names:
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+WS
+DOLLAR_SIGN
+ADD
+SUB
+MUL
+DIV
+L_PAREN
+R_PAREN
+L_GROUP
+R_GROUP
+L_BRACE
+R_BRACE
+L_BRACE_VISUAL
+R_BRACE_VISUAL
+L_BRACE_CMD
+R_BRACE_CMD
+L_BRACKET
+R_BRACKET
+L_BRACK
+R_BRACK
+BAR
+L_VERT
+R_VERT
+VERT
+NORM
+L_FLOOR
+R_FLOOR
+LL_CORNER
+LR_CORNER
+L_CEIL
+R_CEIL
+UL_CORNER
+UR_CORNER
+L_LEFT
+R_RIGHT
+ML_LEFT
+MR_RIGHT
+FUNC_LIM
+LIM_APPROACH_SYM
+FUNC_INT
+FUNC_SUM
+FUNC_PROD
+FUNC_LOG
+FUNC_LN
+FUNC_EXP
+FUNC_SIN
+FUNC_COS
+FUNC_TAN
+FUNC_CSC
+FUNC_SEC
+FUNC_COT
+FUNC_ARCSIN
+FUNC_ARCCOS
+FUNC_ARCTAN
+FUNC_ARCCSC
+FUNC_ARCSEC
+FUNC_ARCCOT
+FUNC_SINH
+FUNC_COSH
+FUNC_TANH
+FUNC_ARSINH
+FUNC_ARCOSH
+FUNC_ARTANH
+FUNC_ARCSINH
+FUNC_ARCCOSH
+FUNC_ARCTANH
+FUNC_ARSINH_NAME
+FUNC_ARCSINH_NAME
+FUNC_ARCOSH_NAME
+FUNC_ARCCOSH_NAME
+FUNC_ARTANH_NAME
+FUNC_ARCTANH_NAME
+FUNC_GCD_NAME
+FUNC_LCM_NAME
+FUNC_FLOOR_NAME
+FUNC_CEIL_NAME
+FUNC_SQRT
+FUNC_GCD
+FUNC_LCM
+FUNC_FLOOR
+FUNC_CEIL
+FUNC_MAX
+FUNC_MIN
+FUNC_DET
+FUNC_EYE_NAME
+FUNC_ZEROS_NAME
+FUNC_ONES_NAME
+FUNC_COLS_NAME
+FUNC_ROWS_NAME
+FUNC_DIAG_NAME
+FUNC_NORM_NAME
+FUNC_RANK_NAME
+FUNC_TRACE_NAME
+FUNC_RREF_NAME
+FUNC_HSTACK_NAME
+FUNC_VSTACK_NAME
+FUNC_ORTHOGONALIZE_NAME
+FUNC_NULLSPACE_NAME
+FUNC_DIAGONALIZE_NAME
+FUNC_EIGENVALS_NAME
+FUNC_EIGENVECTORS_NAME
+FUNC_SVD_NAME
+CMD_TIMES
+CMD_CDOT
+CMD_DIV
+CMD_FRAC
+CMD_BINOM
+CMD_CHOOSE
+CMD_MOD
+CMD_MATHIT
+CMD_OPERATORNAME
+MATRIX_TYPE_MATRIX
+MATRIX_TYPE_PMATRIX
+MATRIX_TYPE_BMATRIX
+MATRIX_TYPE_DET
+MATRIX_TYPES
+CMD_MATRIX_START
+CMD_MATRIX_END
+CMD_DET_START
+CMD_DET_END
+MATRIX_DEL_COL
+MATRIX_DEL_ROW
+UNDERSCORE
+CARET
+COLON
+SEMICOLON
+COMMA
+PERIOD
+DIFFERENTIAL
+EXP_E
+E_NOTATION_E
+LETTER_NO_E
+MATRIX_XRIGHTARROW
+TRANSFORM_EXCHANGE
+NUMBER
+E_NOTATION
+IN
+ASSIGNMENT
+EQUAL
+LT
+LTE
+GT
+GTE
+UNEQUAL
+BANG
+PERCENT_NUMBER
+GREEK_CMD
+OTHER_SYMBOL_CMD
+SYMBOL
+VARIABLE
+
+rule names:
+accent_symbol
+math
+transpose
+transform_atom
+transform_scale
+transform_swap
+transform_assignment
+elementary_transform
+elementary_transforms
+matrix
+det
+matrix_row
+relation
+relation_list
+relation_list_content
+equality
+expr
+additive
+mp
+mp_nofunc
+unary
+unary_nofunc
+postfix
+postfix_nofunc
+postfix_op
+eval_at
+eval_at_sub
+eval_at_sup
+exp
+exp_nofunc
+comp
+comp_nofunc
+group
+norm_group
+abs_group
+floor_group
+ceil_group
+accent
+atom_expr_no_supexpr
+atom_expr
+atom
+mathit
+mathit_text
+frac
+binom
+func_normal_functions_single_arg
+func_normal_functions_multi_arg
+func_operator_names_single_arg
+func_operator_names_multi_arg
+func_normal_single_arg
+func_normal_multi_arg
+func
+args
+func_common_args
+limit_sub
+func_single_arg
+func_single_arg_noparens
+func_multi_arg
+func_multi_arg_noparens
+subexpr
+supexpr
+subeq
+supeq
+
+
+atn:
+[4, 1, 194, 1046, 2, 0, 7, 0, 2, 1, 7, 1, 2, 2, 7, 2, 2, 3, 7, 3, 2, 4, 7, 4, 2, 5, 7, 5, 2, 6, 7, 6, 2, 7, 7, 7, 2, 8, 7, 8, 2, 9, 7, 9, 2, 10, 7, 10, 2, 11, 7, 11, 2, 12, 7, 12, 2, 13, 7, 13, 2, 14, 7, 14, 2, 15, 7, 15, 2, 16, 7, 16, 2, 17, 7, 17, 2, 18, 7, 18, 2, 19, 7, 19, 2, 20, 7, 20, 2, 21, 7, 21, 2, 22, 7, 22, 2, 23, 7, 23, 2, 24, 7, 24, 2, 25, 7, 25, 2, 26, 7, 26, 2, 27, 7, 27, 2, 28, 7, 28, 2, 29, 7, 29, 2, 30, 7, 30, 2, 31, 7, 31, 2, 32, 7, 32, 2, 33, 7, 33, 2, 34, 7, 34, 2, 35, 7, 35, 2, 36, 7, 36, 2, 37, 7, 37, 2, 38, 7, 38, 2, 39, 7, 39, 2, 40, 7, 40, 2, 41, 7, 41, 2, 42, 7, 42, 2, 43, 7, 43, 2, 44, 7, 44, 2, 45, 7, 45, 2, 46, 7, 46, 2, 47, 7, 47, 2, 48, 7, 48, 2, 49, 7, 49, 2, 50, 7, 50, 2, 51, 7, 51, 2, 52, 7, 52, 2, 53, 7, 53, 2, 54, 7, 54, 2, 55, 7, 55, 2, 56, 7, 56, 2, 57, 7, 57, 2, 58, 7, 58, 2, 59, 7, 59, 2, 60, 7, 60, 2, 61, 7, 61, 2, 62, 7, 62, 1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 131, 8, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 3, 3, 141, 8, 3, 1, 4, 1, 4, 1, 4, 1, 4, 3, 4, 147, 8, 4, 1, 4, 1, 4, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 6, 1, 6, 1, 7, 1, 7, 1, 7, 3, 7, 161, 8, 7, 1, 8, 1, 8, 1, 8, 5, 8, 166, 8, 8, 10, 8, 12, 8, 169, 9, 8, 1, 9, 1, 9, 1, 9, 1, 9, 5, 9, 175, 8, 9, 10, 9, 12, 9, 178, 9, 9, 1, 9, 3, 9, 181, 8, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 3, 9, 189, 8, 9, 1, 9, 1, 9, 1, 9, 1, 9, 3, 9, 195, 8, 9, 1, 10, 1, 10, 1, 10, 1, 10, 5, 10, 201, 8, 10, 10, 10, 12, 10, 204, 9, 10, 1, 10, 3, 10, 207, 8, 10, 1, 10, 1, 10, 1, 11, 1, 11, 1, 11, 5, 11, 214, 8, 11, 10, 11, 12, 11, 217, 9, 11, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 5, 12, 225, 8, 12, 10, 12, 12, 12, 228, 9, 12, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 3, 13, 267, 8, 13, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 5, 14, 274, 8, 14, 10, 14, 12, 14, 277, 9, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 5, 14, 284, 8, 14, 10, 14, 12, 14, 287, 9, 14, 3, 14, 289, 8, 14, 1, 15, 1, 15, 1, 15, 1, 15, 1, 16, 1, 16, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 5, 17, 303, 8, 17, 10, 17, 12, 17, 306, 9, 17, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 5, 18, 314, 8, 18, 10, 18, 12, 18, 317, 9, 18, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 5, 19, 325, 8, 19, 10, 19, 12, 19, 328, 9, 19, 1, 20, 1, 20, 1, 20, 4, 20, 333, 8, 20, 11, 20, 12, 20, 334, 3, 20, 337, 8, 20, 1, 21, 1, 21, 1, 21, 1, 21, 5, 21, 343, 8, 21, 10, 21, 12, 21, 346, 9, 21, 3, 21, 348, 8, 21, 1, 22, 1, 22, 5, 22, 352, 8, 22, 10, 22, 12, 22, 355, 9, 22, 1, 23, 1, 23, 5, 23, 359, 8, 23, 10, 23, 12, 23, 362, 9, 23, 1, 24, 1, 24, 1, 24, 3, 24, 367, 8, 24, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 3, 25, 375, 8, 25, 1, 26, 1, 26, 1, 26, 1, 26, 3, 26, 381, 8, 26, 1, 26, 1, 26, 1, 27, 1, 27, 1, 27, 1, 27, 3, 27, 389, 8, 27, 1, 27, 1, 27, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 3, 28, 403, 8, 28, 1, 28, 3, 28, 406, 8, 28, 5, 28, 408, 8, 28, 10, 28, 12, 28, 411, 9, 28, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 3, 29, 423, 8, 29, 1, 29, 3, 29, 426, 8, 29, 5, 29, 428, 8, 29, 10, 29, 12, 29, 431, 9, 29, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 3, 30, 444, 8, 30, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 3, 31, 456, 8, 31, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 3, 32, 570, 8, 32, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 3, 33, 588, 8, 33, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 3, 34, 638, 8, 34, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 3, 35, 672, 8, 35, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 3, 36, 706, 8, 36, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 38, 1, 38, 1, 38, 1, 38, 3, 38, 717, 8, 38, 1, 38, 3, 38, 720, 8, 38, 1, 39, 1, 39, 1, 39, 1, 39, 3, 39, 726, 8, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 3, 39, 736, 8, 39, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 3, 40, 746, 8, 40, 1, 41, 1, 41, 1, 41, 1, 41, 1, 41, 1, 42, 4, 42, 754, 8, 42, 11, 42, 12, 42, 755, 1, 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 3, 44, 780, 8, 44, 1, 45, 1, 45, 1, 46, 1, 46, 1, 47, 1, 47, 1, 48, 1, 48, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 3, 49, 796, 8, 49, 1, 50, 1, 50, 1, 50, 1, 50, 1, 50, 1, 50, 3, 50, 804, 8, 50, 1, 51, 1, 51, 3, 51, 808, 8, 51, 1, 51, 3, 51, 811, 8, 51, 1, 51, 3, 51, 814, 8, 51, 1, 51, 3, 51, 817, 8, 51, 3, 51, 819, 8, 51, 1, 51, 3, 51, 822, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 827, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 832, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 837, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 842, 8, 51, 1, 51, 1, 51, 3, 51, 846, 8, 51, 1, 51, 3, 51, 849, 8, 51, 1, 51, 3, 51, 852, 8, 51, 1, 51, 3, 51, 855, 8, 51, 3, 51, 857, 8, 51, 1, 51, 3, 51, 860, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 865, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 870, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 875, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 880, 8, 51, 1, 51, 1, 51, 3, 51, 884, 8, 51, 1, 51, 3, 51, 887, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 893, 8, 51, 1, 51, 1, 51, 3, 51, 897, 8, 51, 1, 51, 1, 51, 3, 51, 901, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 907, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 932, 8, 51, 1, 51, 3, 51, 935, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 940, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 947, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 960, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 970, 8, 51, 3, 51, 972, 8, 51, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 3, 52, 979, 8, 52, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 3, 53, 989, 8, 53, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 3, 54, 1000, 8, 54, 1, 54, 1, 54, 1, 55, 1, 55, 1, 56, 1, 56, 1, 57, 1, 57, 1, 57, 1, 57, 1, 57, 3, 57, 1013, 8, 57, 1, 58, 1, 58, 1, 59, 1, 59, 1, 59, 1, 59, 1, 59, 3, 59, 1022, 8, 59, 1, 59, 1, 59, 3, 59, 1026, 8, 59, 1, 60, 1, 60, 1, 60, 1, 60, 1, 60, 1, 60, 3, 60, 1034, 8, 60, 1, 61, 1, 61, 1, 61, 1, 61, 1, 61, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 0, 6, 24, 34, 36, 38, 56, 58, 63, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 0, 15, 2, 0, 1, 40, 154, 154, 1, 0, 41, 44, 1, 0, 181, 188, 1, 0, 182, 183, 1, 0, 47, 48, 4, 0, 49, 50, 147, 149, 153, 153, 169, 169, 1, 0, 174, 176, 3, 0, 87, 110, 124, 125, 128, 128, 2, 0, 122, 123, 126, 127, 6, 0, 111, 116, 119, 120, 129, 129, 132, 133, 135, 138, 142, 146, 4, 0, 117, 118, 130, 131, 134, 134, 139, 141, 2, 0, 51, 51, 61, 61, 2, 0, 52, 52, 62, 62, 1, 0, 85, 86, 2, 0, 176, 176, 191, 192, 1164, 0, 126, 1, 0, 0, 0, 2, 130, 1, 0, 0, 0, 4, 132, 1, 0, 0, 0, 6, 134, 1, 0, 0, 0, 8, 146, 1, 0, 0, 0, 10, 150, 1, 0, 0, 0, 12, 154, 1, 0, 0, 0, 14, 160, 1, 0, 0, 0, 16, 162, 1, 0, 0, 0, 18, 170, 1, 0, 0, 0, 20, 196, 1, 0, 0, 0, 22, 210, 1, 0, 0, 0, 24, 218, 1, 0, 0, 0, 26, 266, 1, 0, 0, 0, 28, 288, 1, 0, 0, 0, 30, 290, 1, 0, 0, 0, 32, 294, 1, 0, 0, 0, 34, 296, 1, 0, 0, 0, 36, 307, 1, 0, 0, 0, 38, 318, 1, 0, 0, 0, 40, 336, 1, 0, 0, 0, 42, 347, 1, 0, 0, 0, 44, 349, 1, 0, 0, 0, 46, 356, 1, 0, 0, 0, 48, 366, 1, 0, 0, 0, 50, 368, 1, 0, 0, 0, 52, 376, 1, 0, 0, 0, 54, 384, 1, 0, 0, 0, 56, 392, 1, 0, 0, 0, 58, 412, 1, 0, 0, 0, 60, 443, 1, 0, 0, 0, 62, 455, 1, 0, 0, 0, 64, 569, 1, 0, 0, 0, 66, 587, 1, 0, 0, 0, 68, 637, 1, 0, 0, 0, 70, 671, 1, 0, 0, 0, 72, 705, 1, 0, 0, 0, 74, 707, 1, 0, 0, 0, 76, 716, 1, 0, 0, 0, 78, 725, 1, 0, 0, 0, 80, 745, 1, 0, 0, 0, 82, 747, 1, 0, 0, 0, 84, 753, 1, 0, 0, 0, 86, 757, 1, 0, 0, 0, 88, 779, 1, 0, 0, 0, 90, 781, 1, 0, 0, 0, 92, 783, 1, 0, 0, 0, 94, 785, 1, 0, 0, 0, 96, 787, 1, 0, 0, 0, 98, 795, 1, 0, 0, 0, 100, 803, 1, 0, 0, 0, 102, 971, 1, 0, 0, 0, 104, 978, 1, 0, 0, 0, 106, 988, 1, 0, 0, 0, 108, 990, 1, 0, 0, 0, 110, 1003, 1, 0, 0, 0, 112, 1005, 1, 0, 0, 0, 114, 1012, 1, 0, 0, 0, 116, 1014, 1, 0, 0, 0, 118, 1016, 1, 0, 0, 0, 120, 1027, 1, 0, 0, 0, 122, 1035, 1, 0, 0, 0, 124, 1040, 1, 0, 0, 0, 126, 127, 7, 0, 0, 0, 127, 1, 1, 0, 0, 0, 128, 131, 3, 24, 12, 0, 129, 131, 3, 26, 13, 0, 130, 128, 1, 0, 0, 0, 130, 129, 1, 0, 0, 0, 131, 3, 1, 0, 0, 0, 132, 133, 7, 1, 0, 0, 133, 5, 1, 0, 0, 0, 134, 135, 5, 176, 0, 0, 135, 140, 5, 167, 0, 0, 136, 141, 5, 179, 0, 0, 137, 138, 5, 55, 0, 0, 138, 139, 5, 179, 0, 0, 139, 141, 5, 56, 0, 0, 140, 136, 1, 0, 0, 0, 140, 137, 1, 0, 0, 0, 141, 7, 1, 0, 0, 0, 142, 147, 3, 32, 16, 0, 143, 147, 3, 64, 32, 0, 144, 147, 5, 47, 0, 0, 145, 147, 5, 48, 0, 0, 146, 142, 1, 0, 0, 0, 146, 143, 1, 0, 0, 0, 146, 144, 1, 0, 0, 0, 146, 145, 1, 0, 0, 0, 147, 148, 1, 0, 0, 0, 148, 149, 3, 6, 3, 0, 149, 9, 1, 0, 0, 0, 150, 151, 3, 6, 3, 0, 151, 152, 5, 178, 0, 0, 152, 153, 3, 6, 3, 0, 153, 11, 1, 0, 0, 0, 154, 155, 3, 6, 3, 0, 155, 156, 3, 8, 4, 0, 156, 13, 1, 0, 0, 0, 157, 161, 3, 12, 6, 0, 158, 161, 3, 8, 4, 0, 159, 161, 3, 10, 5, 0, 160, 157, 1, 0, 0, 0, 160, 158, 1, 0, 0, 0, 160, 159, 1, 0, 0, 0, 161, 15, 1, 0, 0, 0, 162, 167, 3, 14, 7, 0, 163, 164, 5, 171, 0, 0, 164, 166, 3, 14, 7, 0, 165, 163, 1, 0, 0, 0, 166, 169, 1, 0, 0, 0, 167, 165, 1, 0, 0, 0, 167, 168, 1, 0, 0, 0, 168, 17, 1, 0, 0, 0, 169, 167, 1, 0, 0, 0, 170, 171, 5, 161, 0, 0, 171, 176, 3, 22, 11, 0, 172, 173, 5, 166, 0, 0, 173, 175, 3, 22, 11, 0, 174, 172, 1, 0, 0, 0, 175, 178, 1, 0, 0, 0, 176, 174, 1, 0, 0, 0, 176, 177, 1, 0, 0, 0, 177, 180, 1, 0, 0, 0, 178, 176, 1, 0, 0, 0, 179, 181, 5, 166, 0, 0, 180, 179, 1, 0, 0, 0, 180, 181, 1, 0, 0, 0, 181, 182, 1, 0, 0, 0, 182, 194, 5, 162, 0, 0, 183, 188, 5, 177, 0, 0, 184, 185, 5, 61, 0, 0, 185, 186, 3, 16, 8, 0, 186, 187, 5, 62, 0, 0, 187, 189, 1, 0, 0, 0, 188, 184, 1, 0, 0, 0, 188, 189, 1, 0, 0, 0, 189, 190, 1, 0, 0, 0, 190, 191, 5, 55, 0, 0, 191, 192, 3, 16, 8, 0, 192, 193, 5, 56, 0, 0, 193, 195, 1, 0, 0, 0, 194, 183, 1, 0, 0, 0, 194, 195, 1, 0, 0, 0, 195, 19, 1, 0, 0, 0, 196, 197, 5, 163, 0, 0, 197, 202, 3, 22, 11, 0, 198, 199, 5, 166, 0, 0, 199, 201, 3, 22, 11, 0, 200, 198, 1, 0, 0, 0, 201, 204, 1, 0, 0, 0, 202, 200, 1, 0, 0, 0, 202, 203, 1, 0, 0, 0, 203, 206, 1, 0, 0, 0, 204, 202, 1, 0, 0, 0, 205, 207, 5, 166, 0, 0, 206, 205, 1, 0, 0, 0, 206, 207, 1, 0, 0, 0, 207, 208, 1, 0, 0, 0, 208, 209, 5, 164, 0, 0, 209, 21, 1, 0, 0, 0, 210, 215, 3, 32, 16, 0, 211, 212, 5, 165, 0, 0, 212, 214, 3, 32, 16, 0, 213, 211, 1, 0, 0, 0, 214, 217, 1, 0, 0, 0, 215, 213, 1, 0, 0, 0, 215, 216, 1, 0, 0, 0, 216, 23, 1, 0, 0, 0, 217, 215, 1, 0, 0, 0, 218, 219, 6, 12, -1, 0, 219, 220, 3, 32, 16, 0, 220, 226, 1, 0, 0, 0, 221, 222, 10, 2, 0, 0, 222, 223, 7, 2, 0, 0, 223, 225, 3, 24, 12, 3, 224, 221, 1, 0, 0, 0, 225, 228, 1, 0, 0, 0, 226, 224, 1, 0, 0, 0, 226, 227, 1, 0, 0, 0, 227, 25, 1, 0, 0, 0, 228, 226, 1, 0, 0, 0, 229, 267, 3, 28, 14, 0, 230, 231, 5, 61, 0, 0, 231, 232, 3, 28, 14, 0, 232, 233, 5, 62, 0, 0, 233, 267, 1, 0, 0, 0, 234, 235, 5, 55, 0, 0, 235, 236, 3, 28, 14, 0, 236, 237, 5, 56, 0, 0, 237, 267, 1, 0, 0, 0, 238, 239, 5, 57, 0, 0, 239, 240, 3, 28, 14, 0, 240, 241, 5, 58, 0, 0, 241, 267, 1, 0, 0, 0, 242, 243, 5, 78, 0, 0, 243, 244, 5, 61, 0, 0, 244, 245, 3, 28, 14, 0, 245, 246, 5, 79, 0, 0, 246, 247, 5, 62, 0, 0, 247, 267, 1, 0, 0, 0, 248, 249, 5, 78, 0, 0, 249, 250, 5, 57, 0, 0, 250, 251, 3, 28, 14, 0, 251, 252, 5, 79, 0, 0, 252, 253, 5, 58, 0, 0, 253, 267, 1, 0, 0, 0, 254, 255, 5, 80, 0, 0, 255, 256, 5, 61, 0, 0, 256, 257, 3, 28, 14, 0, 257, 258, 5, 81, 0, 0, 258, 259, 5, 62, 0, 0, 259, 267, 1, 0, 0, 0, 260, 261, 5, 80, 0, 0, 261, 262, 5, 57, 0, 0, 262, 263, 3, 28, 14, 0, 263, 264, 5, 81, 0, 0, 264, 265, 5, 58, 0, 0, 265, 267, 1, 0, 0, 0, 266, 229, 1, 0, 0, 0, 266, 230, 1, 0, 0, 0, 266, 234, 1, 0, 0, 0, 266, 238, 1, 0, 0, 0, 266, 242, 1, 0, 0, 0, 266, 248, 1, 0, 0, 0, 266, 254, 1, 0, 0, 0, 266, 260, 1, 0, 0, 0, 267, 27, 1, 0, 0, 0, 268, 269, 3, 24, 12, 0, 269, 270, 5, 171, 0, 0, 270, 275, 3, 24, 12, 0, 271, 272, 5, 171, 0, 0, 272, 274, 3, 24, 12, 0, 273, 271, 1, 0, 0, 0, 274, 277, 1, 0, 0, 0, 275, 273, 1, 0, 0, 0, 275, 276, 1, 0, 0, 0, 276, 289, 1, 0, 0, 0, 277, 275, 1, 0, 0, 0, 278, 279, 3, 24, 12, 0, 279, 280, 5, 170, 0, 0, 280, 285, 3, 24, 12, 0, 281, 282, 5, 170, 0, 0, 282, 284, 3, 24, 12, 0, 283, 281, 1, 0, 0, 0, 284, 287, 1, 0, 0, 0, 285, 283, 1, 0, 0, 0, 285, 286, 1, 0, 0, 0, 286, 289, 1, 0, 0, 0, 287, 285, 1, 0, 0, 0, 288, 268, 1, 0, 0, 0, 288, 278, 1, 0, 0, 0, 289, 29, 1, 0, 0, 0, 290, 291, 3, 32, 16, 0, 291, 292, 7, 3, 0, 0, 292, 293, 3, 32, 16, 0, 293, 31, 1, 0, 0, 0, 294, 295, 3, 34, 17, 0, 295, 33, 1, 0, 0, 0, 296, 297, 6, 17, -1, 0, 297, 298, 3, 36, 18, 0, 298, 304, 1, 0, 0, 0, 299, 300, 10, 2, 0, 0, 300, 301, 7, 4, 0, 0, 301, 303, 3, 34, 17, 3, 302, 299, 1, 0, 0, 0, 303, 306, 1, 0, 0, 0, 304, 302, 1, 0, 0, 0, 304, 305, 1, 0, 0, 0, 305, 35, 1, 0, 0, 0, 306, 304, 1, 0, 0, 0, 307, 308, 6, 18, -1, 0, 308, 309, 3, 40, 20, 0, 309, 315, 1, 0, 0, 0, 310, 311, 10, 2, 0, 0, 311, 312, 7, 5, 0, 0, 312, 314, 3, 36, 18, 3, 313, 310, 1, 0, 0, 0, 314, 317, 1, 0, 0, 0, 315, 313, 1, 0, 0, 0, 315, 316, 1, 0, 0, 0, 316, 37, 1, 0, 0, 0, 317, 315, 1, 0, 0, 0, 318, 319, 6, 19, -1, 0, 319, 320, 3, 42, 21, 0, 320, 326, 1, 0, 0, 0, 321, 322, 10, 2, 0, 0, 322, 323, 7, 5, 0, 0, 323, 325, 3, 38, 19, 3, 324, 321, 1, 0, 0, 0, 325, 328, 1, 0, 0, 0, 326, 324, 1, 0, 0, 0, 326, 327, 1, 0, 0, 0, 327, 39, 1, 0, 0, 0, 328, 326, 1, 0, 0, 0, 329, 330, 7, 4, 0, 0, 330, 337, 3, 40, 20, 0, 331, 333, 3, 44, 22, 0, 332, 331, 1, 0, 0, 0, 333, 334, 1, 0, 0, 0, 334, 332, 1, 0, 0, 0, 334, 335, 1, 0, 0, 0, 335, 337, 1, 0, 0, 0, 336, 329, 1, 0, 0, 0, 336, 332, 1, 0, 0, 0, 337, 41, 1, 0, 0, 0, 338, 339, 7, 4, 0, 0, 339, 348, 3, 42, 21, 0, 340, 344, 3, 44, 22, 0, 341, 343, 3, 46, 23, 0, 342, 341, 1, 0, 0, 0, 343, 346, 1, 0, 0, 0, 344, 342, 1, 0, 0, 0, 344, 345, 1, 0, 0, 0, 345, 348, 1, 0, 0, 0, 346, 344, 1, 0, 0, 0, 347, 338, 1, 0, 0, 0, 347, 340, 1, 0, 0, 0, 348, 43, 1, 0, 0, 0, 349, 353, 3, 56, 28, 0, 350, 352, 3, 48, 24, 0, 351, 350, 1, 0, 0, 0, 352, 355, 1, 0, 0, 0, 353, 351, 1, 0, 0, 0, 353, 354, 1, 0, 0, 0, 354, 45, 1, 0, 0, 0, 355, 353, 1, 0, 0, 0, 356, 360, 3, 58, 29, 0, 357, 359, 3, 48, 24, 0, 358, 357, 1, 0, 0, 0, 359, 362, 1, 0, 0, 0, 360, 358, 1, 0, 0, 0, 360, 361, 1, 0, 0, 0, 361, 47, 1, 0, 0, 0, 362, 360, 1, 0, 0, 0, 363, 367, 5, 189, 0, 0, 364, 367, 3, 50, 25, 0, 365, 367, 3, 4, 2, 0, 366, 363, 1, 0, 0, 0, 366, 364, 1, 0, 0, 0, 366, 365, 1, 0, 0, 0, 367, 49, 1, 0, 0, 0, 368, 374, 5, 65, 0, 0, 369, 375, 3, 54, 27, 0, 370, 375, 3, 52, 26, 0, 371, 372, 3, 54, 27, 0, 372, 373, 3, 52, 26, 0, 373, 375, 1, 0, 0, 0, 374, 369, 1, 0, 0, 0, 374, 370, 1, 0, 0, 0, 374, 371, 1, 0, 0, 0, 375, 51, 1, 0, 0, 0, 376, 377, 5, 167, 0, 0, 377, 380, 5, 55, 0, 0, 378, 381, 3, 32, 16, 0, 379, 381, 3, 30, 15, 0, 380, 378, 1, 0, 0, 0, 380, 379, 1, 0, 0, 0, 381, 382, 1, 0, 0, 0, 382, 383, 5, 56, 0, 0, 383, 53, 1, 0, 0, 0, 384, 385, 5, 168, 0, 0, 385, 388, 5, 55, 0, 0, 386, 389, 3, 32, 16, 0, 387, 389, 3, 30, 15, 0, 388, 386, 1, 0, 0, 0, 388, 387, 1, 0, 0, 0, 389, 390, 1, 0, 0, 0, 390, 391, 5, 56, 0, 0, 391, 55, 1, 0, 0, 0, 392, 393, 6, 28, -1, 0, 393, 394, 3, 60, 30, 0, 394, 409, 1, 0, 0, 0, 395, 396, 10, 2, 0, 0, 396, 402, 5, 168, 0, 0, 397, 403, 3, 80, 40, 0, 398, 399, 5, 55, 0, 0, 399, 400, 3, 32, 16, 0, 400, 401, 5, 56, 0, 0, 401, 403, 1, 0, 0, 0, 402, 397, 1, 0, 0, 0, 402, 398, 1, 0, 0, 0, 403, 405, 1, 0, 0, 0, 404, 406, 3, 118, 59, 0, 405, 404, 1, 0, 0, 0, 405, 406, 1, 0, 0, 0, 406, 408, 1, 0, 0, 0, 407, 395, 1, 0, 0, 0, 408, 411, 1, 0, 0, 0, 409, 407, 1, 0, 0, 0, 409, 410, 1, 0, 0, 0, 410, 57, 1, 0, 0, 0, 411, 409, 1, 0, 0, 0, 412, 413, 6, 29, -1, 0, 413, 414, 3, 62, 31, 0, 414, 429, 1, 0, 0, 0, 415, 416, 10, 2, 0, 0, 416, 422, 5, 168, 0, 0, 417, 423, 3, 80, 40, 0, 418, 419, 5, 55, 0, 0, 419, 420, 3, 32, 16, 0, 420, 421, 5, 56, 0, 0, 421, 423, 1, 0, 0, 0, 422, 417, 1, 0, 0, 0, 422, 418, 1, 0, 0, 0, 423, 425, 1, 0, 0, 0, 424, 426, 3, 118, 59, 0, 425, 424, 1, 0, 0, 0, 425, 426, 1, 0, 0, 0, 426, 428, 1, 0, 0, 0, 427, 415, 1, 0, 0, 0, 428, 431, 1, 0, 0, 0, 429, 427, 1, 0, 0, 0, 429, 430, 1, 0, 0, 0, 430, 59, 1, 0, 0, 0, 431, 429, 1, 0, 0, 0, 432, 444, 3, 64, 32, 0, 433, 444, 3, 66, 33, 0, 434, 444, 3, 68, 34, 0, 435, 444, 3, 70, 35, 0, 436, 444, 3, 72, 36, 0, 437, 444, 3, 102, 51, 0, 438, 444, 3, 80, 40, 0, 439, 444, 3, 86, 43, 0, 440, 444, 3, 88, 44, 0, 441, 444, 3, 18, 9, 0, 442, 444, 3, 20, 10, 0, 443, 432, 1, 0, 0, 0, 443, 433, 1, 0, 0, 0, 443, 434, 1, 0, 0, 0, 443, 435, 1, 0, 0, 0, 443, 436, 1, 0, 0, 0, 443, 437, 1, 0, 0, 0, 443, 438, 1, 0, 0, 0, 443, 439, 1, 0, 0, 0, 443, 440, 1, 0, 0, 0, 443, 441, 1, 0, 0, 0, 443, 442, 1, 0, 0, 0, 444, 61, 1, 0, 0, 0, 445, 456, 3, 64, 32, 0, 446, 456, 3, 66, 33, 0, 447, 456, 3, 68, 34, 0, 448, 456, 3, 70, 35, 0, 449, 456, 3, 72, 36, 0, 450, 456, 3, 80, 40, 0, 451, 456, 3, 86, 43, 0, 452, 456, 3, 88, 44, 0, 453, 456, 3, 18, 9, 0, 454, 456, 3, 20, 10, 0, 455, 445, 1, 0, 0, 0, 455, 446, 1, 0, 0, 0, 455, 447, 1, 0, 0, 0, 455, 448, 1, 0, 0, 0, 455, 449, 1, 0, 0, 0, 455, 450, 1, 0, 0, 0, 455, 451, 1, 0, 0, 0, 455, 452, 1, 0, 0, 0, 455, 453, 1, 0, 0, 0, 455, 454, 1, 0, 0, 0, 456, 63, 1, 0, 0, 0, 457, 458, 5, 51, 0, 0, 458, 459, 3, 32, 16, 0, 459, 460, 5, 52, 0, 0, 460, 570, 1, 0, 0, 0, 461, 462, 5, 53, 0, 0, 462, 463, 3, 32, 16, 0, 463, 464, 5, 54, 0, 0, 464, 570, 1, 0, 0, 0, 465, 466, 5, 55, 0, 0, 466, 467, 3, 32, 16, 0, 467, 468, 5, 56, 0, 0, 468, 570, 1, 0, 0, 0, 469, 470, 5, 57, 0, 0, 470, 471, 3, 32, 16, 0, 471, 472, 5, 58, 0, 0, 472, 570, 1, 0, 0, 0, 473, 474, 5, 59, 0, 0, 474, 475, 3, 32, 16, 0, 475, 476, 5, 60, 0, 0, 476, 570, 1, 0, 0, 0, 477, 478, 5, 61, 0, 0, 478, 479, 3, 32, 16, 0, 479, 480, 5, 62, 0, 0, 480, 570, 1, 0, 0, 0, 481, 482, 5, 63, 0, 0, 482, 483, 3, 32, 16, 0, 483, 484, 5, 64, 0, 0, 484, 570, 1, 0, 0, 0, 485, 486, 5, 78, 0, 0, 486, 487, 5, 51, 0, 0, 487, 488, 3, 32, 16, 0, 488, 489, 5, 79, 0, 0, 489, 490, 5, 52, 0, 0, 490, 570, 1, 0, 0, 0, 491, 492, 5, 78, 0, 0, 492, 493, 5, 53, 0, 0, 493, 494, 3, 32, 16, 0, 494, 495, 5, 79, 0, 0, 495, 496, 5, 54, 0, 0, 496, 570, 1, 0, 0, 0, 497, 498, 5, 78, 0, 0, 498, 499, 5, 55, 0, 0, 499, 500, 3, 32, 16, 0, 500, 501, 5, 79, 0, 0, 501, 502, 5, 56, 0, 0, 502, 570, 1, 0, 0, 0, 503, 504, 5, 78, 0, 0, 504, 505, 5, 57, 0, 0, 505, 506, 3, 32, 16, 0, 506, 507, 5, 79, 0, 0, 507, 508, 5, 58, 0, 0, 508, 570, 1, 0, 0, 0, 509, 510, 5, 78, 0, 0, 510, 511, 5, 59, 0, 0, 511, 512, 3, 32, 16, 0, 512, 513, 5, 79, 0, 0, 513, 514, 5, 60, 0, 0, 514, 570, 1, 0, 0, 0, 515, 516, 5, 78, 0, 0, 516, 517, 5, 61, 0, 0, 517, 518, 3, 32, 16, 0, 518, 519, 5, 79, 0, 0, 519, 520, 5, 62, 0, 0, 520, 570, 1, 0, 0, 0, 521, 522, 5, 78, 0, 0, 522, 523, 5, 63, 0, 0, 523, 524, 3, 32, 16, 0, 524, 525, 5, 79, 0, 0, 525, 526, 5, 64, 0, 0, 526, 570, 1, 0, 0, 0, 527, 528, 5, 80, 0, 0, 528, 529, 5, 51, 0, 0, 529, 530, 3, 32, 16, 0, 530, 531, 5, 81, 0, 0, 531, 532, 5, 52, 0, 0, 532, 570, 1, 0, 0, 0, 533, 534, 5, 80, 0, 0, 534, 535, 5, 53, 0, 0, 535, 536, 3, 32, 16, 0, 536, 537, 5, 81, 0, 0, 537, 538, 5, 54, 0, 0, 538, 570, 1, 0, 0, 0, 539, 540, 5, 80, 0, 0, 540, 541, 5, 55, 0, 0, 541, 542, 3, 32, 16, 0, 542, 543, 5, 81, 0, 0, 543, 544, 5, 56, 0, 0, 544, 570, 1, 0, 0, 0, 545, 546, 5, 80, 0, 0, 546, 547, 5, 57, 0, 0, 547, 548, 3, 32, 16, 0, 548, 549, 5, 81, 0, 0, 549, 550, 5, 58, 0, 0, 550, 570, 1, 0, 0, 0, 551, 552, 5, 80, 0, 0, 552, 553, 5, 59, 0, 0, 553, 554, 3, 32, 16, 0, 554, 555, 5, 81, 0, 0, 555, 556, 5, 60, 0, 0, 556, 570, 1, 0, 0, 0, 557, 558, 5, 80, 0, 0, 558, 559, 5, 61, 0, 0, 559, 560, 3, 32, 16, 0, 560, 561, 5, 81, 0, 0, 561, 562, 5, 62, 0, 0, 562, 570, 1, 0, 0, 0, 563, 564, 5, 80, 0, 0, 564, 565, 5, 63, 0, 0, 565, 566, 3, 32, 16, 0, 566, 567, 5, 81, 0, 0, 567, 568, 5, 64, 0, 0, 568, 570, 1, 0, 0, 0, 569, 457, 1, 0, 0, 0, 569, 461, 1, 0, 0, 0, 569, 465, 1, 0, 0, 0, 569, 469, 1, 0, 0, 0, 569, 473, 1, 0, 0, 0, 569, 477, 1, 0, 0, 0, 569, 481, 1, 0, 0, 0, 569, 485, 1, 0, 0, 0, 569, 491, 1, 0, 0, 0, 569, 497, 1, 0, 0, 0, 569, 503, 1, 0, 0, 0, 569, 509, 1, 0, 0, 0, 569, 515, 1, 0, 0, 0, 569, 521, 1, 0, 0, 0, 569, 527, 1, 0, 0, 0, 569, 533, 1, 0, 0, 0, 569, 539, 1, 0, 0, 0, 569, 545, 1, 0, 0, 0, 569, 551, 1, 0, 0, 0, 569, 557, 1, 0, 0, 0, 569, 563, 1, 0, 0, 0, 570, 65, 1, 0, 0, 0, 571, 572, 5, 69, 0, 0, 572, 573, 3, 32, 16, 0, 573, 574, 5, 69, 0, 0, 574, 588, 1, 0, 0, 0, 575, 576, 5, 78, 0, 0, 576, 577, 5, 69, 0, 0, 577, 578, 3, 32, 16, 0, 578, 579, 5, 79, 0, 0, 579, 580, 5, 69, 0, 0, 580, 588, 1, 0, 0, 0, 581, 582, 5, 80, 0, 0, 582, 583, 5, 69, 0, 0, 583, 584, 3, 32, 16, 0, 584, 585, 5, 81, 0, 0, 585, 586, 5, 69, 0, 0, 586, 588, 1, 0, 0, 0, 587, 571, 1, 0, 0, 0, 587, 575, 1, 0, 0, 0, 587, 581, 1, 0, 0, 0, 588, 67, 1, 0, 0, 0, 589, 590, 5, 65, 0, 0, 590, 591, 3, 32, 16, 0, 591, 592, 5, 65, 0, 0, 592, 638, 1, 0, 0, 0, 593, 594, 5, 66, 0, 0, 594, 595, 3, 32, 16, 0, 595, 596, 5, 67, 0, 0, 596, 638, 1, 0, 0, 0, 597, 598, 5, 68, 0, 0, 598, 599, 3, 32, 16, 0, 599, 600, 5, 68, 0, 0, 600, 638, 1, 0, 0, 0, 601, 602, 5, 78, 0, 0, 602, 603, 5, 65, 0, 0, 603, 604, 3, 32, 16, 0, 604, 605, 5, 79, 0, 0, 605, 606, 5, 65, 0, 0, 606, 638, 1, 0, 0, 0, 607, 608, 5, 78, 0, 0, 608, 609, 5, 66, 0, 0, 609, 610, 3, 32, 16, 0, 610, 611, 5, 79, 0, 0, 611, 612, 5, 67, 0, 0, 612, 638, 1, 0, 0, 0, 613, 614, 5, 78, 0, 0, 614, 615, 5, 68, 0, 0, 615, 616, 3, 32, 16, 0, 616, 617, 5, 79, 0, 0, 617, 618, 5, 68, 0, 0, 618, 638, 1, 0, 0, 0, 619, 620, 5, 80, 0, 0, 620, 621, 5, 65, 0, 0, 621, 622, 3, 32, 16, 0, 622, 623, 5, 81, 0, 0, 623, 624, 5, 65, 0, 0, 624, 638, 1, 0, 0, 0, 625, 626, 5, 80, 0, 0, 626, 627, 5, 66, 0, 0, 627, 628, 3, 32, 16, 0, 628, 629, 5, 81, 0, 0, 629, 630, 5, 67, 0, 0, 630, 638, 1, 0, 0, 0, 631, 632, 5, 80, 0, 0, 632, 633, 5, 68, 0, 0, 633, 634, 3, 32, 16, 0, 634, 635, 5, 81, 0, 0, 635, 636, 5, 68, 0, 0, 636, 638, 1, 0, 0, 0, 637, 589, 1, 0, 0, 0, 637, 593, 1, 0, 0, 0, 637, 597, 1, 0, 0, 0, 637, 601, 1, 0, 0, 0, 637, 607, 1, 0, 0, 0, 637, 613, 1, 0, 0, 0, 637, 619, 1, 0, 0, 0, 637, 625, 1, 0, 0, 0, 637, 631, 1, 0, 0, 0, 638, 69, 1, 0, 0, 0, 639, 640, 5, 70, 0, 0, 640, 641, 3, 32, 16, 0, 641, 642, 5, 71, 0, 0, 642, 672, 1, 0, 0, 0, 643, 644, 5, 72, 0, 0, 644, 645, 3, 32, 16, 0, 645, 646, 5, 73, 0, 0, 646, 672, 1, 0, 0, 0, 647, 648, 5, 78, 0, 0, 648, 649, 5, 70, 0, 0, 649, 650, 3, 32, 16, 0, 650, 651, 5, 79, 0, 0, 651, 652, 5, 71, 0, 0, 652, 672, 1, 0, 0, 0, 653, 654, 5, 78, 0, 0, 654, 655, 5, 72, 0, 0, 655, 656, 3, 32, 16, 0, 656, 657, 5, 79, 0, 0, 657, 658, 5, 73, 0, 0, 658, 672, 1, 0, 0, 0, 659, 660, 5, 80, 0, 0, 660, 661, 5, 70, 0, 0, 661, 662, 3, 32, 16, 0, 662, 663, 5, 81, 0, 0, 663, 664, 5, 71, 0, 0, 664, 672, 1, 0, 0, 0, 665, 666, 5, 80, 0, 0, 666, 667, 5, 72, 0, 0, 667, 668, 3, 32, 16, 0, 668, 669, 5, 81, 0, 0, 669, 670, 5, 73, 0, 0, 670, 672, 1, 0, 0, 0, 671, 639, 1, 0, 0, 0, 671, 643, 1, 0, 0, 0, 671, 647, 1, 0, 0, 0, 671, 653, 1, 0, 0, 0, 671, 659, 1, 0, 0, 0, 671, 665, 1, 0, 0, 0, 672, 71, 1, 0, 0, 0, 673, 674, 5, 74, 0, 0, 674, 675, 3, 32, 16, 0, 675, 676, 5, 75, 0, 0, 676, 706, 1, 0, 0, 0, 677, 678, 5, 76, 0, 0, 678, 679, 3, 32, 16, 0, 679, 680, 5, 77, 0, 0, 680, 706, 1, 0, 0, 0, 681, 682, 5, 78, 0, 0, 682, 683, 5, 74, 0, 0, 683, 684, 3, 32, 16, 0, 684, 685, 5, 79, 0, 0, 685, 686, 5, 75, 0, 0, 686, 706, 1, 0, 0, 0, 687, 688, 5, 78, 0, 0, 688, 689, 5, 76, 0, 0, 689, 690, 3, 32, 16, 0, 690, 691, 5, 79, 0, 0, 691, 692, 5, 77, 0, 0, 692, 706, 1, 0, 0, 0, 693, 694, 5, 80, 0, 0, 694, 695, 5, 74, 0, 0, 695, 696, 3, 32, 16, 0, 696, 697, 5, 81, 0, 0, 697, 698, 5, 75, 0, 0, 698, 706, 1, 0, 0, 0, 699, 700, 5, 80, 0, 0, 700, 701, 5, 76, 0, 0, 701, 702, 3, 32, 16, 0, 702, 703, 5, 81, 0, 0, 703, 704, 5, 77, 0, 0, 704, 706, 1, 0, 0, 0, 705, 673, 1, 0, 0, 0, 705, 677, 1, 0, 0, 0, 705, 681, 1, 0, 0, 0, 705, 687, 1, 0, 0, 0, 705, 693, 1, 0, 0, 0, 705, 699, 1, 0, 0, 0, 706, 73, 1, 0, 0, 0, 707, 708, 3, 0, 0, 0, 708, 709, 5, 55, 0, 0, 709, 710, 3, 32, 16, 0, 710, 711, 5, 56, 0, 0, 711, 75, 1, 0, 0, 0, 712, 717, 5, 176, 0, 0, 713, 717, 5, 191, 0, 0, 714, 717, 5, 192, 0, 0, 715, 717, 3, 74, 37, 0, 716, 712, 1, 0, 0, 0, 716, 713, 1, 0, 0, 0, 716, 714, 1, 0, 0, 0, 716, 715, 1, 0, 0, 0, 717, 719, 1, 0, 0, 0, 718, 720, 3, 118, 59, 0, 719, 718, 1, 0, 0, 0, 719, 720, 1, 0, 0, 0, 720, 77, 1, 0, 0, 0, 721, 726, 5, 176, 0, 0, 722, 726, 5, 191, 0, 0, 723, 726, 5, 192, 0, 0, 724, 726, 3, 74, 37, 0, 725, 721, 1, 0, 0, 0, 725, 722, 1, 0, 0, 0, 725, 723, 1, 0, 0, 0, 725, 724, 1, 0, 0, 0, 726, 735, 1, 0, 0, 0, 727, 728, 3, 120, 60, 0, 728, 729, 3, 118, 59, 0, 729, 736, 1, 0, 0, 0, 730, 731, 3, 118, 59, 0, 731, 732, 3, 120, 60, 0, 732, 736, 1, 0, 0, 0, 733, 736, 3, 118, 59, 0, 734, 736, 3, 120, 60, 0, 735, 727, 1, 0, 0, 0, 735, 730, 1, 0, 0, 0, 735, 733, 1, 0, 0, 0, 735, 734, 1, 0, 0, 0, 735, 736, 1, 0, 0, 0, 736, 79, 1, 0, 0, 0, 737, 746, 3, 78, 39, 0, 738, 746, 5, 193, 0, 0, 739, 746, 5, 179, 0, 0, 740, 746, 5, 190, 0, 0, 741, 746, 5, 180, 0, 0, 742, 746, 5, 173, 0, 0, 743, 746, 3, 82, 41, 0, 744, 746, 5, 194, 0, 0, 745, 737, 1, 0, 0, 0, 745, 738, 1, 0, 0, 0, 745, 739, 1, 0, 0, 0, 745, 740, 1, 0, 0, 0, 745, 741, 1, 0, 0, 0, 745, 742, 1, 0, 0, 0, 745, 743, 1, 0, 0, 0, 745, 744, 1, 0, 0, 0, 746, 81, 1, 0, 0, 0, 747, 748, 5, 154, 0, 0, 748, 749, 5, 55, 0, 0, 749, 750, 3, 84, 42, 0, 750, 751, 5, 56, 0, 0, 751, 83, 1, 0, 0, 0, 752, 754, 7, 6, 0, 0, 753, 752, 1, 0, 0, 0, 754, 755, 1, 0, 0, 0, 755, 753, 1, 0, 0, 0, 755, 756, 1, 0, 0, 0, 756, 85, 1, 0, 0, 0, 757, 758, 5, 150, 0, 0, 758, 759, 5, 55, 0, 0, 759, 760, 3, 32, 16, 0, 760, 761, 5, 56, 0, 0, 761, 762, 5, 55, 0, 0, 762, 763, 3, 32, 16, 0, 763, 764, 5, 56, 0, 0, 764, 87, 1, 0, 0, 0, 765, 766, 5, 55, 0, 0, 766, 767, 3, 32, 16, 0, 767, 768, 5, 152, 0, 0, 768, 769, 3, 32, 16, 0, 769, 770, 5, 56, 0, 0, 770, 780, 1, 0, 0, 0, 771, 772, 5, 151, 0, 0, 772, 773, 5, 55, 0, 0, 773, 774, 3, 32, 16, 0, 774, 775, 5, 56, 0, 0, 775, 776, 5, 55, 0, 0, 776, 777, 3, 32, 16, 0, 777, 778, 5, 56, 0, 0, 778, 780, 1, 0, 0, 0, 779, 765, 1, 0, 0, 0, 779, 771, 1, 0, 0, 0, 780, 89, 1, 0, 0, 0, 781, 782, 7, 7, 0, 0, 782, 91, 1, 0, 0, 0, 783, 784, 7, 8, 0, 0, 784, 93, 1, 0, 0, 0, 785, 786, 7, 9, 0, 0, 786, 95, 1, 0, 0, 0, 787, 788, 7, 10, 0, 0, 788, 97, 1, 0, 0, 0, 789, 796, 3, 90, 45, 0, 790, 791, 5, 155, 0, 0, 791, 792, 5, 55, 0, 0, 792, 793, 3, 94, 47, 0, 793, 794, 5, 56, 0, 0, 794, 796, 1, 0, 0, 0, 795, 789, 1, 0, 0, 0, 795, 790, 1, 0, 0, 0, 796, 99, 1, 0, 0, 0, 797, 804, 3, 92, 46, 0, 798, 799, 5, 155, 0, 0, 799, 800, 5, 55, 0, 0, 800, 801, 3, 96, 48, 0, 801, 802, 5, 56, 0, 0, 802, 804, 1, 0, 0, 0, 803, 797, 1, 0, 0, 0, 803, 798, 1, 0, 0, 0, 804, 101, 1, 0, 0, 0, 805, 818, 3, 98, 49, 0, 806, 808, 3, 118, 59, 0, 807, 806, 1, 0, 0, 0, 807, 808, 1, 0, 0, 0, 808, 810, 1, 0, 0, 0, 809, 811, 3, 120, 60, 0, 810, 809, 1, 0, 0, 0, 810, 811, 1, 0, 0, 0, 811, 819, 1, 0, 0, 0, 812, 814, 3, 120, 60, 0, 813, 812, 1, 0, 0, 0, 813, 814, 1, 0, 0, 0, 814, 816, 1, 0, 0, 0, 815, 817, 3, 118, 59, 0, 816, 815, 1, 0, 0, 0, 816, 817, 1, 0, 0, 0, 817, 819, 1, 0, 0, 0, 818, 807, 1, 0, 0, 0, 818, 813, 1, 0, 0, 0, 819, 841, 1, 0, 0, 0, 820, 822, 5, 78, 0, 0, 821, 820, 1, 0, 0, 0, 821, 822, 1, 0, 0, 0, 822, 823, 1, 0, 0, 0, 823, 824, 5, 51, 0, 0, 824, 826, 3, 110, 55, 0, 825, 827, 5, 79, 0, 0, 826, 825, 1, 0, 0, 0, 826, 827, 1, 0, 0, 0, 827, 828, 1, 0, 0, 0, 828, 829, 5, 52, 0, 0, 829, 842, 1, 0, 0, 0, 830, 832, 5, 80, 0, 0, 831, 830, 1, 0, 0, 0, 831, 832, 1, 0, 0, 0, 832, 833, 1, 0, 0, 0, 833, 834, 5, 51, 0, 0, 834, 836, 3, 110, 55, 0, 835, 837, 5, 81, 0, 0, 836, 835, 1, 0, 0, 0, 836, 837, 1, 0, 0, 0, 837, 838, 1, 0, 0, 0, 838, 839, 5, 52, 0, 0, 839, 842, 1, 0, 0, 0, 840, 842, 3, 112, 56, 0, 841, 821, 1, 0, 0, 0, 841, 831, 1, 0, 0, 0, 841, 840, 1, 0, 0, 0, 842, 972, 1, 0, 0, 0, 843, 856, 3, 100, 50, 0, 844, 846, 3, 118, 59, 0, 845, 844, 1, 0, 0, 0, 845, 846, 1, 0, 0, 0, 846, 848, 1, 0, 0, 0, 847, 849, 3, 120, 60, 0, 848, 847, 1, 0, 0, 0, 848, 849, 1, 0, 0, 0, 849, 857, 1, 0, 0, 0, 850, 852, 3, 120, 60, 0, 851, 850, 1, 0, 0, 0, 851, 852, 1, 0, 0, 0, 852, 854, 1, 0, 0, 0, 853, 855, 3, 118, 59, 0, 854, 853, 1, 0, 0, 0, 854, 855, 1, 0, 0, 0, 855, 857, 1, 0, 0, 0, 856, 845, 1, 0, 0, 0, 856, 851, 1, 0, 0, 0, 857, 879, 1, 0, 0, 0, 858, 860, 5, 78, 0, 0, 859, 858, 1, 0, 0, 0, 859, 860, 1, 0, 0, 0, 860, 861, 1, 0, 0, 0, 861, 862, 5, 51, 0, 0, 862, 864, 3, 114, 57, 0, 863, 865, 5, 79, 0, 0, 864, 863, 1, 0, 0, 0, 864, 865, 1, 0, 0, 0, 865, 866, 1, 0, 0, 0, 866, 867, 5, 52, 0, 0, 867, 880, 1, 0, 0, 0, 868, 870, 5, 80, 0, 0, 869, 868, 1, 0, 0, 0, 869, 870, 1, 0, 0, 0, 870, 871, 1, 0, 0, 0, 871, 872, 5, 51, 0, 0, 872, 874, 3, 114, 57, 0, 873, 875, 5, 81, 0, 0, 874, 873, 1, 0, 0, 0, 874, 875, 1, 0, 0, 0, 875, 876, 1, 0, 0, 0, 876, 877, 5, 52, 0, 0, 877, 880, 1, 0, 0, 0, 878, 880, 3, 116, 58, 0, 879, 859, 1, 0, 0, 0, 879, 869, 1, 0, 0, 0, 879, 878, 1, 0, 0, 0, 880, 972, 1, 0, 0, 0, 881, 883, 3, 76, 38, 0, 882, 884, 3, 120, 60, 0, 883, 882, 1, 0, 0, 0, 883, 884, 1, 0, 0, 0, 884, 886, 1, 0, 0, 0, 885, 887, 5, 78, 0, 0, 886, 885, 1, 0, 0, 0, 886, 887, 1, 0, 0, 0, 887, 888, 1, 0, 0, 0, 888, 889, 7, 11, 0, 0, 889, 890, 3, 106, 53, 0, 890, 892, 7, 12, 0, 0, 891, 893, 5, 79, 0, 0, 892, 891, 1, 0, 0, 0, 892, 893, 1, 0, 0, 0, 893, 972, 1, 0, 0, 0, 894, 896, 3, 76, 38, 0, 895, 897, 3, 120, 60, 0, 896, 895, 1, 0, 0, 0, 896, 897, 1, 0, 0, 0, 897, 898, 1, 0, 0, 0, 898, 900, 5, 55, 0, 0, 899, 901, 5, 78, 0, 0, 900, 899, 1, 0, 0, 0, 900, 901, 1, 0, 0, 0, 901, 902, 1, 0, 0, 0, 902, 903, 7, 11, 0, 0, 903, 904, 3, 106, 53, 0, 904, 906, 7, 12, 0, 0, 905, 907, 5, 79, 0, 0, 906, 905, 1, 0, 0, 0, 906, 907, 1, 0, 0, 0, 907, 908, 1, 0, 0, 0, 908, 909, 5, 56, 0, 0, 909, 972, 1, 0, 0, 0, 910, 931, 5, 84, 0, 0, 911, 912, 3, 118, 59, 0, 912, 913, 3, 120, 60, 0, 913, 932, 1, 0, 0, 0, 914, 915, 3, 120, 60, 0, 915, 916, 3, 118, 59, 0, 916, 932, 1, 0, 0, 0, 917, 918, 5, 167, 0, 0, 918, 919, 5, 55, 0, 0, 919, 920, 5, 56, 0, 0, 920, 921, 1, 0, 0, 0, 921, 922, 5, 168, 0, 0, 922, 923, 5, 55, 0, 0, 923, 932, 5, 56, 0, 0, 924, 925, 5, 168, 0, 0, 925, 926, 5, 55, 0, 0, 926, 927, 5, 56, 0, 0, 927, 928, 1, 0, 0, 0, 928, 929, 5, 167, 0, 0, 929, 930, 5, 55, 0, 0, 930, 932, 5, 56, 0, 0, 931, 911, 1, 0, 0, 0, 931, 914, 1, 0, 0, 0, 931, 917, 1, 0, 0, 0, 931, 924, 1, 0, 0, 0, 931, 932, 1, 0, 0, 0, 932, 939, 1, 0, 0, 0, 933, 935, 3, 34, 17, 0, 934, 933, 1, 0, 0, 0, 934, 935, 1, 0, 0, 0, 935, 936, 1, 0, 0, 0, 936, 940, 5, 173, 0, 0, 937, 940, 3, 86, 43, 0, 938, 940, 3, 34, 17, 0, 939, 934, 1, 0, 0, 0, 939, 937, 1, 0, 0, 0, 939, 938, 1, 0, 0, 0, 940, 972, 1, 0, 0, 0, 941, 946, 5, 121, 0, 0, 942, 943, 5, 61, 0, 0, 943, 944, 3, 32, 16, 0, 944, 945, 5, 62, 0, 0, 945, 947, 1, 0, 0, 0, 946, 942, 1, 0, 0, 0, 946, 947, 1, 0, 0, 0, 947, 948, 1, 0, 0, 0, 948, 949, 5, 55, 0, 0, 949, 950, 3, 32, 16, 0, 950, 951, 5, 56, 0, 0, 951, 972, 1, 0, 0, 0, 952, 959, 7, 13, 0, 0, 953, 954, 3, 122, 61, 0, 954, 955, 3, 120, 60, 0, 955, 960, 1, 0, 0, 0, 956, 957, 3, 120, 60, 0, 957, 958, 3, 122, 61, 0, 958, 960, 1, 0, 0, 0, 959, 953, 1, 0, 0, 0, 959, 956, 1, 0, 0, 0, 960, 961, 1, 0, 0, 0, 961, 962, 3, 36, 18, 0, 962, 972, 1, 0, 0, 0, 963, 964, 5, 82, 0, 0, 964, 965, 3, 108, 54, 0, 965, 966, 3, 36, 18, 0, 966, 972, 1, 0, 0, 0, 967, 969, 5, 174, 0, 0, 968, 970, 3, 120, 60, 0, 969, 968, 1, 0, 0, 0, 969, 970, 1, 0, 0, 0, 970, 972, 1, 0, 0, 0, 971, 805, 1, 0, 0, 0, 971, 843, 1, 0, 0, 0, 971, 881, 1, 0, 0, 0, 971, 894, 1, 0, 0, 0, 971, 910, 1, 0, 0, 0, 971, 941, 1, 0, 0, 0, 971, 952, 1, 0, 0, 0, 971, 963, 1, 0, 0, 0, 971, 967, 1, 0, 0, 0, 972, 103, 1, 0, 0, 0, 973, 974, 3, 32, 16, 0, 974, 975, 5, 171, 0, 0, 975, 976, 3, 104, 52, 0, 976, 979, 1, 0, 0, 0, 977, 979, 3, 32, 16, 0, 978, 973, 1, 0, 0, 0, 978, 977, 1, 0, 0, 0, 979, 105, 1, 0, 0, 0, 980, 989, 3, 80, 40, 0, 981, 982, 3, 32, 16, 0, 982, 983, 5, 171, 0, 0, 983, 989, 1, 0, 0, 0, 984, 985, 3, 32, 16, 0, 985, 986, 5, 171, 0, 0, 986, 987, 3, 104, 52, 0, 987, 989, 1, 0, 0, 0, 988, 980, 1, 0, 0, 0, 988, 981, 1, 0, 0, 0, 988, 984, 1, 0, 0, 0, 989, 107, 1, 0, 0, 0, 990, 991, 5, 167, 0, 0, 991, 992, 5, 55, 0, 0, 992, 993, 7, 14, 0, 0, 993, 994, 5, 83, 0, 0, 994, 999, 3, 32, 16, 0, 995, 996, 5, 168, 0, 0, 996, 997, 5, 55, 0, 0, 997, 998, 7, 4, 0, 0, 998, 1000, 5, 56, 0, 0, 999, 995, 1, 0, 0, 0, 999, 1000, 1, 0, 0, 0, 1000, 1001, 1, 0, 0, 0, 1001, 1002, 5, 56, 0, 0, 1002, 109, 1, 0, 0, 0, 1003, 1004, 3, 32, 16, 0, 1004, 111, 1, 0, 0, 0, 1005, 1006, 3, 38, 19, 0, 1006, 113, 1, 0, 0, 0, 1007, 1013, 3, 32, 16, 0, 1008, 1009, 3, 32, 16, 0, 1009, 1010, 5, 171, 0, 0, 1010, 1011, 3, 114, 57, 0, 1011, 1013, 1, 0, 0, 0, 1012, 1007, 1, 0, 0, 0, 1012, 1008, 1, 0, 0, 0, 1013, 115, 1, 0, 0, 0, 1014, 1015, 3, 38, 19, 0, 1015, 117, 1, 0, 0, 0, 1016, 1025, 5, 167, 0, 0, 1017, 1026, 3, 80, 40, 0, 1018, 1021, 5, 55, 0, 0, 1019, 1022, 3, 32, 16, 0, 1020, 1022, 3, 104, 52, 0, 1021, 1019, 1, 0, 0, 0, 1021, 1020, 1, 0, 0, 0, 1022, 1023, 1, 0, 0, 0, 1023, 1024, 5, 56, 0, 0, 1024, 1026, 1, 0, 0, 0, 1025, 1017, 1, 0, 0, 0, 1025, 1018, 1, 0, 0, 0, 1026, 119, 1, 0, 0, 0, 1027, 1033, 5, 168, 0, 0, 1028, 1034, 3, 80, 40, 0, 1029, 1030, 5, 55, 0, 0, 1030, 1031, 3, 32, 16, 0, 1031, 1032, 5, 56, 0, 0, 1032, 1034, 1, 0, 0, 0, 1033, 1028, 1, 0, 0, 0, 1033, 1029, 1, 0, 0, 0, 1034, 121, 1, 0, 0, 0, 1035, 1036, 5, 167, 0, 0, 1036, 1037, 5, 55, 0, 0, 1037, 1038, 3, 30, 15, 0, 1038, 1039, 5, 56, 0, 0, 1039, 123, 1, 0, 0, 0, 1040, 1041, 5, 167, 0, 0, 1041, 1042, 5, 55, 0, 0, 1042, 1043, 3, 30, 15, 0, 1043, 1044, 5, 56, 0, 0, 1044, 125, 1, 0, 0, 0, 92, 130, 140, 146, 160, 167, 176, 180, 188, 194, 202, 206, 215, 226, 266, 275, 285, 288, 304, 315, 326, 334, 336, 344, 347, 353, 360, 366, 374, 380, 388, 402, 405, 409, 422, 425, 429, 443, 455, 569, 587, 637, 671, 705, 716, 719, 725, 735, 745, 755, 779, 795, 803, 807, 810, 813, 816, 818, 821, 826, 831, 836, 841, 845, 848, 851, 854, 856, 859, 864, 869, 874, 879, 883, 886, 892, 896, 900, 906, 931, 934, 939, 946, 959, 969, 971, 978, 988, 999, 1012, 1021, 1025, 1033] \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PS.tokens b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PS.tokens
new file mode 100755
index 0000000..d71163f
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PS.tokens
@@ -0,0 +1,357 @@
+T__0=1
+T__1=2
+T__2=3
+T__3=4
+T__4=5
+T__5=6
+T__6=7
+T__7=8
+T__8=9
+T__9=10
+T__10=11
+T__11=12
+T__12=13
+T__13=14
+T__14=15
+T__15=16
+T__16=17
+T__17=18
+T__18=19
+T__19=20
+T__20=21
+T__21=22
+T__22=23
+T__23=24
+T__24=25
+T__25=26
+T__26=27
+T__27=28
+T__28=29
+T__29=30
+T__30=31
+T__31=32
+T__32=33
+T__33=34
+T__34=35
+T__35=36
+T__36=37
+T__37=38
+T__38=39
+T__39=40
+T__40=41
+T__41=42
+T__42=43
+T__43=44
+WS=45
+DOLLAR_SIGN=46
+ADD=47
+SUB=48
+MUL=49
+DIV=50
+L_PAREN=51
+R_PAREN=52
+L_GROUP=53
+R_GROUP=54
+L_BRACE=55
+R_BRACE=56
+L_BRACE_VISUAL=57
+R_BRACE_VISUAL=58
+L_BRACE_CMD=59
+R_BRACE_CMD=60
+L_BRACKET=61
+R_BRACKET=62
+L_BRACK=63
+R_BRACK=64
+BAR=65
+L_VERT=66
+R_VERT=67
+VERT=68
+NORM=69
+L_FLOOR=70
+R_FLOOR=71
+LL_CORNER=72
+LR_CORNER=73
+L_CEIL=74
+R_CEIL=75
+UL_CORNER=76
+UR_CORNER=77
+L_LEFT=78
+R_RIGHT=79
+ML_LEFT=80
+MR_RIGHT=81
+FUNC_LIM=82
+LIM_APPROACH_SYM=83
+FUNC_INT=84
+FUNC_SUM=85
+FUNC_PROD=86
+FUNC_LOG=87
+FUNC_LN=88
+FUNC_EXP=89
+FUNC_SIN=90
+FUNC_COS=91
+FUNC_TAN=92
+FUNC_CSC=93
+FUNC_SEC=94
+FUNC_COT=95
+FUNC_ARCSIN=96
+FUNC_ARCCOS=97
+FUNC_ARCTAN=98
+FUNC_ARCCSC=99
+FUNC_ARCSEC=100
+FUNC_ARCCOT=101
+FUNC_SINH=102
+FUNC_COSH=103
+FUNC_TANH=104
+FUNC_ARSINH=105
+FUNC_ARCOSH=106
+FUNC_ARTANH=107
+FUNC_ARCSINH=108
+FUNC_ARCCOSH=109
+FUNC_ARCTANH=110
+FUNC_ARSINH_NAME=111
+FUNC_ARCSINH_NAME=112
+FUNC_ARCOSH_NAME=113
+FUNC_ARCCOSH_NAME=114
+FUNC_ARTANH_NAME=115
+FUNC_ARCTANH_NAME=116
+FUNC_GCD_NAME=117
+FUNC_LCM_NAME=118
+FUNC_FLOOR_NAME=119
+FUNC_CEIL_NAME=120
+FUNC_SQRT=121
+FUNC_GCD=122
+FUNC_LCM=123
+FUNC_FLOOR=124
+FUNC_CEIL=125
+FUNC_MAX=126
+FUNC_MIN=127
+FUNC_DET=128
+FUNC_EYE_NAME=129
+FUNC_ZEROS_NAME=130
+FUNC_ONES_NAME=131
+FUNC_COLS_NAME=132
+FUNC_ROWS_NAME=133
+FUNC_DIAG_NAME=134
+FUNC_NORM_NAME=135
+FUNC_RANK_NAME=136
+FUNC_TRACE_NAME=137
+FUNC_RREF_NAME=138
+FUNC_HSTACK_NAME=139
+FUNC_VSTACK_NAME=140
+FUNC_ORTHOGONALIZE_NAME=141
+FUNC_NULLSPACE_NAME=142
+FUNC_DIAGONALIZE_NAME=143
+FUNC_EIGENVALS_NAME=144
+FUNC_EIGENVECTORS_NAME=145
+FUNC_SVD_NAME=146
+CMD_TIMES=147
+CMD_CDOT=148
+CMD_DIV=149
+CMD_FRAC=150
+CMD_BINOM=151
+CMD_CHOOSE=152
+CMD_MOD=153
+CMD_MATHIT=154
+CMD_OPERATORNAME=155
+MATRIX_TYPE_MATRIX=156
+MATRIX_TYPE_PMATRIX=157
+MATRIX_TYPE_BMATRIX=158
+MATRIX_TYPE_DET=159
+MATRIX_TYPES=160
+CMD_MATRIX_START=161
+CMD_MATRIX_END=162
+CMD_DET_START=163
+CMD_DET_END=164
+MATRIX_DEL_COL=165
+MATRIX_DEL_ROW=166
+UNDERSCORE=167
+CARET=168
+COLON=169
+SEMICOLON=170
+COMMA=171
+PERIOD=172
+DIFFERENTIAL=173
+EXP_E=174
+E_NOTATION_E=175
+LETTER_NO_E=176
+MATRIX_XRIGHTARROW=177
+TRANSFORM_EXCHANGE=178
+NUMBER=179
+E_NOTATION=180
+IN=181
+ASSIGNMENT=182
+EQUAL=183
+LT=184
+LTE=185
+GT=186
+GTE=187
+UNEQUAL=188
+BANG=189
+PERCENT_NUMBER=190
+GREEK_CMD=191
+OTHER_SYMBOL_CMD=192
+SYMBOL=193
+VARIABLE=194
+'\\acute'=1
+'\\bar'=2
+'\\overline'=3
+'\\breve'=4
+'\\check'=5
+'\\widecheck'=6
+'\\dot'=7
+'\\ddot'=8
+'\\grave'=9
+'\\hat'=10
+'\\tilde'=11
+'\\widetilde'=12
+'\\vec'=13
+'\\overrightarrow'=14
+'\\bm'=15
+'\\boldsymbol'=16
+'\\text'=17
+'\\textit'=18
+'\\mathbb'=19
+'\\mathbin'=20
+'\\mathbf'=21
+'\\mathcal'=22
+'\\mathclap'=23
+'\\mathclose'=24
+'\\mathellipsis'=25
+'\\mathfrak'=26
+'\\mathinner'=27
+'\\mathnormal'=28
+'\\mathop'=29
+'\\mathopen'=30
+'\\mathord'=31
+'\\mathpunct'=32
+'\\mathrel'=33
+'\\mathring'=34
+'\\mathrlap'=35
+'\\mathrm'=36
+'\\mathscr'=37
+'\\mathsf'=38
+'\\mathsterling'=39
+'\\mathtt'=40
+'^T'=41
+'^{T}'=42
+'^{\\top}'=43
+'\''=44
+'\\$'=46
+'+'=47
+'-'=48
+'*'=49
+'('=51
+')'=52
+'\\lgroup'=53
+'\\rgroup'=54
+'{'=55
+'}'=56
+'\\{'=57
+'\\}'=58
+'\\lbrace'=59
+'\\rbrace'=60
+'['=61
+']'=62
+'\\lbrack'=63
+'\\rbrack'=64
+'|'=65
+'\\lvert'=66
+'\\rvert'=67
+'\\vert'=68
+'\\|'=69
+'\\lfloor'=70
+'\\rfloor'=71
+'\\llcorner'=72
+'\\lrcorner'=73
+'\\lceil'=74
+'\\rceil'=75
+'\\ulcorner'=76
+'\\urcorner'=77
+'\\left'=78
+'\\right'=79
+'\\mleft'=80
+'\\mright'=81
+'\\lim'=82
+'\\int'=84
+'\\sum'=85
+'\\prod'=86
+'\\log'=87
+'\\ln'=88
+'\\exp'=89
+'\\sin'=90
+'\\cos'=91
+'\\tan'=92
+'\\csc'=93
+'\\sec'=94
+'\\cot'=95
+'\\arcsin'=96
+'\\arccos'=97
+'\\arctan'=98
+'\\arccsc'=99
+'\\arcsec'=100
+'\\arccot'=101
+'\\sinh'=102
+'\\cosh'=103
+'\\tanh'=104
+'\\arsinh'=105
+'\\arcosh'=106
+'\\artanh'=107
+'\\arcsinh'=108
+'\\arccosh'=109
+'\\arctanh'=110
+'arsinh'=111
+'arcsinh'=112
+'arcosh'=113
+'arccosh'=114
+'artanh'=115
+'arctanh'=116
+'gcd'=117
+'lcm'=118
+'floor'=119
+'ceil'=120
+'\\sqrt'=121
+'\\gcd'=122
+'\\lcm'=123
+'\\floor'=124
+'\\ceil'=125
+'\\max'=126
+'\\min'=127
+'\\det'=128
+'eye'=129
+'zeros'=130
+'ones'=131
+'cols'=132
+'rows'=133
+'diag'=134
+'norm'=135
+'rank'=136
+'rref'=138
+'hstack'=139
+'vstack'=140
+'nullspace'=142
+'\\times'=147
+'\\cdot'=148
+'\\div'=149
+'\\frac'=150
+'\\choose'=152
+'\\mod'=153
+'\\mathit'=154
+'\\operatorname'=155
+'matrix'=156
+'pmatrix'=157
+'bmatrix'=158
+'vmatrix'=159
+'&'=165
+'\\\\'=166
+'_'=167
+'^'=168
+':'=169
+';'=170
+','=171
+'.'=172
+'E'=175
+'\\in'=181
+'='=182
+'<'=184
+'>'=186
+'!'=189
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.interp b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.interp
new file mode 100755
index 0000000..675645c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.interp
@@ -0,0 +1,612 @@
+token literal names:
+null
+'\\acute'
+'\\bar'
+'\\overline'
+'\\breve'
+'\\check'
+'\\widecheck'
+'\\dot'
+'\\ddot'
+'\\grave'
+'\\hat'
+'\\tilde'
+'\\widetilde'
+'\\vec'
+'\\overrightarrow'
+'\\bm'
+'\\boldsymbol'
+'\\text'
+'\\textit'
+'\\mathbb'
+'\\mathbin'
+'\\mathbf'
+'\\mathcal'
+'\\mathclap'
+'\\mathclose'
+'\\mathellipsis'
+'\\mathfrak'
+'\\mathinner'
+'\\mathnormal'
+'\\mathop'
+'\\mathopen'
+'\\mathord'
+'\\mathpunct'
+'\\mathrel'
+'\\mathring'
+'\\mathrlap'
+'\\mathrm'
+'\\mathscr'
+'\\mathsf'
+'\\mathsterling'
+'\\mathtt'
+'^T'
+'^{T}'
+'^{\\top}'
+'\''
+null
+'\\$'
+'+'
+'-'
+'*'
+null
+'('
+')'
+'\\lgroup'
+'\\rgroup'
+'{'
+'}'
+'\\{'
+'\\}'
+'\\lbrace'
+'\\rbrace'
+'['
+']'
+'\\lbrack'
+'\\rbrack'
+'|'
+'\\lvert'
+'\\rvert'
+'\\vert'
+'\\|'
+'\\lfloor'
+'\\rfloor'
+'\\llcorner'
+'\\lrcorner'
+'\\lceil'
+'\\rceil'
+'\\ulcorner'
+'\\urcorner'
+'\\left'
+'\\right'
+'\\mleft'
+'\\mright'
+'\\lim'
+null
+'\\int'
+'\\sum'
+'\\prod'
+'\\log'
+'\\ln'
+'\\exp'
+'\\sin'
+'\\cos'
+'\\tan'
+'\\csc'
+'\\sec'
+'\\cot'
+'\\arcsin'
+'\\arccos'
+'\\arctan'
+'\\arccsc'
+'\\arcsec'
+'\\arccot'
+'\\sinh'
+'\\cosh'
+'\\tanh'
+'\\arsinh'
+'\\arcosh'
+'\\artanh'
+'\\arcsinh'
+'\\arccosh'
+'\\arctanh'
+'arsinh'
+'arcsinh'
+'arcosh'
+'arccosh'
+'artanh'
+'arctanh'
+'gcd'
+'lcm'
+'floor'
+'ceil'
+'\\sqrt'
+'\\gcd'
+'\\lcm'
+'\\floor'
+'\\ceil'
+'\\max'
+'\\min'
+'\\det'
+'eye'
+'zeros'
+'ones'
+'cols'
+'rows'
+'diag'
+'norm'
+'rank'
+null
+'rref'
+'hstack'
+'vstack'
+null
+'nullspace'
+null
+null
+null
+null
+'\\times'
+'\\cdot'
+'\\div'
+'\\frac'
+null
+'\\choose'
+'\\mod'
+'\\mathit'
+'\\operatorname'
+'matrix'
+'pmatrix'
+'bmatrix'
+'vmatrix'
+null
+null
+null
+null
+null
+'&'
+'\\\\'
+'_'
+'^'
+':'
+';'
+','
+'.'
+null
+null
+'E'
+null
+null
+null
+null
+null
+'\\in'
+'='
+null
+'<'
+null
+'>'
+null
+null
+'!'
+null
+null
+null
+null
+null
+
+token symbolic names:
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+null
+WS
+DOLLAR_SIGN
+ADD
+SUB
+MUL
+DIV
+L_PAREN
+R_PAREN
+L_GROUP
+R_GROUP
+L_BRACE
+R_BRACE
+L_BRACE_VISUAL
+R_BRACE_VISUAL
+L_BRACE_CMD
+R_BRACE_CMD
+L_BRACKET
+R_BRACKET
+L_BRACK
+R_BRACK
+BAR
+L_VERT
+R_VERT
+VERT
+NORM
+L_FLOOR
+R_FLOOR
+LL_CORNER
+LR_CORNER
+L_CEIL
+R_CEIL
+UL_CORNER
+UR_CORNER
+L_LEFT
+R_RIGHT
+ML_LEFT
+MR_RIGHT
+FUNC_LIM
+LIM_APPROACH_SYM
+FUNC_INT
+FUNC_SUM
+FUNC_PROD
+FUNC_LOG
+FUNC_LN
+FUNC_EXP
+FUNC_SIN
+FUNC_COS
+FUNC_TAN
+FUNC_CSC
+FUNC_SEC
+FUNC_COT
+FUNC_ARCSIN
+FUNC_ARCCOS
+FUNC_ARCTAN
+FUNC_ARCCSC
+FUNC_ARCSEC
+FUNC_ARCCOT
+FUNC_SINH
+FUNC_COSH
+FUNC_TANH
+FUNC_ARSINH
+FUNC_ARCOSH
+FUNC_ARTANH
+FUNC_ARCSINH
+FUNC_ARCCOSH
+FUNC_ARCTANH
+FUNC_ARSINH_NAME
+FUNC_ARCSINH_NAME
+FUNC_ARCOSH_NAME
+FUNC_ARCCOSH_NAME
+FUNC_ARTANH_NAME
+FUNC_ARCTANH_NAME
+FUNC_GCD_NAME
+FUNC_LCM_NAME
+FUNC_FLOOR_NAME
+FUNC_CEIL_NAME
+FUNC_SQRT
+FUNC_GCD
+FUNC_LCM
+FUNC_FLOOR
+FUNC_CEIL
+FUNC_MAX
+FUNC_MIN
+FUNC_DET
+FUNC_EYE_NAME
+FUNC_ZEROS_NAME
+FUNC_ONES_NAME
+FUNC_COLS_NAME
+FUNC_ROWS_NAME
+FUNC_DIAG_NAME
+FUNC_NORM_NAME
+FUNC_RANK_NAME
+FUNC_TRACE_NAME
+FUNC_RREF_NAME
+FUNC_HSTACK_NAME
+FUNC_VSTACK_NAME
+FUNC_ORTHOGONALIZE_NAME
+FUNC_NULLSPACE_NAME
+FUNC_DIAGONALIZE_NAME
+FUNC_EIGENVALS_NAME
+FUNC_EIGENVECTORS_NAME
+FUNC_SVD_NAME
+CMD_TIMES
+CMD_CDOT
+CMD_DIV
+CMD_FRAC
+CMD_BINOM
+CMD_CHOOSE
+CMD_MOD
+CMD_MATHIT
+CMD_OPERATORNAME
+MATRIX_TYPE_MATRIX
+MATRIX_TYPE_PMATRIX
+MATRIX_TYPE_BMATRIX
+MATRIX_TYPE_DET
+MATRIX_TYPES
+CMD_MATRIX_START
+CMD_MATRIX_END
+CMD_DET_START
+CMD_DET_END
+MATRIX_DEL_COL
+MATRIX_DEL_ROW
+UNDERSCORE
+CARET
+COLON
+SEMICOLON
+COMMA
+PERIOD
+DIFFERENTIAL
+EXP_E
+E_NOTATION_E
+LETTER_NO_E
+MATRIX_XRIGHTARROW
+TRANSFORM_EXCHANGE
+NUMBER
+E_NOTATION
+IN
+ASSIGNMENT
+EQUAL
+LT
+LTE
+GT
+GTE
+UNEQUAL
+BANG
+PERCENT_NUMBER
+GREEK_CMD
+OTHER_SYMBOL_CMD
+SYMBOL
+VARIABLE
+
+rule names:
+T__0
+T__1
+T__2
+T__3
+T__4
+T__5
+T__6
+T__7
+T__8
+T__9
+T__10
+T__11
+T__12
+T__13
+T__14
+T__15
+T__16
+T__17
+T__18
+T__19
+T__20
+T__21
+T__22
+T__23
+T__24
+T__25
+T__26
+T__27
+T__28
+T__29
+T__30
+T__31
+T__32
+T__33
+T__34
+T__35
+T__36
+T__37
+T__38
+T__39
+T__40
+T__41
+T__42
+T__43
+WS
+DOLLAR_SIGN
+ADD
+SUB
+MUL
+DIV
+L_PAREN
+R_PAREN
+L_GROUP
+R_GROUP
+L_BRACE
+R_BRACE
+L_BRACE_VISUAL
+R_BRACE_VISUAL
+L_BRACE_CMD
+R_BRACE_CMD
+L_BRACKET
+R_BRACKET
+L_BRACK
+R_BRACK
+BAR
+L_VERT
+R_VERT
+VERT
+NORM
+L_FLOOR
+R_FLOOR
+LL_CORNER
+LR_CORNER
+L_CEIL
+R_CEIL
+UL_CORNER
+UR_CORNER
+L_LEFT
+R_RIGHT
+ML_LEFT
+MR_RIGHT
+FUNC_LIM
+LIM_APPROACH_SYM
+FUNC_INT
+FUNC_SUM
+FUNC_PROD
+FUNC_LOG
+FUNC_LN
+FUNC_EXP
+FUNC_SIN
+FUNC_COS
+FUNC_TAN
+FUNC_CSC
+FUNC_SEC
+FUNC_COT
+FUNC_ARCSIN
+FUNC_ARCCOS
+FUNC_ARCTAN
+FUNC_ARCCSC
+FUNC_ARCSEC
+FUNC_ARCCOT
+FUNC_SINH
+FUNC_COSH
+FUNC_TANH
+FUNC_ARSINH
+FUNC_ARCOSH
+FUNC_ARTANH
+FUNC_ARCSINH
+FUNC_ARCCOSH
+FUNC_ARCTANH
+FUNC_ARSINH_NAME
+FUNC_ARCSINH_NAME
+FUNC_ARCOSH_NAME
+FUNC_ARCCOSH_NAME
+FUNC_ARTANH_NAME
+FUNC_ARCTANH_NAME
+FUNC_GCD_NAME
+FUNC_LCM_NAME
+FUNC_FLOOR_NAME
+FUNC_CEIL_NAME
+FUNC_SQRT
+FUNC_GCD
+FUNC_LCM
+FUNC_FLOOR
+FUNC_CEIL
+FUNC_MAX
+FUNC_MIN
+FUNC_DET
+FUNC_EYE_NAME
+FUNC_ZEROS_NAME
+FUNC_ONES_NAME
+FUNC_COLS_NAME
+FUNC_ROWS_NAME
+FUNC_DIAG_NAME
+FUNC_NORM_NAME
+FUNC_RANK_NAME
+FUNC_TRACE_NAME
+FUNC_RREF_NAME
+FUNC_HSTACK_NAME
+FUNC_VSTACK_NAME
+FUNC_ORTHOGONALIZE_NAME
+FUNC_NULLSPACE_NAME
+FUNC_DIAGONALIZE_NAME
+FUNC_EIGENVALS_NAME
+FUNC_EIGENVECTORS_NAME
+FUNC_SVD_NAME
+CMD_TIMES
+CMD_CDOT
+CMD_DIV
+CMD_FRAC
+CMD_BINOM
+CMD_CHOOSE
+CMD_MOD
+CMD_MATHIT
+CMD_OPERATORNAME
+MATRIX_TYPE_MATRIX
+MATRIX_TYPE_PMATRIX
+MATRIX_TYPE_BMATRIX
+MATRIX_TYPE_DET
+MATRIX_TYPES
+CMD_MATRIX_START
+CMD_MATRIX_END
+CMD_DET_START
+CMD_DET_END
+MATRIX_DEL_COL
+MATRIX_DEL_ROW
+UNDERSCORE
+CARET
+COLON
+SEMICOLON
+COMMA
+PERIOD
+WS_CHAR
+DIFFERENTIAL
+EXP_E
+E_NOTATION_E
+LETTER_NO_E
+LETTER
+DIGIT
+MATRIX_XRIGHTARROW
+TRANSFORM_EXCHANGE
+NUMBER
+E_NOTATION
+IN
+ASSIGNMENT
+EQUAL
+LT
+LTE
+GT
+GTE
+UNEQUAL
+BANG
+PERCENT_SIGN
+PERCENT_NUMBER
+GREEK_LETTER
+GREEK_CMD
+OTHER_SYMBOL
+OTHER_SYMBOL_CMD
+PI
+INFTY_CMD
+PARTIAL_CMD
+INFTY
+EMPTYSET
+SYMBOL
+VARIABLE_CMD
+VARIABLE_SYMBOL
+VARIABLE
+
+channel names:
+DEFAULT_TOKEN_CHANNEL
+HIDDEN
+
+mode names:
+DEFAULT_MODE
+
+atn:
+[4, 0, 194, 2795, 6, -1, 2, 0, 7, 0, 2, 1, 7, 1, 2, 2, 7, 2, 2, 3, 7, 3, 2, 4, 7, 4, 2, 5, 7, 5, 2, 6, 7, 6, 2, 7, 7, 7, 2, 8, 7, 8, 2, 9, 7, 9, 2, 10, 7, 10, 2, 11, 7, 11, 2, 12, 7, 12, 2, 13, 7, 13, 2, 14, 7, 14, 2, 15, 7, 15, 2, 16, 7, 16, 2, 17, 7, 17, 2, 18, 7, 18, 2, 19, 7, 19, 2, 20, 7, 20, 2, 21, 7, 21, 2, 22, 7, 22, 2, 23, 7, 23, 2, 24, 7, 24, 2, 25, 7, 25, 2, 26, 7, 26, 2, 27, 7, 27, 2, 28, 7, 28, 2, 29, 7, 29, 2, 30, 7, 30, 2, 31, 7, 31, 2, 32, 7, 32, 2, 33, 7, 33, 2, 34, 7, 34, 2, 35, 7, 35, 2, 36, 7, 36, 2, 37, 7, 37, 2, 38, 7, 38, 2, 39, 7, 39, 2, 40, 7, 40, 2, 41, 7, 41, 2, 42, 7, 42, 2, 43, 7, 43, 2, 44, 7, 44, 2, 45, 7, 45, 2, 46, 7, 46, 2, 47, 7, 47, 2, 48, 7, 48, 2, 49, 7, 49, 2, 50, 7, 50, 2, 51, 7, 51, 2, 52, 7, 52, 2, 53, 7, 53, 2, 54, 7, 54, 2, 55, 7, 55, 2, 56, 7, 56, 2, 57, 7, 57, 2, 58, 7, 58, 2, 59, 7, 59, 2, 60, 7, 60, 2, 61, 7, 61, 2, 62, 7, 62, 2, 63, 7, 63, 2, 64, 7, 64, 2, 65, 7, 65, 2, 66, 7, 66, 2, 67, 7, 67, 2, 68, 7, 68, 2, 69, 7, 69, 2, 70, 7, 70, 2, 71, 7, 71, 2, 72, 7, 72, 2, 73, 7, 73, 2, 74, 7, 74, 2, 75, 7, 75, 2, 76, 7, 76, 2, 77, 7, 77, 2, 78, 7, 78, 2, 79, 7, 79, 2, 80, 7, 80, 2, 81, 7, 81, 2, 82, 7, 82, 2, 83, 7, 83, 2, 84, 7, 84, 2, 85, 7, 85, 2, 86, 7, 86, 2, 87, 7, 87, 2, 88, 7, 88, 2, 89, 7, 89, 2, 90, 7, 90, 2, 91, 7, 91, 2, 92, 7, 92, 2, 93, 7, 93, 2, 94, 7, 94, 2, 95, 7, 95, 2, 96, 7, 96, 2, 97, 7, 97, 2, 98, 7, 98, 2, 99, 7, 99, 2, 100, 7, 100, 2, 101, 7, 101, 2, 102, 7, 102, 2, 103, 7, 103, 2, 104, 7, 104, 2, 105, 7, 105, 2, 106, 7, 106, 2, 107, 7, 107, 2, 108, 7, 108, 2, 109, 7, 109, 2, 110, 7, 110, 2, 111, 7, 111, 2, 112, 7, 112, 2, 113, 7, 113, 2, 114, 7, 114, 2, 115, 7, 115, 2, 116, 7, 116, 2, 117, 7, 117, 2, 118, 7, 118, 2, 119, 7, 119, 2, 120, 7, 120, 2, 121, 7, 121, 2, 122, 7, 122, 2, 123, 7, 123, 2, 124, 7, 124, 2, 125, 7, 125, 2, 126, 7, 126, 2, 127, 7, 127, 2, 128, 7, 128, 2, 129, 7, 129, 2, 130, 7, 130, 2, 131, 7, 131, 2, 132, 7, 132, 2, 133, 7, 133, 2, 134, 7, 134, 2, 135, 7, 135, 2, 136, 7, 136, 2, 137, 7, 137, 2, 138, 7, 138, 2, 139, 7, 139, 2, 140, 7, 140, 2, 141, 7, 141, 2, 142, 7, 142, 2, 143, 7, 143, 2, 144, 7, 144, 2, 145, 7, 145, 2, 146, 7, 146, 2, 147, 7, 147, 2, 148, 7, 148, 2, 149, 7, 149, 2, 150, 7, 150, 2, 151, 7, 151, 2, 152, 7, 152, 2, 153, 7, 153, 2, 154, 7, 154, 2, 155, 7, 155, 2, 156, 7, 156, 2, 157, 7, 157, 2, 158, 7, 158, 2, 159, 7, 159, 2, 160, 7, 160, 2, 161, 7, 161, 2, 162, 7, 162, 2, 163, 7, 163, 2, 164, 7, 164, 2, 165, 7, 165, 2, 166, 7, 166, 2, 167, 7, 167, 2, 168, 7, 168, 2, 169, 7, 169, 2, 170, 7, 170, 2, 171, 7, 171, 2, 172, 7, 172, 2, 173, 7, 173, 2, 174, 7, 174, 2, 175, 7, 175, 2, 176, 7, 176, 2, 177, 7, 177, 2, 178, 7, 178, 2, 179, 7, 179, 2, 180, 7, 180, 2, 181, 7, 181, 2, 182, 7, 182, 2, 183, 7, 183, 2, 184, 7, 184, 2, 185, 7, 185, 2, 186, 7, 186, 2, 187, 7, 187, 2, 188, 7, 188, 2, 189, 7, 189, 2, 190, 7, 190, 2, 191, 7, 191, 2, 192, 7, 192, 2, 193, 7, 193, 2, 194, 7, 194, 2, 195, 7, 195, 2, 196, 7, 196, 2, 197, 7, 197, 2, 198, 7, 198, 2, 199, 7, 199, 2, 200, 7, 200, 2, 201, 7, 201, 2, 202, 7, 202, 2, 203, 7, 203, 2, 204, 7, 204, 2, 205, 7, 205, 2, 206, 7, 206, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 14, 1, 14, 1, 14, 1, 14, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 20, 1, 20, 1, 20, 1, 20, 1, 20, 1, 20, 1, 20, 1, 20, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 40, 1, 40, 1, 40, 1, 41, 1, 41, 1, 41, 1, 41, 1, 41, 1, 42, 1, 42, 1, 42, 1, 42, 1, 42, 1, 42, 1, 42, 1, 42, 1, 43, 1, 43, 1, 44, 4, 44, 790, 8, 44, 11, 44, 12, 44, 791, 1, 44, 1, 44, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 46, 1, 46, 1, 47, 1, 47, 1, 48, 1, 48, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 3, 49, 813, 8, 49, 1, 50, 1, 50, 1, 51, 1, 51, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 54, 1, 54, 1, 55, 1, 55, 1, 56, 1, 56, 1, 56, 1, 57, 1, 57, 1, 57, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 59, 1, 59, 1, 59, 1, 59, 1, 59, 1, 59, 1, 59, 1, 59, 1, 60, 1, 60, 1, 61, 1, 61, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 64, 1, 64, 1, 65, 1, 65, 1, 65, 1, 65, 1, 65, 1, 65, 1, 65, 1, 66, 1, 66, 1, 66, 1, 66, 1, 66, 1, 66, 1, 66, 1, 67, 1, 67, 1, 67, 1, 67, 1, 67, 1, 67, 1, 68, 1, 68, 1, 68, 1, 69, 1, 69, 1, 69, 1, 69, 1, 69, 1, 69, 1, 69, 1, 69, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 73, 1, 73, 1, 73, 1, 73, 1, 73, 1, 73, 1, 73, 1, 74, 1, 74, 1, 74, 1, 74, 1, 74, 1, 74, 1, 74, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 77, 1, 77, 1, 77, 1, 77, 1, 77, 1, 77, 1, 78, 1, 78, 1, 78, 1, 78, 1, 78, 1, 78, 1, 78, 1, 79, 1, 79, 1, 79, 1, 79, 1, 79, 1, 79, 1, 79, 1, 80, 1, 80, 1, 80, 1, 80, 1, 80, 1, 80, 1, 80, 1, 80, 1, 81, 1, 81, 1, 81, 1, 81, 1, 81, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 3, 82, 1064, 8, 82, 1, 83, 1, 83, 1, 83, 1, 83, 1, 83, 1, 84, 1, 84, 1, 84, 1, 84, 1, 84, 1, 85, 1, 85, 1, 85, 1, 85, 1, 85, 1, 85, 1, 86, 1, 86, 1, 86, 1, 86, 1, 86, 1, 87, 1, 87, 1, 87, 1, 87, 1, 88, 1, 88, 1, 88, 1, 88, 1, 88, 1, 89, 1, 89, 1, 89, 1, 89, 1, 89, 1, 90, 1, 90, 1, 90, 1, 90, 1, 90, 1, 91, 1, 91, 1, 91, 1, 91, 1, 91, 1, 92, 1, 92, 1, 92, 1, 92, 1, 92, 1, 93, 1, 93, 1, 93, 1, 93, 1, 93, 1, 94, 1, 94, 1, 94, 1, 94, 1, 94, 1, 95, 1, 95, 1, 95, 1, 95, 1, 95, 1, 95, 1, 95, 1, 95, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 98, 1, 98, 1, 98, 1, 98, 1, 98, 1, 98, 1, 98, 1, 98, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 100, 1, 100, 1, 100, 1, 100, 1, 100, 1, 100, 1, 100, 1, 100, 1, 101, 1, 101, 1, 101, 1, 101, 1, 101, 1, 101, 1, 102, 1, 102, 1, 102, 1, 102, 1, 102, 1, 102, 1, 103, 1, 103, 1, 103, 1, 103, 1, 103, 1, 103, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 106, 1, 106, 1, 106, 1, 106, 1, 106, 1, 106, 1, 106, 1, 106, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 110, 1, 110, 1, 110, 1, 110, 1, 110, 1, 110, 1, 110, 1, 111, 1, 111, 1, 111, 1, 111, 1, 111, 1, 111, 1, 111, 1, 111, 1, 112, 1, 112, 1, 112, 1, 112, 1, 112, 1, 112, 1, 112, 1, 113, 1, 113, 1, 113, 1, 113, 1, 113, 1, 113, 1, 113, 1, 113, 1, 114, 1, 114, 1, 114, 1, 114, 1, 114, 1, 114, 1, 114, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 116, 1, 116, 1, 116, 1, 116, 1, 117, 1, 117, 1, 117, 1, 117, 1, 118, 1, 118, 1, 118, 1, 118, 1, 118, 1, 118, 1, 119, 1, 119, 1, 119, 1, 119, 1, 119, 1, 120, 1, 120, 1, 120, 1, 120, 1, 120, 1, 120, 1, 121, 1, 121, 1, 121, 1, 121, 1, 121, 1, 122, 1, 122, 1, 122, 1, 122, 1, 122, 1, 123, 1, 123, 1, 123, 1, 123, 1, 123, 1, 123, 1, 123, 1, 124, 1, 124, 1, 124, 1, 124, 1, 124, 1, 124, 1, 125, 1, 125, 1, 125, 1, 125, 1, 125, 1, 126, 1, 126, 1, 126, 1, 126, 1, 126, 1, 127, 1, 127, 1, 127, 1, 127, 1, 127, 1, 128, 1, 128, 1, 128, 1, 128, 1, 129, 1, 129, 1, 129, 1, 129, 1, 129, 1, 129, 1, 130, 1, 130, 1, 130, 1, 130, 1, 130, 1, 131, 1, 131, 1, 131, 1, 131, 1, 131, 1, 132, 1, 132, 1, 132, 1, 132, 1, 132, 1, 133, 1, 133, 1, 133, 1, 133, 1, 133, 1, 134, 1, 134, 1, 134, 1, 134, 1, 134, 1, 135, 1, 135, 1, 135, 1, 135, 1, 135, 1, 136, 1, 136, 1, 136, 1, 136, 1, 136, 1, 136, 1, 136, 3, 136, 1398, 8, 136, 1, 137, 1, 137, 1, 137, 1, 137, 1, 137, 1, 138, 1, 138, 1, 138, 1, 138, 1, 138, 1, 138, 1, 138, 1, 139, 1, 139, 1, 139, 1, 139, 1, 139, 1, 139, 1, 139, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 3, 140, 1451, 8, 140, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 3, 142, 1482, 8, 142, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 3, 143, 1504, 8, 143, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 3, 144, 1528, 8, 144, 1, 145, 1, 145, 1, 145, 1, 145, 1, 145, 1, 145, 3, 145, 1536, 8, 145, 1, 146, 1, 146, 1, 146, 1, 146, 1, 146, 1, 146, 1, 146, 1, 147, 1, 147, 1, 147, 1, 147, 1, 147, 1, 147, 1, 148, 1, 148, 1, 148, 1, 148, 1, 148, 1, 149, 1, 149, 1, 149, 1, 149, 1, 149, 1, 149, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 3, 150, 1582, 8, 150, 1, 151, 1, 151, 1, 151, 1, 151, 1, 151, 1, 151, 1, 151, 1, 151, 1, 152, 1, 152, 1, 152, 1, 152, 1, 152, 1, 153, 1, 153, 1, 153, 1, 153, 1, 153, 1, 153, 1, 153, 1, 153, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 155, 1, 155, 1, 155, 1, 155, 1, 155, 1, 155, 1, 155, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 158, 1, 158, 1, 158, 1, 158, 1, 158, 1, 158, 1, 158, 1, 158, 1, 159, 1, 159, 1, 159, 3, 159, 1653, 8, 159, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 164, 1, 164, 1, 165, 1, 165, 1, 165, 1, 166, 1, 166, 1, 167, 1, 167, 1, 168, 1, 168, 1, 169, 1, 169, 1, 170, 1, 170, 1, 171, 1, 171, 1, 172, 1, 172, 1, 173, 1, 173, 5, 173, 1716, 8, 173, 10, 173, 12, 173, 1719, 9, 173, 1, 173, 1, 173, 1, 173, 4, 173, 1724, 8, 173, 11, 173, 12, 173, 1725, 3, 173, 1728, 8, 173, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 3, 174, 1744, 8, 174, 1, 175, 1, 175, 1, 176, 1, 176, 1, 177, 1, 177, 1, 178, 1, 178, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 3, 179, 1778, 8, 179, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 3, 180, 1816, 8, 180, 1, 181, 4, 181, 1819, 8, 181, 11, 181, 12, 181, 1820, 1, 181, 1, 181, 1, 181, 1, 181, 1, 181, 5, 181, 1828, 8, 181, 10, 181, 12, 181, 1831, 9, 181, 1, 181, 5, 181, 1834, 8, 181, 10, 181, 12, 181, 1837, 9, 181, 1, 181, 1, 181, 1, 181, 1, 181, 1, 181, 5, 181, 1844, 8, 181, 10, 181, 12, 181, 1847, 9, 181, 1, 181, 1, 181, 4, 181, 1851, 8, 181, 11, 181, 12, 181, 1852, 3, 181, 1855, 8, 181, 1, 182, 1, 182, 1, 182, 1, 182, 3, 182, 1861, 8, 182, 1, 182, 4, 182, 1864, 8, 182, 11, 182, 12, 182, 1865, 1, 183, 1, 183, 1, 183, 1, 183, 1, 184, 1, 184, 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 3, 185, 1882, 8, 185, 1, 186, 1, 186, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 3, 187, 1902, 8, 187, 1, 188, 1, 188, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 3, 189, 1922, 8, 189, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 3, 190, 1946, 8, 190, 1, 191, 1, 191, 1, 192, 1, 192, 1, 192, 1, 193, 1, 193, 1, 193, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 3, 194, 2341, 8, 194, 1, 195, 1, 195, 3, 195, 2345, 8, 195, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 3, 196, 2697, 8, 196, 1, 197, 1, 197, 3, 197, 2701, 8, 197, 1, 198, 1, 198, 1, 198, 1, 198, 1, 199, 1, 199, 1, 199, 1, 199, 1, 199, 1, 199, 1, 199, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 201, 1, 201, 1, 201, 1, 201, 1, 201, 1, 201, 1, 201, 3, 201, 2730, 8, 201, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 203, 1, 203, 1, 203, 1, 203, 3, 203, 2746, 8, 203, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 205, 1, 205, 1, 205, 1, 205, 4, 205, 2762, 8, 205, 11, 205, 12, 205, 2763, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 4, 205, 2773, 8, 205, 11, 205, 12, 205, 2774, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 3, 205, 2783, 8, 205, 3, 205, 2785, 8, 205, 3, 205, 2787, 8, 205, 1, 206, 1, 206, 1, 206, 1, 206, 1, 206, 3, 206, 2794, 8, 206, 1, 1717, 0, 207, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34, 69, 35, 71, 36, 73, 37, 75, 38, 77, 39, 79, 40, 81, 41, 83, 42, 85, 43, 87, 44, 89, 45, 91, 46, 93, 47, 95, 48, 97, 49, 99, 50, 101, 51, 103, 52, 105, 53, 107, 54, 109, 55, 111, 56, 113, 57, 115, 58, 117, 59, 119, 60, 121, 61, 123, 62, 125, 63, 127, 64, 129, 65, 131, 66, 133, 67, 135, 68, 137, 69, 139, 70, 141, 71, 143, 72, 145, 73, 147, 74, 149, 75, 151, 76, 153, 77, 155, 78, 157, 79, 159, 80, 161, 81, 163, 82, 165, 83, 167, 84, 169, 85, 171, 86, 173, 87, 175, 88, 177, 89, 179, 90, 181, 91, 183, 92, 185, 93, 187, 94, 189, 95, 191, 96, 193, 97, 195, 98, 197, 99, 199, 100, 201, 101, 203, 102, 205, 103, 207, 104, 209, 105, 211, 106, 213, 107, 215, 108, 217, 109, 219, 110, 221, 111, 223, 112, 225, 113, 227, 114, 229, 115, 231, 116, 233, 117, 235, 118, 237, 119, 239, 120, 241, 121, 243, 122, 245, 123, 247, 124, 249, 125, 251, 126, 253, 127, 255, 128, 257, 129, 259, 130, 261, 131, 263, 132, 265, 133, 267, 134, 269, 135, 271, 136, 273, 137, 275, 138, 277, 139, 279, 140, 281, 141, 283, 142, 285, 143, 287, 144, 289, 145, 291, 146, 293, 147, 295, 148, 297, 149, 299, 150, 301, 151, 303, 152, 305, 153, 307, 154, 309, 155, 311, 156, 313, 157, 315, 158, 317, 159, 319, 160, 321, 161, 323, 162, 325, 163, 327, 164, 329, 165, 331, 166, 333, 167, 335, 168, 337, 169, 339, 170, 341, 171, 343, 172, 345, 0, 347, 173, 349, 174, 351, 175, 353, 176, 355, 0, 357, 0, 359, 177, 361, 178, 363, 179, 365, 180, 367, 181, 369, 182, 371, 183, 373, 184, 375, 185, 377, 186, 379, 187, 381, 188, 383, 189, 385, 0, 387, 190, 389, 0, 391, 191, 393, 0, 395, 192, 397, 0, 399, 0, 401, 0, 403, 0, 405, 0, 407, 193, 409, 0, 411, 0, 413, 194, 1, 0, 5, 3, 0, 9, 10, 13, 13, 32, 32, 2, 0, 65, 90, 97, 122, 4, 0, 65, 68, 70, 90, 97, 100, 102, 122, 1, 0, 48, 57, 1, 0, 32, 32, 2943, 0, 1, 1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 15, 1, 0, 0, 0, 0, 17, 1, 0, 0, 0, 0, 19, 1, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 23, 1, 0, 0, 0, 0, 25, 1, 0, 0, 0, 0, 27, 1, 0, 0, 0, 0, 29, 1, 0, 0, 0, 0, 31, 1, 0, 0, 0, 0, 33, 1, 0, 0, 0, 0, 35, 1, 0, 0, 0, 0, 37, 1, 0, 0, 0, 0, 39, 1, 0, 0, 0, 0, 41, 1, 0, 0, 0, 0, 43, 1, 0, 0, 0, 0, 45, 1, 0, 0, 0, 0, 47, 1, 0, 0, 0, 0, 49, 1, 0, 0, 0, 0, 51, 1, 0, 0, 0, 0, 53, 1, 0, 0, 0, 0, 55, 1, 0, 0, 0, 0, 57, 1, 0, 0, 0, 0, 59, 1, 0, 0, 0, 0, 61, 1, 0, 0, 0, 0, 63, 1, 0, 0, 0, 0, 65, 1, 0, 0, 0, 0, 67, 1, 0, 0, 0, 0, 69, 1, 0, 0, 0, 0, 71, 1, 0, 0, 0, 0, 73, 1, 0, 0, 0, 0, 75, 1, 0, 0, 0, 0, 77, 1, 0, 0, 0, 0, 79, 1, 0, 0, 0, 0, 81, 1, 0, 0, 0, 0, 83, 1, 0, 0, 0, 0, 85, 1, 0, 0, 0, 0, 87, 1, 0, 0, 0, 0, 89, 1, 0, 0, 0, 0, 91, 1, 0, 0, 0, 0, 93, 1, 0, 0, 0, 0, 95, 1, 0, 0, 0, 0, 97, 1, 0, 0, 0, 0, 99, 1, 0, 0, 0, 0, 101, 1, 0, 0, 0, 0, 103, 1, 0, 0, 0, 0, 105, 1, 0, 0, 0, 0, 107, 1, 0, 0, 0, 0, 109, 1, 0, 0, 0, 0, 111, 1, 0, 0, 0, 0, 113, 1, 0, 0, 0, 0, 115, 1, 0, 0, 0, 0, 117, 1, 0, 0, 0, 0, 119, 1, 0, 0, 0, 0, 121, 1, 0, 0, 0, 0, 123, 1, 0, 0, 0, 0, 125, 1, 0, 0, 0, 0, 127, 1, 0, 0, 0, 0, 129, 1, 0, 0, 0, 0, 131, 1, 0, 0, 0, 0, 133, 1, 0, 0, 0, 0, 135, 1, 0, 0, 0, 0, 137, 1, 0, 0, 0, 0, 139, 1, 0, 0, 0, 0, 141, 1, 0, 0, 0, 0, 143, 1, 0, 0, 0, 0, 145, 1, 0, 0, 0, 0, 147, 1, 0, 0, 0, 0, 149, 1, 0, 0, 0, 0, 151, 1, 0, 0, 0, 0, 153, 1, 0, 0, 0, 0, 155, 1, 0, 0, 0, 0, 157, 1, 0, 0, 0, 0, 159, 1, 0, 0, 0, 0, 161, 1, 0, 0, 0, 0, 163, 1, 0, 0, 0, 0, 165, 1, 0, 0, 0, 0, 167, 1, 0, 0, 0, 0, 169, 1, 0, 0, 0, 0, 171, 1, 0, 0, 0, 0, 173, 1, 0, 0, 0, 0, 175, 1, 0, 0, 0, 0, 177, 1, 0, 0, 0, 0, 179, 1, 0, 0, 0, 0, 181, 1, 0, 0, 0, 0, 183, 1, 0, 0, 0, 0, 185, 1, 0, 0, 0, 0, 187, 1, 0, 0, 0, 0, 189, 1, 0, 0, 0, 0, 191, 1, 0, 0, 0, 0, 193, 1, 0, 0, 0, 0, 195, 1, 0, 0, 0, 0, 197, 1, 0, 0, 0, 0, 199, 1, 0, 0, 0, 0, 201, 1, 0, 0, 0, 0, 203, 1, 0, 0, 0, 0, 205, 1, 0, 0, 0, 0, 207, 1, 0, 0, 0, 0, 209, 1, 0, 0, 0, 0, 211, 1, 0, 0, 0, 0, 213, 1, 0, 0, 0, 0, 215, 1, 0, 0, 0, 0, 217, 1, 0, 0, 0, 0, 219, 1, 0, 0, 0, 0, 221, 1, 0, 0, 0, 0, 223, 1, 0, 0, 0, 0, 225, 1, 0, 0, 0, 0, 227, 1, 0, 0, 0, 0, 229, 1, 0, 0, 0, 0, 231, 1, 0, 0, 0, 0, 233, 1, 0, 0, 0, 0, 235, 1, 0, 0, 0, 0, 237, 1, 0, 0, 0, 0, 239, 1, 0, 0, 0, 0, 241, 1, 0, 0, 0, 0, 243, 1, 0, 0, 0, 0, 245, 1, 0, 0, 0, 0, 247, 1, 0, 0, 0, 0, 249, 1, 0, 0, 0, 0, 251, 1, 0, 0, 0, 0, 253, 1, 0, 0, 0, 0, 255, 1, 0, 0, 0, 0, 257, 1, 0, 0, 0, 0, 259, 1, 0, 0, 0, 0, 261, 1, 0, 0, 0, 0, 263, 1, 0, 0, 0, 0, 265, 1, 0, 0, 0, 0, 267, 1, 0, 0, 0, 0, 269, 1, 0, 0, 0, 0, 271, 1, 0, 0, 0, 0, 273, 1, 0, 0, 0, 0, 275, 1, 0, 0, 0, 0, 277, 1, 0, 0, 0, 0, 279, 1, 0, 0, 0, 0, 281, 1, 0, 0, 0, 0, 283, 1, 0, 0, 0, 0, 285, 1, 0, 0, 0, 0, 287, 1, 0, 0, 0, 0, 289, 1, 0, 0, 0, 0, 291, 1, 0, 0, 0, 0, 293, 1, 0, 0, 0, 0, 295, 1, 0, 0, 0, 0, 297, 1, 0, 0, 0, 0, 299, 1, 0, 0, 0, 0, 301, 1, 0, 0, 0, 0, 303, 1, 0, 0, 0, 0, 305, 1, 0, 0, 0, 0, 307, 1, 0, 0, 0, 0, 309, 1, 0, 0, 0, 0, 311, 1, 0, 0, 0, 0, 313, 1, 0, 0, 0, 0, 315, 1, 0, 0, 0, 0, 317, 1, 0, 0, 0, 0, 319, 1, 0, 0, 0, 0, 321, 1, 0, 0, 0, 0, 323, 1, 0, 0, 0, 0, 325, 1, 0, 0, 0, 0, 327, 1, 0, 0, 0, 0, 329, 1, 0, 0, 0, 0, 331, 1, 0, 0, 0, 0, 333, 1, 0, 0, 0, 0, 335, 1, 0, 0, 0, 0, 337, 1, 0, 0, 0, 0, 339, 1, 0, 0, 0, 0, 341, 1, 0, 0, 0, 0, 343, 1, 0, 0, 0, 0, 347, 1, 0, 0, 0, 0, 349, 1, 0, 0, 0, 0, 351, 1, 0, 0, 0, 0, 353, 1, 0, 0, 0, 0, 359, 1, 0, 0, 0, 0, 361, 1, 0, 0, 0, 0, 363, 1, 0, 0, 0, 0, 365, 1, 0, 0, 0, 0, 367, 1, 0, 0, 0, 0, 369, 1, 0, 0, 0, 0, 371, 1, 0, 0, 0, 0, 373, 1, 0, 0, 0, 0, 375, 1, 0, 0, 0, 0, 377, 1, 0, 0, 0, 0, 379, 1, 0, 0, 0, 0, 381, 1, 0, 0, 0, 0, 383, 1, 0, 0, 0, 0, 387, 1, 0, 0, 0, 0, 391, 1, 0, 0, 0, 0, 395, 1, 0, 0, 0, 0, 407, 1, 0, 0, 0, 0, 413, 1, 0, 0, 0, 1, 415, 1, 0, 0, 0, 3, 422, 1, 0, 0, 0, 5, 427, 1, 0, 0, 0, 7, 437, 1, 0, 0, 0, 9, 444, 1, 0, 0, 0, 11, 451, 1, 0, 0, 0, 13, 462, 1, 0, 0, 0, 15, 467, 1, 0, 0, 0, 17, 473, 1, 0, 0, 0, 19, 480, 1, 0, 0, 0, 21, 485, 1, 0, 0, 0, 23, 492, 1, 0, 0, 0, 25, 503, 1, 0, 0, 0, 27, 508, 1, 0, 0, 0, 29, 524, 1, 0, 0, 0, 31, 528, 1, 0, 0, 0, 33, 540, 1, 0, 0, 0, 35, 546, 1, 0, 0, 0, 37, 554, 1, 0, 0, 0, 39, 562, 1, 0, 0, 0, 41, 571, 1, 0, 0, 0, 43, 579, 1, 0, 0, 0, 45, 588, 1, 0, 0, 0, 47, 598, 1, 0, 0, 0, 49, 609, 1, 0, 0, 0, 51, 623, 1, 0, 0, 0, 53, 633, 1, 0, 0, 0, 55, 644, 1, 0, 0, 0, 57, 656, 1, 0, 0, 0, 59, 664, 1, 0, 0, 0, 61, 674, 1, 0, 0, 0, 63, 683, 1, 0, 0, 0, 65, 694, 1, 0, 0, 0, 67, 703, 1, 0, 0, 0, 69, 713, 1, 0, 0, 0, 71, 723, 1, 0, 0, 0, 73, 731, 1, 0, 0, 0, 75, 740, 1, 0, 0, 0, 77, 748, 1, 0, 0, 0, 79, 762, 1, 0, 0, 0, 81, 770, 1, 0, 0, 0, 83, 773, 1, 0, 0, 0, 85, 778, 1, 0, 0, 0, 87, 786, 1, 0, 0, 0, 89, 789, 1, 0, 0, 0, 91, 795, 1, 0, 0, 0, 93, 800, 1, 0, 0, 0, 95, 802, 1, 0, 0, 0, 97, 804, 1, 0, 0, 0, 99, 812, 1, 0, 0, 0, 101, 814, 1, 0, 0, 0, 103, 816, 1, 0, 0, 0, 105, 818, 1, 0, 0, 0, 107, 826, 1, 0, 0, 0, 109, 834, 1, 0, 0, 0, 111, 836, 1, 0, 0, 0, 113, 838, 1, 0, 0, 0, 115, 841, 1, 0, 0, 0, 117, 844, 1, 0, 0, 0, 119, 852, 1, 0, 0, 0, 121, 860, 1, 0, 0, 0, 123, 862, 1, 0, 0, 0, 125, 864, 1, 0, 0, 0, 127, 872, 1, 0, 0, 0, 129, 880, 1, 0, 0, 0, 131, 882, 1, 0, 0, 0, 133, 889, 1, 0, 0, 0, 135, 896, 1, 0, 0, 0, 137, 902, 1, 0, 0, 0, 139, 905, 1, 0, 0, 0, 141, 913, 1, 0, 0, 0, 143, 921, 1, 0, 0, 0, 145, 931, 1, 0, 0, 0, 147, 941, 1, 0, 0, 0, 149, 948, 1, 0, 0, 0, 151, 955, 1, 0, 0, 0, 153, 965, 1, 0, 0, 0, 155, 975, 1, 0, 0, 0, 157, 981, 1, 0, 0, 0, 159, 988, 1, 0, 0, 0, 161, 995, 1, 0, 0, 0, 163, 1003, 1, 0, 0, 0, 165, 1063, 1, 0, 0, 0, 167, 1065, 1, 0, 0, 0, 169, 1070, 1, 0, 0, 0, 171, 1075, 1, 0, 0, 0, 173, 1081, 1, 0, 0, 0, 175, 1086, 1, 0, 0, 0, 177, 1090, 1, 0, 0, 0, 179, 1095, 1, 0, 0, 0, 181, 1100, 1, 0, 0, 0, 183, 1105, 1, 0, 0, 0, 185, 1110, 1, 0, 0, 0, 187, 1115, 1, 0, 0, 0, 189, 1120, 1, 0, 0, 0, 191, 1125, 1, 0, 0, 0, 193, 1133, 1, 0, 0, 0, 195, 1141, 1, 0, 0, 0, 197, 1149, 1, 0, 0, 0, 199, 1157, 1, 0, 0, 0, 201, 1165, 1, 0, 0, 0, 203, 1173, 1, 0, 0, 0, 205, 1179, 1, 0, 0, 0, 207, 1185, 1, 0, 0, 0, 209, 1191, 1, 0, 0, 0, 211, 1199, 1, 0, 0, 0, 213, 1207, 1, 0, 0, 0, 215, 1215, 1, 0, 0, 0, 217, 1224, 1, 0, 0, 0, 219, 1233, 1, 0, 0, 0, 221, 1242, 1, 0, 0, 0, 223, 1249, 1, 0, 0, 0, 225, 1257, 1, 0, 0, 0, 227, 1264, 1, 0, 0, 0, 229, 1272, 1, 0, 0, 0, 231, 1279, 1, 0, 0, 0, 233, 1287, 1, 0, 0, 0, 235, 1291, 1, 0, 0, 0, 237, 1295, 1, 0, 0, 0, 239, 1301, 1, 0, 0, 0, 241, 1306, 1, 0, 0, 0, 243, 1312, 1, 0, 0, 0, 245, 1317, 1, 0, 0, 0, 247, 1322, 1, 0, 0, 0, 249, 1329, 1, 0, 0, 0, 251, 1335, 1, 0, 0, 0, 253, 1340, 1, 0, 0, 0, 255, 1345, 1, 0, 0, 0, 257, 1350, 1, 0, 0, 0, 259, 1354, 1, 0, 0, 0, 261, 1360, 1, 0, 0, 0, 263, 1365, 1, 0, 0, 0, 265, 1370, 1, 0, 0, 0, 267, 1375, 1, 0, 0, 0, 269, 1380, 1, 0, 0, 0, 271, 1385, 1, 0, 0, 0, 273, 1397, 1, 0, 0, 0, 275, 1399, 1, 0, 0, 0, 277, 1404, 1, 0, 0, 0, 279, 1411, 1, 0, 0, 0, 281, 1450, 1, 0, 0, 0, 283, 1452, 1, 0, 0, 0, 285, 1481, 1, 0, 0, 0, 287, 1503, 1, 0, 0, 0, 289, 1527, 1, 0, 0, 0, 291, 1535, 1, 0, 0, 0, 293, 1537, 1, 0, 0, 0, 295, 1544, 1, 0, 0, 0, 297, 1550, 1, 0, 0, 0, 299, 1555, 1, 0, 0, 0, 301, 1581, 1, 0, 0, 0, 303, 1583, 1, 0, 0, 0, 305, 1591, 1, 0, 0, 0, 307, 1596, 1, 0, 0, 0, 309, 1604, 1, 0, 0, 0, 311, 1618, 1, 0, 0, 0, 313, 1625, 1, 0, 0, 0, 315, 1633, 1, 0, 0, 0, 317, 1641, 1, 0, 0, 0, 319, 1652, 1, 0, 0, 0, 321, 1654, 1, 0, 0, 0, 323, 1665, 1, 0, 0, 0, 325, 1674, 1, 0, 0, 0, 327, 1685, 1, 0, 0, 0, 329, 1694, 1, 0, 0, 0, 331, 1696, 1, 0, 0, 0, 333, 1699, 1, 0, 0, 0, 335, 1701, 1, 0, 0, 0, 337, 1703, 1, 0, 0, 0, 339, 1705, 1, 0, 0, 0, 341, 1707, 1, 0, 0, 0, 343, 1709, 1, 0, 0, 0, 345, 1711, 1, 0, 0, 0, 347, 1713, 1, 0, 0, 0, 349, 1743, 1, 0, 0, 0, 351, 1745, 1, 0, 0, 0, 353, 1747, 1, 0, 0, 0, 355, 1749, 1, 0, 0, 0, 357, 1751, 1, 0, 0, 0, 359, 1777, 1, 0, 0, 0, 361, 1815, 1, 0, 0, 0, 363, 1854, 1, 0, 0, 0, 365, 1856, 1, 0, 0, 0, 367, 1867, 1, 0, 0, 0, 369, 1871, 1, 0, 0, 0, 371, 1881, 1, 0, 0, 0, 373, 1883, 1, 0, 0, 0, 375, 1901, 1, 0, 0, 0, 377, 1903, 1, 0, 0, 0, 379, 1921, 1, 0, 0, 0, 381, 1945, 1, 0, 0, 0, 383, 1947, 1, 0, 0, 0, 385, 1949, 1, 0, 0, 0, 387, 1952, 1, 0, 0, 0, 389, 2340, 1, 0, 0, 0, 391, 2342, 1, 0, 0, 0, 393, 2696, 1, 0, 0, 0, 395, 2698, 1, 0, 0, 0, 397, 2702, 1, 0, 0, 0, 399, 2706, 1, 0, 0, 0, 401, 2713, 1, 0, 0, 0, 403, 2729, 1, 0, 0, 0, 405, 2731, 1, 0, 0, 0, 407, 2745, 1, 0, 0, 0, 409, 2747, 1, 0, 0, 0, 411, 2761, 1, 0, 0, 0, 413, 2788, 1, 0, 0, 0, 415, 416, 5, 92, 0, 0, 416, 417, 5, 97, 0, 0, 417, 418, 5, 99, 0, 0, 418, 419, 5, 117, 0, 0, 419, 420, 5, 116, 0, 0, 420, 421, 5, 101, 0, 0, 421, 2, 1, 0, 0, 0, 422, 423, 5, 92, 0, 0, 423, 424, 5, 98, 0, 0, 424, 425, 5, 97, 0, 0, 425, 426, 5, 114, 0, 0, 426, 4, 1, 0, 0, 0, 427, 428, 5, 92, 0, 0, 428, 429, 5, 111, 0, 0, 429, 430, 5, 118, 0, 0, 430, 431, 5, 101, 0, 0, 431, 432, 5, 114, 0, 0, 432, 433, 5, 108, 0, 0, 433, 434, 5, 105, 0, 0, 434, 435, 5, 110, 0, 0, 435, 436, 5, 101, 0, 0, 436, 6, 1, 0, 0, 0, 437, 438, 5, 92, 0, 0, 438, 439, 5, 98, 0, 0, 439, 440, 5, 114, 0, 0, 440, 441, 5, 101, 0, 0, 441, 442, 5, 118, 0, 0, 442, 443, 5, 101, 0, 0, 443, 8, 1, 0, 0, 0, 444, 445, 5, 92, 0, 0, 445, 446, 5, 99, 0, 0, 446, 447, 5, 104, 0, 0, 447, 448, 5, 101, 0, 0, 448, 449, 5, 99, 0, 0, 449, 450, 5, 107, 0, 0, 450, 10, 1, 0, 0, 0, 451, 452, 5, 92, 0, 0, 452, 453, 5, 119, 0, 0, 453, 454, 5, 105, 0, 0, 454, 455, 5, 100, 0, 0, 455, 456, 5, 101, 0, 0, 456, 457, 5, 99, 0, 0, 457, 458, 5, 104, 0, 0, 458, 459, 5, 101, 0, 0, 459, 460, 5, 99, 0, 0, 460, 461, 5, 107, 0, 0, 461, 12, 1, 0, 0, 0, 462, 463, 5, 92, 0, 0, 463, 464, 5, 100, 0, 0, 464, 465, 5, 111, 0, 0, 465, 466, 5, 116, 0, 0, 466, 14, 1, 0, 0, 0, 467, 468, 5, 92, 0, 0, 468, 469, 5, 100, 0, 0, 469, 470, 5, 100, 0, 0, 470, 471, 5, 111, 0, 0, 471, 472, 5, 116, 0, 0, 472, 16, 1, 0, 0, 0, 473, 474, 5, 92, 0, 0, 474, 475, 5, 103, 0, 0, 475, 476, 5, 114, 0, 0, 476, 477, 5, 97, 0, 0, 477, 478, 5, 118, 0, 0, 478, 479, 5, 101, 0, 0, 479, 18, 1, 0, 0, 0, 480, 481, 5, 92, 0, 0, 481, 482, 5, 104, 0, 0, 482, 483, 5, 97, 0, 0, 483, 484, 5, 116, 0, 0, 484, 20, 1, 0, 0, 0, 485, 486, 5, 92, 0, 0, 486, 487, 5, 116, 0, 0, 487, 488, 5, 105, 0, 0, 488, 489, 5, 108, 0, 0, 489, 490, 5, 100, 0, 0, 490, 491, 5, 101, 0, 0, 491, 22, 1, 0, 0, 0, 492, 493, 5, 92, 0, 0, 493, 494, 5, 119, 0, 0, 494, 495, 5, 105, 0, 0, 495, 496, 5, 100, 0, 0, 496, 497, 5, 101, 0, 0, 497, 498, 5, 116, 0, 0, 498, 499, 5, 105, 0, 0, 499, 500, 5, 108, 0, 0, 500, 501, 5, 100, 0, 0, 501, 502, 5, 101, 0, 0, 502, 24, 1, 0, 0, 0, 503, 504, 5, 92, 0, 0, 504, 505, 5, 118, 0, 0, 505, 506, 5, 101, 0, 0, 506, 507, 5, 99, 0, 0, 507, 26, 1, 0, 0, 0, 508, 509, 5, 92, 0, 0, 509, 510, 5, 111, 0, 0, 510, 511, 5, 118, 0, 0, 511, 512, 5, 101, 0, 0, 512, 513, 5, 114, 0, 0, 513, 514, 5, 114, 0, 0, 514, 515, 5, 105, 0, 0, 515, 516, 5, 103, 0, 0, 516, 517, 5, 104, 0, 0, 517, 518, 5, 116, 0, 0, 518, 519, 5, 97, 0, 0, 519, 520, 5, 114, 0, 0, 520, 521, 5, 114, 0, 0, 521, 522, 5, 111, 0, 0, 522, 523, 5, 119, 0, 0, 523, 28, 1, 0, 0, 0, 524, 525, 5, 92, 0, 0, 525, 526, 5, 98, 0, 0, 526, 527, 5, 109, 0, 0, 527, 30, 1, 0, 0, 0, 528, 529, 5, 92, 0, 0, 529, 530, 5, 98, 0, 0, 530, 531, 5, 111, 0, 0, 531, 532, 5, 108, 0, 0, 532, 533, 5, 100, 0, 0, 533, 534, 5, 115, 0, 0, 534, 535, 5, 121, 0, 0, 535, 536, 5, 109, 0, 0, 536, 537, 5, 98, 0, 0, 537, 538, 5, 111, 0, 0, 538, 539, 5, 108, 0, 0, 539, 32, 1, 0, 0, 0, 540, 541, 5, 92, 0, 0, 541, 542, 5, 116, 0, 0, 542, 543, 5, 101, 0, 0, 543, 544, 5, 120, 0, 0, 544, 545, 5, 116, 0, 0, 545, 34, 1, 0, 0, 0, 546, 547, 5, 92, 0, 0, 547, 548, 5, 116, 0, 0, 548, 549, 5, 101, 0, 0, 549, 550, 5, 120, 0, 0, 550, 551, 5, 116, 0, 0, 551, 552, 5, 105, 0, 0, 552, 553, 5, 116, 0, 0, 553, 36, 1, 0, 0, 0, 554, 555, 5, 92, 0, 0, 555, 556, 5, 109, 0, 0, 556, 557, 5, 97, 0, 0, 557, 558, 5, 116, 0, 0, 558, 559, 5, 104, 0, 0, 559, 560, 5, 98, 0, 0, 560, 561, 5, 98, 0, 0, 561, 38, 1, 0, 0, 0, 562, 563, 5, 92, 0, 0, 563, 564, 5, 109, 0, 0, 564, 565, 5, 97, 0, 0, 565, 566, 5, 116, 0, 0, 566, 567, 5, 104, 0, 0, 567, 568, 5, 98, 0, 0, 568, 569, 5, 105, 0, 0, 569, 570, 5, 110, 0, 0, 570, 40, 1, 0, 0, 0, 571, 572, 5, 92, 0, 0, 572, 573, 5, 109, 0, 0, 573, 574, 5, 97, 0, 0, 574, 575, 5, 116, 0, 0, 575, 576, 5, 104, 0, 0, 576, 577, 5, 98, 0, 0, 577, 578, 5, 102, 0, 0, 578, 42, 1, 0, 0, 0, 579, 580, 5, 92, 0, 0, 580, 581, 5, 109, 0, 0, 581, 582, 5, 97, 0, 0, 582, 583, 5, 116, 0, 0, 583, 584, 5, 104, 0, 0, 584, 585, 5, 99, 0, 0, 585, 586, 5, 97, 0, 0, 586, 587, 5, 108, 0, 0, 587, 44, 1, 0, 0, 0, 588, 589, 5, 92, 0, 0, 589, 590, 5, 109, 0, 0, 590, 591, 5, 97, 0, 0, 591, 592, 5, 116, 0, 0, 592, 593, 5, 104, 0, 0, 593, 594, 5, 99, 0, 0, 594, 595, 5, 108, 0, 0, 595, 596, 5, 97, 0, 0, 596, 597, 5, 112, 0, 0, 597, 46, 1, 0, 0, 0, 598, 599, 5, 92, 0, 0, 599, 600, 5, 109, 0, 0, 600, 601, 5, 97, 0, 0, 601, 602, 5, 116, 0, 0, 602, 603, 5, 104, 0, 0, 603, 604, 5, 99, 0, 0, 604, 605, 5, 108, 0, 0, 605, 606, 5, 111, 0, 0, 606, 607, 5, 115, 0, 0, 607, 608, 5, 101, 0, 0, 608, 48, 1, 0, 0, 0, 609, 610, 5, 92, 0, 0, 610, 611, 5, 109, 0, 0, 611, 612, 5, 97, 0, 0, 612, 613, 5, 116, 0, 0, 613, 614, 5, 104, 0, 0, 614, 615, 5, 101, 0, 0, 615, 616, 5, 108, 0, 0, 616, 617, 5, 108, 0, 0, 617, 618, 5, 105, 0, 0, 618, 619, 5, 112, 0, 0, 619, 620, 5, 115, 0, 0, 620, 621, 5, 105, 0, 0, 621, 622, 5, 115, 0, 0, 622, 50, 1, 0, 0, 0, 623, 624, 5, 92, 0, 0, 624, 625, 5, 109, 0, 0, 625, 626, 5, 97, 0, 0, 626, 627, 5, 116, 0, 0, 627, 628, 5, 104, 0, 0, 628, 629, 5, 102, 0, 0, 629, 630, 5, 114, 0, 0, 630, 631, 5, 97, 0, 0, 631, 632, 5, 107, 0, 0, 632, 52, 1, 0, 0, 0, 633, 634, 5, 92, 0, 0, 634, 635, 5, 109, 0, 0, 635, 636, 5, 97, 0, 0, 636, 637, 5, 116, 0, 0, 637, 638, 5, 104, 0, 0, 638, 639, 5, 105, 0, 0, 639, 640, 5, 110, 0, 0, 640, 641, 5, 110, 0, 0, 641, 642, 5, 101, 0, 0, 642, 643, 5, 114, 0, 0, 643, 54, 1, 0, 0, 0, 644, 645, 5, 92, 0, 0, 645, 646, 5, 109, 0, 0, 646, 647, 5, 97, 0, 0, 647, 648, 5, 116, 0, 0, 648, 649, 5, 104, 0, 0, 649, 650, 5, 110, 0, 0, 650, 651, 5, 111, 0, 0, 651, 652, 5, 114, 0, 0, 652, 653, 5, 109, 0, 0, 653, 654, 5, 97, 0, 0, 654, 655, 5, 108, 0, 0, 655, 56, 1, 0, 0, 0, 656, 657, 5, 92, 0, 0, 657, 658, 5, 109, 0, 0, 658, 659, 5, 97, 0, 0, 659, 660, 5, 116, 0, 0, 660, 661, 5, 104, 0, 0, 661, 662, 5, 111, 0, 0, 662, 663, 5, 112, 0, 0, 663, 58, 1, 0, 0, 0, 664, 665, 5, 92, 0, 0, 665, 666, 5, 109, 0, 0, 666, 667, 5, 97, 0, 0, 667, 668, 5, 116, 0, 0, 668, 669, 5, 104, 0, 0, 669, 670, 5, 111, 0, 0, 670, 671, 5, 112, 0, 0, 671, 672, 5, 101, 0, 0, 672, 673, 5, 110, 0, 0, 673, 60, 1, 0, 0, 0, 674, 675, 5, 92, 0, 0, 675, 676, 5, 109, 0, 0, 676, 677, 5, 97, 0, 0, 677, 678, 5, 116, 0, 0, 678, 679, 5, 104, 0, 0, 679, 680, 5, 111, 0, 0, 680, 681, 5, 114, 0, 0, 681, 682, 5, 100, 0, 0, 682, 62, 1, 0, 0, 0, 683, 684, 5, 92, 0, 0, 684, 685, 5, 109, 0, 0, 685, 686, 5, 97, 0, 0, 686, 687, 5, 116, 0, 0, 687, 688, 5, 104, 0, 0, 688, 689, 5, 112, 0, 0, 689, 690, 5, 117, 0, 0, 690, 691, 5, 110, 0, 0, 691, 692, 5, 99, 0, 0, 692, 693, 5, 116, 0, 0, 693, 64, 1, 0, 0, 0, 694, 695, 5, 92, 0, 0, 695, 696, 5, 109, 0, 0, 696, 697, 5, 97, 0, 0, 697, 698, 5, 116, 0, 0, 698, 699, 5, 104, 0, 0, 699, 700, 5, 114, 0, 0, 700, 701, 5, 101, 0, 0, 701, 702, 5, 108, 0, 0, 702, 66, 1, 0, 0, 0, 703, 704, 5, 92, 0, 0, 704, 705, 5, 109, 0, 0, 705, 706, 5, 97, 0, 0, 706, 707, 5, 116, 0, 0, 707, 708, 5, 104, 0, 0, 708, 709, 5, 114, 0, 0, 709, 710, 5, 105, 0, 0, 710, 711, 5, 110, 0, 0, 711, 712, 5, 103, 0, 0, 712, 68, 1, 0, 0, 0, 713, 714, 5, 92, 0, 0, 714, 715, 5, 109, 0, 0, 715, 716, 5, 97, 0, 0, 716, 717, 5, 116, 0, 0, 717, 718, 5, 104, 0, 0, 718, 719, 5, 114, 0, 0, 719, 720, 5, 108, 0, 0, 720, 721, 5, 97, 0, 0, 721, 722, 5, 112, 0, 0, 722, 70, 1, 0, 0, 0, 723, 724, 5, 92, 0, 0, 724, 725, 5, 109, 0, 0, 725, 726, 5, 97, 0, 0, 726, 727, 5, 116, 0, 0, 727, 728, 5, 104, 0, 0, 728, 729, 5, 114, 0, 0, 729, 730, 5, 109, 0, 0, 730, 72, 1, 0, 0, 0, 731, 732, 5, 92, 0, 0, 732, 733, 5, 109, 0, 0, 733, 734, 5, 97, 0, 0, 734, 735, 5, 116, 0, 0, 735, 736, 5, 104, 0, 0, 736, 737, 5, 115, 0, 0, 737, 738, 5, 99, 0, 0, 738, 739, 5, 114, 0, 0, 739, 74, 1, 0, 0, 0, 740, 741, 5, 92, 0, 0, 741, 742, 5, 109, 0, 0, 742, 743, 5, 97, 0, 0, 743, 744, 5, 116, 0, 0, 744, 745, 5, 104, 0, 0, 745, 746, 5, 115, 0, 0, 746, 747, 5, 102, 0, 0, 747, 76, 1, 0, 0, 0, 748, 749, 5, 92, 0, 0, 749, 750, 5, 109, 0, 0, 750, 751, 5, 97, 0, 0, 751, 752, 5, 116, 0, 0, 752, 753, 5, 104, 0, 0, 753, 754, 5, 115, 0, 0, 754, 755, 5, 116, 0, 0, 755, 756, 5, 101, 0, 0, 756, 757, 5, 114, 0, 0, 757, 758, 5, 108, 0, 0, 758, 759, 5, 105, 0, 0, 759, 760, 5, 110, 0, 0, 760, 761, 5, 103, 0, 0, 761, 78, 1, 0, 0, 0, 762, 763, 5, 92, 0, 0, 763, 764, 5, 109, 0, 0, 764, 765, 5, 97, 0, 0, 765, 766, 5, 116, 0, 0, 766, 767, 5, 104, 0, 0, 767, 768, 5, 116, 0, 0, 768, 769, 5, 116, 0, 0, 769, 80, 1, 0, 0, 0, 770, 771, 5, 94, 0, 0, 771, 772, 5, 84, 0, 0, 772, 82, 1, 0, 0, 0, 773, 774, 5, 94, 0, 0, 774, 775, 5, 123, 0, 0, 775, 776, 5, 84, 0, 0, 776, 777, 5, 125, 0, 0, 777, 84, 1, 0, 0, 0, 778, 779, 5, 94, 0, 0, 779, 780, 5, 123, 0, 0, 780, 781, 5, 92, 0, 0, 781, 782, 5, 116, 0, 0, 782, 783, 5, 111, 0, 0, 783, 784, 5, 112, 0, 0, 784, 785, 5, 125, 0, 0, 785, 86, 1, 0, 0, 0, 786, 787, 5, 39, 0, 0, 787, 88, 1, 0, 0, 0, 788, 790, 7, 0, 0, 0, 789, 788, 1, 0, 0, 0, 790, 791, 1, 0, 0, 0, 791, 789, 1, 0, 0, 0, 791, 792, 1, 0, 0, 0, 792, 793, 1, 0, 0, 0, 793, 794, 6, 44, 0, 0, 794, 90, 1, 0, 0, 0, 795, 796, 5, 92, 0, 0, 796, 797, 5, 36, 0, 0, 797, 798, 1, 0, 0, 0, 798, 799, 6, 45, 0, 0, 799, 92, 1, 0, 0, 0, 800, 801, 5, 43, 0, 0, 801, 94, 1, 0, 0, 0, 802, 803, 5, 45, 0, 0, 803, 96, 1, 0, 0, 0, 804, 805, 5, 42, 0, 0, 805, 98, 1, 0, 0, 0, 806, 813, 5, 47, 0, 0, 807, 808, 5, 92, 0, 0, 808, 809, 5, 111, 0, 0, 809, 810, 5, 118, 0, 0, 810, 811, 5, 101, 0, 0, 811, 813, 5, 114, 0, 0, 812, 806, 1, 0, 0, 0, 812, 807, 1, 0, 0, 0, 813, 100, 1, 0, 0, 0, 814, 815, 5, 40, 0, 0, 815, 102, 1, 0, 0, 0, 816, 817, 5, 41, 0, 0, 817, 104, 1, 0, 0, 0, 818, 819, 5, 92, 0, 0, 819, 820, 5, 108, 0, 0, 820, 821, 5, 103, 0, 0, 821, 822, 5, 114, 0, 0, 822, 823, 5, 111, 0, 0, 823, 824, 5, 117, 0, 0, 824, 825, 5, 112, 0, 0, 825, 106, 1, 0, 0, 0, 826, 827, 5, 92, 0, 0, 827, 828, 5, 114, 0, 0, 828, 829, 5, 103, 0, 0, 829, 830, 5, 114, 0, 0, 830, 831, 5, 111, 0, 0, 831, 832, 5, 117, 0, 0, 832, 833, 5, 112, 0, 0, 833, 108, 1, 0, 0, 0, 834, 835, 5, 123, 0, 0, 835, 110, 1, 0, 0, 0, 836, 837, 5, 125, 0, 0, 837, 112, 1, 0, 0, 0, 838, 839, 5, 92, 0, 0, 839, 840, 5, 123, 0, 0, 840, 114, 1, 0, 0, 0, 841, 842, 5, 92, 0, 0, 842, 843, 5, 125, 0, 0, 843, 116, 1, 0, 0, 0, 844, 845, 5, 92, 0, 0, 845, 846, 5, 108, 0, 0, 846, 847, 5, 98, 0, 0, 847, 848, 5, 114, 0, 0, 848, 849, 5, 97, 0, 0, 849, 850, 5, 99, 0, 0, 850, 851, 5, 101, 0, 0, 851, 118, 1, 0, 0, 0, 852, 853, 5, 92, 0, 0, 853, 854, 5, 114, 0, 0, 854, 855, 5, 98, 0, 0, 855, 856, 5, 114, 0, 0, 856, 857, 5, 97, 0, 0, 857, 858, 5, 99, 0, 0, 858, 859, 5, 101, 0, 0, 859, 120, 1, 0, 0, 0, 860, 861, 5, 91, 0, 0, 861, 122, 1, 0, 0, 0, 862, 863, 5, 93, 0, 0, 863, 124, 1, 0, 0, 0, 864, 865, 5, 92, 0, 0, 865, 866, 5, 108, 0, 0, 866, 867, 5, 98, 0, 0, 867, 868, 5, 114, 0, 0, 868, 869, 5, 97, 0, 0, 869, 870, 5, 99, 0, 0, 870, 871, 5, 107, 0, 0, 871, 126, 1, 0, 0, 0, 872, 873, 5, 92, 0, 0, 873, 874, 5, 114, 0, 0, 874, 875, 5, 98, 0, 0, 875, 876, 5, 114, 0, 0, 876, 877, 5, 97, 0, 0, 877, 878, 5, 99, 0, 0, 878, 879, 5, 107, 0, 0, 879, 128, 1, 0, 0, 0, 880, 881, 5, 124, 0, 0, 881, 130, 1, 0, 0, 0, 882, 883, 5, 92, 0, 0, 883, 884, 5, 108, 0, 0, 884, 885, 5, 118, 0, 0, 885, 886, 5, 101, 0, 0, 886, 887, 5, 114, 0, 0, 887, 888, 5, 116, 0, 0, 888, 132, 1, 0, 0, 0, 889, 890, 5, 92, 0, 0, 890, 891, 5, 114, 0, 0, 891, 892, 5, 118, 0, 0, 892, 893, 5, 101, 0, 0, 893, 894, 5, 114, 0, 0, 894, 895, 5, 116, 0, 0, 895, 134, 1, 0, 0, 0, 896, 897, 5, 92, 0, 0, 897, 898, 5, 118, 0, 0, 898, 899, 5, 101, 0, 0, 899, 900, 5, 114, 0, 0, 900, 901, 5, 116, 0, 0, 901, 136, 1, 0, 0, 0, 902, 903, 5, 92, 0, 0, 903, 904, 5, 124, 0, 0, 904, 138, 1, 0, 0, 0, 905, 906, 5, 92, 0, 0, 906, 907, 5, 108, 0, 0, 907, 908, 5, 102, 0, 0, 908, 909, 5, 108, 0, 0, 909, 910, 5, 111, 0, 0, 910, 911, 5, 111, 0, 0, 911, 912, 5, 114, 0, 0, 912, 140, 1, 0, 0, 0, 913, 914, 5, 92, 0, 0, 914, 915, 5, 114, 0, 0, 915, 916, 5, 102, 0, 0, 916, 917, 5, 108, 0, 0, 917, 918, 5, 111, 0, 0, 918, 919, 5, 111, 0, 0, 919, 920, 5, 114, 0, 0, 920, 142, 1, 0, 0, 0, 921, 922, 5, 92, 0, 0, 922, 923, 5, 108, 0, 0, 923, 924, 5, 108, 0, 0, 924, 925, 5, 99, 0, 0, 925, 926, 5, 111, 0, 0, 926, 927, 5, 114, 0, 0, 927, 928, 5, 110, 0, 0, 928, 929, 5, 101, 0, 0, 929, 930, 5, 114, 0, 0, 930, 144, 1, 0, 0, 0, 931, 932, 5, 92, 0, 0, 932, 933, 5, 108, 0, 0, 933, 934, 5, 114, 0, 0, 934, 935, 5, 99, 0, 0, 935, 936, 5, 111, 0, 0, 936, 937, 5, 114, 0, 0, 937, 938, 5, 110, 0, 0, 938, 939, 5, 101, 0, 0, 939, 940, 5, 114, 0, 0, 940, 146, 1, 0, 0, 0, 941, 942, 5, 92, 0, 0, 942, 943, 5, 108, 0, 0, 943, 944, 5, 99, 0, 0, 944, 945, 5, 101, 0, 0, 945, 946, 5, 105, 0, 0, 946, 947, 5, 108, 0, 0, 947, 148, 1, 0, 0, 0, 948, 949, 5, 92, 0, 0, 949, 950, 5, 114, 0, 0, 950, 951, 5, 99, 0, 0, 951, 952, 5, 101, 0, 0, 952, 953, 5, 105, 0, 0, 953, 954, 5, 108, 0, 0, 954, 150, 1, 0, 0, 0, 955, 956, 5, 92, 0, 0, 956, 957, 5, 117, 0, 0, 957, 958, 5, 108, 0, 0, 958, 959, 5, 99, 0, 0, 959, 960, 5, 111, 0, 0, 960, 961, 5, 114, 0, 0, 961, 962, 5, 110, 0, 0, 962, 963, 5, 101, 0, 0, 963, 964, 5, 114, 0, 0, 964, 152, 1, 0, 0, 0, 965, 966, 5, 92, 0, 0, 966, 967, 5, 117, 0, 0, 967, 968, 5, 114, 0, 0, 968, 969, 5, 99, 0, 0, 969, 970, 5, 111, 0, 0, 970, 971, 5, 114, 0, 0, 971, 972, 5, 110, 0, 0, 972, 973, 5, 101, 0, 0, 973, 974, 5, 114, 0, 0, 974, 154, 1, 0, 0, 0, 975, 976, 5, 92, 0, 0, 976, 977, 5, 108, 0, 0, 977, 978, 5, 101, 0, 0, 978, 979, 5, 102, 0, 0, 979, 980, 5, 116, 0, 0, 980, 156, 1, 0, 0, 0, 981, 982, 5, 92, 0, 0, 982, 983, 5, 114, 0, 0, 983, 984, 5, 105, 0, 0, 984, 985, 5, 103, 0, 0, 985, 986, 5, 104, 0, 0, 986, 987, 5, 116, 0, 0, 987, 158, 1, 0, 0, 0, 988, 989, 5, 92, 0, 0, 989, 990, 5, 109, 0, 0, 990, 991, 5, 108, 0, 0, 991, 992, 5, 101, 0, 0, 992, 993, 5, 102, 0, 0, 993, 994, 5, 116, 0, 0, 994, 160, 1, 0, 0, 0, 995, 996, 5, 92, 0, 0, 996, 997, 5, 109, 0, 0, 997, 998, 5, 114, 0, 0, 998, 999, 5, 105, 0, 0, 999, 1000, 5, 103, 0, 0, 1000, 1001, 5, 104, 0, 0, 1001, 1002, 5, 116, 0, 0, 1002, 162, 1, 0, 0, 0, 1003, 1004, 5, 92, 0, 0, 1004, 1005, 5, 108, 0, 0, 1005, 1006, 5, 105, 0, 0, 1006, 1007, 5, 109, 0, 0, 1007, 164, 1, 0, 0, 0, 1008, 1009, 5, 92, 0, 0, 1009, 1010, 5, 116, 0, 0, 1010, 1064, 5, 111, 0, 0, 1011, 1012, 5, 92, 0, 0, 1012, 1013, 5, 114, 0, 0, 1013, 1014, 5, 105, 0, 0, 1014, 1015, 5, 103, 0, 0, 1015, 1016, 5, 104, 0, 0, 1016, 1017, 5, 116, 0, 0, 1017, 1018, 5, 97, 0, 0, 1018, 1019, 5, 114, 0, 0, 1019, 1020, 5, 114, 0, 0, 1020, 1021, 5, 111, 0, 0, 1021, 1064, 5, 119, 0, 0, 1022, 1023, 5, 92, 0, 0, 1023, 1024, 5, 82, 0, 0, 1024, 1025, 5, 105, 0, 0, 1025, 1026, 5, 103, 0, 0, 1026, 1027, 5, 104, 0, 0, 1027, 1028, 5, 116, 0, 0, 1028, 1029, 5, 97, 0, 0, 1029, 1030, 5, 114, 0, 0, 1030, 1031, 5, 114, 0, 0, 1031, 1032, 5, 111, 0, 0, 1032, 1064, 5, 119, 0, 0, 1033, 1034, 5, 92, 0, 0, 1034, 1035, 5, 108, 0, 0, 1035, 1036, 5, 111, 0, 0, 1036, 1037, 5, 110, 0, 0, 1037, 1038, 5, 103, 0, 0, 1038, 1039, 5, 114, 0, 0, 1039, 1040, 5, 105, 0, 0, 1040, 1041, 5, 103, 0, 0, 1041, 1042, 5, 104, 0, 0, 1042, 1043, 5, 116, 0, 0, 1043, 1044, 5, 97, 0, 0, 1044, 1045, 5, 114, 0, 0, 1045, 1046, 5, 114, 0, 0, 1046, 1047, 5, 111, 0, 0, 1047, 1064, 5, 119, 0, 0, 1048, 1049, 5, 92, 0, 0, 1049, 1050, 5, 76, 0, 0, 1050, 1051, 5, 111, 0, 0, 1051, 1052, 5, 110, 0, 0, 1052, 1053, 5, 103, 0, 0, 1053, 1054, 5, 114, 0, 0, 1054, 1055, 5, 105, 0, 0, 1055, 1056, 5, 103, 0, 0, 1056, 1057, 5, 104, 0, 0, 1057, 1058, 5, 116, 0, 0, 1058, 1059, 5, 97, 0, 0, 1059, 1060, 5, 114, 0, 0, 1060, 1061, 5, 114, 0, 0, 1061, 1062, 5, 111, 0, 0, 1062, 1064, 5, 119, 0, 0, 1063, 1008, 1, 0, 0, 0, 1063, 1011, 1, 0, 0, 0, 1063, 1022, 1, 0, 0, 0, 1063, 1033, 1, 0, 0, 0, 1063, 1048, 1, 0, 0, 0, 1064, 166, 1, 0, 0, 0, 1065, 1066, 5, 92, 0, 0, 1066, 1067, 5, 105, 0, 0, 1067, 1068, 5, 110, 0, 0, 1068, 1069, 5, 116, 0, 0, 1069, 168, 1, 0, 0, 0, 1070, 1071, 5, 92, 0, 0, 1071, 1072, 5, 115, 0, 0, 1072, 1073, 5, 117, 0, 0, 1073, 1074, 5, 109, 0, 0, 1074, 170, 1, 0, 0, 0, 1075, 1076, 5, 92, 0, 0, 1076, 1077, 5, 112, 0, 0, 1077, 1078, 5, 114, 0, 0, 1078, 1079, 5, 111, 0, 0, 1079, 1080, 5, 100, 0, 0, 1080, 172, 1, 0, 0, 0, 1081, 1082, 5, 92, 0, 0, 1082, 1083, 5, 108, 0, 0, 1083, 1084, 5, 111, 0, 0, 1084, 1085, 5, 103, 0, 0, 1085, 174, 1, 0, 0, 0, 1086, 1087, 5, 92, 0, 0, 1087, 1088, 5, 108, 0, 0, 1088, 1089, 5, 110, 0, 0, 1089, 176, 1, 0, 0, 0, 1090, 1091, 5, 92, 0, 0, 1091, 1092, 5, 101, 0, 0, 1092, 1093, 5, 120, 0, 0, 1093, 1094, 5, 112, 0, 0, 1094, 178, 1, 0, 0, 0, 1095, 1096, 5, 92, 0, 0, 1096, 1097, 5, 115, 0, 0, 1097, 1098, 5, 105, 0, 0, 1098, 1099, 5, 110, 0, 0, 1099, 180, 1, 0, 0, 0, 1100, 1101, 5, 92, 0, 0, 1101, 1102, 5, 99, 0, 0, 1102, 1103, 5, 111, 0, 0, 1103, 1104, 5, 115, 0, 0, 1104, 182, 1, 0, 0, 0, 1105, 1106, 5, 92, 0, 0, 1106, 1107, 5, 116, 0, 0, 1107, 1108, 5, 97, 0, 0, 1108, 1109, 5, 110, 0, 0, 1109, 184, 1, 0, 0, 0, 1110, 1111, 5, 92, 0, 0, 1111, 1112, 5, 99, 0, 0, 1112, 1113, 5, 115, 0, 0, 1113, 1114, 5, 99, 0, 0, 1114, 186, 1, 0, 0, 0, 1115, 1116, 5, 92, 0, 0, 1116, 1117, 5, 115, 0, 0, 1117, 1118, 5, 101, 0, 0, 1118, 1119, 5, 99, 0, 0, 1119, 188, 1, 0, 0, 0, 1120, 1121, 5, 92, 0, 0, 1121, 1122, 5, 99, 0, 0, 1122, 1123, 5, 111, 0, 0, 1123, 1124, 5, 116, 0, 0, 1124, 190, 1, 0, 0, 0, 1125, 1126, 5, 92, 0, 0, 1126, 1127, 5, 97, 0, 0, 1127, 1128, 5, 114, 0, 0, 1128, 1129, 5, 99, 0, 0, 1129, 1130, 5, 115, 0, 0, 1130, 1131, 5, 105, 0, 0, 1131, 1132, 5, 110, 0, 0, 1132, 192, 1, 0, 0, 0, 1133, 1134, 5, 92, 0, 0, 1134, 1135, 5, 97, 0, 0, 1135, 1136, 5, 114, 0, 0, 1136, 1137, 5, 99, 0, 0, 1137, 1138, 5, 99, 0, 0, 1138, 1139, 5, 111, 0, 0, 1139, 1140, 5, 115, 0, 0, 1140, 194, 1, 0, 0, 0, 1141, 1142, 5, 92, 0, 0, 1142, 1143, 5, 97, 0, 0, 1143, 1144, 5, 114, 0, 0, 1144, 1145, 5, 99, 0, 0, 1145, 1146, 5, 116, 0, 0, 1146, 1147, 5, 97, 0, 0, 1147, 1148, 5, 110, 0, 0, 1148, 196, 1, 0, 0, 0, 1149, 1150, 5, 92, 0, 0, 1150, 1151, 5, 97, 0, 0, 1151, 1152, 5, 114, 0, 0, 1152, 1153, 5, 99, 0, 0, 1153, 1154, 5, 99, 0, 0, 1154, 1155, 5, 115, 0, 0, 1155, 1156, 5, 99, 0, 0, 1156, 198, 1, 0, 0, 0, 1157, 1158, 5, 92, 0, 0, 1158, 1159, 5, 97, 0, 0, 1159, 1160, 5, 114, 0, 0, 1160, 1161, 5, 99, 0, 0, 1161, 1162, 5, 115, 0, 0, 1162, 1163, 5, 101, 0, 0, 1163, 1164, 5, 99, 0, 0, 1164, 200, 1, 0, 0, 0, 1165, 1166, 5, 92, 0, 0, 1166, 1167, 5, 97, 0, 0, 1167, 1168, 5, 114, 0, 0, 1168, 1169, 5, 99, 0, 0, 1169, 1170, 5, 99, 0, 0, 1170, 1171, 5, 111, 0, 0, 1171, 1172, 5, 116, 0, 0, 1172, 202, 1, 0, 0, 0, 1173, 1174, 5, 92, 0, 0, 1174, 1175, 5, 115, 0, 0, 1175, 1176, 5, 105, 0, 0, 1176, 1177, 5, 110, 0, 0, 1177, 1178, 5, 104, 0, 0, 1178, 204, 1, 0, 0, 0, 1179, 1180, 5, 92, 0, 0, 1180, 1181, 5, 99, 0, 0, 1181, 1182, 5, 111, 0, 0, 1182, 1183, 5, 115, 0, 0, 1183, 1184, 5, 104, 0, 0, 1184, 206, 1, 0, 0, 0, 1185, 1186, 5, 92, 0, 0, 1186, 1187, 5, 116, 0, 0, 1187, 1188, 5, 97, 0, 0, 1188, 1189, 5, 110, 0, 0, 1189, 1190, 5, 104, 0, 0, 1190, 208, 1, 0, 0, 0, 1191, 1192, 5, 92, 0, 0, 1192, 1193, 5, 97, 0, 0, 1193, 1194, 5, 114, 0, 0, 1194, 1195, 5, 115, 0, 0, 1195, 1196, 5, 105, 0, 0, 1196, 1197, 5, 110, 0, 0, 1197, 1198, 5, 104, 0, 0, 1198, 210, 1, 0, 0, 0, 1199, 1200, 5, 92, 0, 0, 1200, 1201, 5, 97, 0, 0, 1201, 1202, 5, 114, 0, 0, 1202, 1203, 5, 99, 0, 0, 1203, 1204, 5, 111, 0, 0, 1204, 1205, 5, 115, 0, 0, 1205, 1206, 5, 104, 0, 0, 1206, 212, 1, 0, 0, 0, 1207, 1208, 5, 92, 0, 0, 1208, 1209, 5, 97, 0, 0, 1209, 1210, 5, 114, 0, 0, 1210, 1211, 5, 116, 0, 0, 1211, 1212, 5, 97, 0, 0, 1212, 1213, 5, 110, 0, 0, 1213, 1214, 5, 104, 0, 0, 1214, 214, 1, 0, 0, 0, 1215, 1216, 5, 92, 0, 0, 1216, 1217, 5, 97, 0, 0, 1217, 1218, 5, 114, 0, 0, 1218, 1219, 5, 99, 0, 0, 1219, 1220, 5, 115, 0, 0, 1220, 1221, 5, 105, 0, 0, 1221, 1222, 5, 110, 0, 0, 1222, 1223, 5, 104, 0, 0, 1223, 216, 1, 0, 0, 0, 1224, 1225, 5, 92, 0, 0, 1225, 1226, 5, 97, 0, 0, 1226, 1227, 5, 114, 0, 0, 1227, 1228, 5, 99, 0, 0, 1228, 1229, 5, 99, 0, 0, 1229, 1230, 5, 111, 0, 0, 1230, 1231, 5, 115, 0, 0, 1231, 1232, 5, 104, 0, 0, 1232, 218, 1, 0, 0, 0, 1233, 1234, 5, 92, 0, 0, 1234, 1235, 5, 97, 0, 0, 1235, 1236, 5, 114, 0, 0, 1236, 1237, 5, 99, 0, 0, 1237, 1238, 5, 116, 0, 0, 1238, 1239, 5, 97, 0, 0, 1239, 1240, 5, 110, 0, 0, 1240, 1241, 5, 104, 0, 0, 1241, 220, 1, 0, 0, 0, 1242, 1243, 5, 97, 0, 0, 1243, 1244, 5, 114, 0, 0, 1244, 1245, 5, 115, 0, 0, 1245, 1246, 5, 105, 0, 0, 1246, 1247, 5, 110, 0, 0, 1247, 1248, 5, 104, 0, 0, 1248, 222, 1, 0, 0, 0, 1249, 1250, 5, 97, 0, 0, 1250, 1251, 5, 114, 0, 0, 1251, 1252, 5, 99, 0, 0, 1252, 1253, 5, 115, 0, 0, 1253, 1254, 5, 105, 0, 0, 1254, 1255, 5, 110, 0, 0, 1255, 1256, 5, 104, 0, 0, 1256, 224, 1, 0, 0, 0, 1257, 1258, 5, 97, 0, 0, 1258, 1259, 5, 114, 0, 0, 1259, 1260, 5, 99, 0, 0, 1260, 1261, 5, 111, 0, 0, 1261, 1262, 5, 115, 0, 0, 1262, 1263, 5, 104, 0, 0, 1263, 226, 1, 0, 0, 0, 1264, 1265, 5, 97, 0, 0, 1265, 1266, 5, 114, 0, 0, 1266, 1267, 5, 99, 0, 0, 1267, 1268, 5, 99, 0, 0, 1268, 1269, 5, 111, 0, 0, 1269, 1270, 5, 115, 0, 0, 1270, 1271, 5, 104, 0, 0, 1271, 228, 1, 0, 0, 0, 1272, 1273, 5, 97, 0, 0, 1273, 1274, 5, 114, 0, 0, 1274, 1275, 5, 116, 0, 0, 1275, 1276, 5, 97, 0, 0, 1276, 1277, 5, 110, 0, 0, 1277, 1278, 5, 104, 0, 0, 1278, 230, 1, 0, 0, 0, 1279, 1280, 5, 97, 0, 0, 1280, 1281, 5, 114, 0, 0, 1281, 1282, 5, 99, 0, 0, 1282, 1283, 5, 116, 0, 0, 1283, 1284, 5, 97, 0, 0, 1284, 1285, 5, 110, 0, 0, 1285, 1286, 5, 104, 0, 0, 1286, 232, 1, 0, 0, 0, 1287, 1288, 5, 103, 0, 0, 1288, 1289, 5, 99, 0, 0, 1289, 1290, 5, 100, 0, 0, 1290, 234, 1, 0, 0, 0, 1291, 1292, 5, 108, 0, 0, 1292, 1293, 5, 99, 0, 0, 1293, 1294, 5, 109, 0, 0, 1294, 236, 1, 0, 0, 0, 1295, 1296, 5, 102, 0, 0, 1296, 1297, 5, 108, 0, 0, 1297, 1298, 5, 111, 0, 0, 1298, 1299, 5, 111, 0, 0, 1299, 1300, 5, 114, 0, 0, 1300, 238, 1, 0, 0, 0, 1301, 1302, 5, 99, 0, 0, 1302, 1303, 5, 101, 0, 0, 1303, 1304, 5, 105, 0, 0, 1304, 1305, 5, 108, 0, 0, 1305, 240, 1, 0, 0, 0, 1306, 1307, 5, 92, 0, 0, 1307, 1308, 5, 115, 0, 0, 1308, 1309, 5, 113, 0, 0, 1309, 1310, 5, 114, 0, 0, 1310, 1311, 5, 116, 0, 0, 1311, 242, 1, 0, 0, 0, 1312, 1313, 5, 92, 0, 0, 1313, 1314, 5, 103, 0, 0, 1314, 1315, 5, 99, 0, 0, 1315, 1316, 5, 100, 0, 0, 1316, 244, 1, 0, 0, 0, 1317, 1318, 5, 92, 0, 0, 1318, 1319, 5, 108, 0, 0, 1319, 1320, 5, 99, 0, 0, 1320, 1321, 5, 109, 0, 0, 1321, 246, 1, 0, 0, 0, 1322, 1323, 5, 92, 0, 0, 1323, 1324, 5, 102, 0, 0, 1324, 1325, 5, 108, 0, 0, 1325, 1326, 5, 111, 0, 0, 1326, 1327, 5, 111, 0, 0, 1327, 1328, 5, 114, 0, 0, 1328, 248, 1, 0, 0, 0, 1329, 1330, 5, 92, 0, 0, 1330, 1331, 5, 99, 0, 0, 1331, 1332, 5, 101, 0, 0, 1332, 1333, 5, 105, 0, 0, 1333, 1334, 5, 108, 0, 0, 1334, 250, 1, 0, 0, 0, 1335, 1336, 5, 92, 0, 0, 1336, 1337, 5, 109, 0, 0, 1337, 1338, 5, 97, 0, 0, 1338, 1339, 5, 120, 0, 0, 1339, 252, 1, 0, 0, 0, 1340, 1341, 5, 92, 0, 0, 1341, 1342, 5, 109, 0, 0, 1342, 1343, 5, 105, 0, 0, 1343, 1344, 5, 110, 0, 0, 1344, 254, 1, 0, 0, 0, 1345, 1346, 5, 92, 0, 0, 1346, 1347, 5, 100, 0, 0, 1347, 1348, 5, 101, 0, 0, 1348, 1349, 5, 116, 0, 0, 1349, 256, 1, 0, 0, 0, 1350, 1351, 5, 101, 0, 0, 1351, 1352, 5, 121, 0, 0, 1352, 1353, 5, 101, 0, 0, 1353, 258, 1, 0, 0, 0, 1354, 1355, 5, 122, 0, 0, 1355, 1356, 5, 101, 0, 0, 1356, 1357, 5, 114, 0, 0, 1357, 1358, 5, 111, 0, 0, 1358, 1359, 5, 115, 0, 0, 1359, 260, 1, 0, 0, 0, 1360, 1361, 5, 111, 0, 0, 1361, 1362, 5, 110, 0, 0, 1362, 1363, 5, 101, 0, 0, 1363, 1364, 5, 115, 0, 0, 1364, 262, 1, 0, 0, 0, 1365, 1366, 5, 99, 0, 0, 1366, 1367, 5, 111, 0, 0, 1367, 1368, 5, 108, 0, 0, 1368, 1369, 5, 115, 0, 0, 1369, 264, 1, 0, 0, 0, 1370, 1371, 5, 114, 0, 0, 1371, 1372, 5, 111, 0, 0, 1372, 1373, 5, 119, 0, 0, 1373, 1374, 5, 115, 0, 0, 1374, 266, 1, 0, 0, 0, 1375, 1376, 5, 100, 0, 0, 1376, 1377, 5, 105, 0, 0, 1377, 1378, 5, 97, 0, 0, 1378, 1379, 5, 103, 0, 0, 1379, 268, 1, 0, 0, 0, 1380, 1381, 5, 110, 0, 0, 1381, 1382, 5, 111, 0, 0, 1382, 1383, 5, 114, 0, 0, 1383, 1384, 5, 109, 0, 0, 1384, 270, 1, 0, 0, 0, 1385, 1386, 5, 114, 0, 0, 1386, 1387, 5, 97, 0, 0, 1387, 1388, 5, 110, 0, 0, 1388, 1389, 5, 107, 0, 0, 1389, 272, 1, 0, 0, 0, 1390, 1391, 5, 116, 0, 0, 1391, 1392, 5, 114, 0, 0, 1392, 1393, 5, 97, 0, 0, 1393, 1394, 5, 99, 0, 0, 1394, 1398, 5, 101, 0, 0, 1395, 1396, 5, 116, 0, 0, 1396, 1398, 5, 114, 0, 0, 1397, 1390, 1, 0, 0, 0, 1397, 1395, 1, 0, 0, 0, 1398, 274, 1, 0, 0, 0, 1399, 1400, 5, 114, 0, 0, 1400, 1401, 5, 114, 0, 0, 1401, 1402, 5, 101, 0, 0, 1402, 1403, 5, 102, 0, 0, 1403, 276, 1, 0, 0, 0, 1404, 1405, 5, 104, 0, 0, 1405, 1406, 5, 115, 0, 0, 1406, 1407, 5, 116, 0, 0, 1407, 1408, 5, 97, 0, 0, 1408, 1409, 5, 99, 0, 0, 1409, 1410, 5, 107, 0, 0, 1410, 278, 1, 0, 0, 0, 1411, 1412, 5, 118, 0, 0, 1412, 1413, 5, 115, 0, 0, 1413, 1414, 5, 116, 0, 0, 1414, 1415, 5, 97, 0, 0, 1415, 1416, 5, 99, 0, 0, 1416, 1417, 5, 107, 0, 0, 1417, 280, 1, 0, 0, 0, 1418, 1419, 5, 111, 0, 0, 1419, 1420, 5, 114, 0, 0, 1420, 1421, 5, 116, 0, 0, 1421, 1451, 5, 104, 0, 0, 1422, 1423, 5, 111, 0, 0, 1423, 1424, 5, 114, 0, 0, 1424, 1425, 5, 116, 0, 0, 1425, 1426, 5, 104, 0, 0, 1426, 1451, 5, 111, 0, 0, 1427, 1428, 5, 111, 0, 0, 1428, 1429, 5, 114, 0, 0, 1429, 1430, 5, 116, 0, 0, 1430, 1431, 5, 104, 0, 0, 1431, 1432, 5, 111, 0, 0, 1432, 1433, 5, 103, 0, 0, 1433, 1434, 5, 111, 0, 0, 1434, 1435, 5, 110, 0, 0, 1435, 1436, 5, 97, 0, 0, 1436, 1451, 5, 108, 0, 0, 1437, 1438, 5, 111, 0, 0, 1438, 1439, 5, 114, 0, 0, 1439, 1440, 5, 116, 0, 0, 1440, 1441, 5, 104, 0, 0, 1441, 1442, 5, 111, 0, 0, 1442, 1443, 5, 103, 0, 0, 1443, 1444, 5, 111, 0, 0, 1444, 1445, 5, 110, 0, 0, 1445, 1446, 5, 97, 0, 0, 1446, 1447, 5, 108, 0, 0, 1447, 1448, 5, 105, 0, 0, 1448, 1449, 5, 122, 0, 0, 1449, 1451, 5, 101, 0, 0, 1450, 1418, 1, 0, 0, 0, 1450, 1422, 1, 0, 0, 0, 1450, 1427, 1, 0, 0, 0, 1450, 1437, 1, 0, 0, 0, 1451, 282, 1, 0, 0, 0, 1452, 1453, 5, 110, 0, 0, 1453, 1454, 5, 117, 0, 0, 1454, 1455, 5, 108, 0, 0, 1455, 1456, 5, 108, 0, 0, 1456, 1457, 5, 115, 0, 0, 1457, 1458, 5, 112, 0, 0, 1458, 1459, 5, 97, 0, 0, 1459, 1460, 5, 99, 0, 0, 1460, 1461, 5, 101, 0, 0, 1461, 284, 1, 0, 0, 0, 1462, 1463, 5, 101, 0, 0, 1463, 1464, 5, 105, 0, 0, 1464, 1482, 5, 103, 0, 0, 1465, 1466, 5, 101, 0, 0, 1466, 1467, 5, 105, 0, 0, 1467, 1468, 5, 103, 0, 0, 1468, 1469, 5, 101, 0, 0, 1469, 1482, 5, 110, 0, 0, 1470, 1471, 5, 100, 0, 0, 1471, 1472, 5, 105, 0, 0, 1472, 1473, 5, 97, 0, 0, 1473, 1474, 5, 103, 0, 0, 1474, 1475, 5, 111, 0, 0, 1475, 1476, 5, 110, 0, 0, 1476, 1477, 5, 97, 0, 0, 1477, 1478, 5, 108, 0, 0, 1478, 1479, 5, 105, 0, 0, 1479, 1480, 5, 122, 0, 0, 1480, 1482, 5, 101, 0, 0, 1481, 1462, 1, 0, 0, 0, 1481, 1465, 1, 0, 0, 0, 1481, 1470, 1, 0, 0, 0, 1482, 286, 1, 0, 0, 0, 1483, 1484, 5, 101, 0, 0, 1484, 1485, 5, 105, 0, 0, 1485, 1486, 5, 103, 0, 0, 1486, 1487, 5, 101, 0, 0, 1487, 1488, 5, 110, 0, 0, 1488, 1489, 5, 118, 0, 0, 1489, 1490, 5, 97, 0, 0, 1490, 1491, 5, 108, 0, 0, 1491, 1504, 5, 115, 0, 0, 1492, 1493, 5, 101, 0, 0, 1493, 1494, 5, 105, 0, 0, 1494, 1495, 5, 103, 0, 0, 1495, 1496, 5, 101, 0, 0, 1496, 1497, 5, 110, 0, 0, 1497, 1498, 5, 118, 0, 0, 1498, 1499, 5, 97, 0, 0, 1499, 1500, 5, 108, 0, 0, 1500, 1501, 5, 117, 0, 0, 1501, 1502, 5, 101, 0, 0, 1502, 1504, 5, 115, 0, 0, 1503, 1483, 1, 0, 0, 0, 1503, 1492, 1, 0, 0, 0, 1504, 288, 1, 0, 0, 0, 1505, 1506, 5, 101, 0, 0, 1506, 1507, 5, 105, 0, 0, 1507, 1508, 5, 103, 0, 0, 1508, 1509, 5, 101, 0, 0, 1509, 1510, 5, 110, 0, 0, 1510, 1511, 5, 118, 0, 0, 1511, 1512, 5, 101, 0, 0, 1512, 1513, 5, 99, 0, 0, 1513, 1514, 5, 116, 0, 0, 1514, 1528, 5, 115, 0, 0, 1515, 1516, 5, 101, 0, 0, 1516, 1517, 5, 105, 0, 0, 1517, 1518, 5, 103, 0, 0, 1518, 1519, 5, 101, 0, 0, 1519, 1520, 5, 110, 0, 0, 1520, 1521, 5, 118, 0, 0, 1521, 1522, 5, 101, 0, 0, 1522, 1523, 5, 99, 0, 0, 1523, 1524, 5, 116, 0, 0, 1524, 1525, 5, 111, 0, 0, 1525, 1526, 5, 114, 0, 0, 1526, 1528, 5, 115, 0, 0, 1527, 1505, 1, 0, 0, 0, 1527, 1515, 1, 0, 0, 0, 1528, 290, 1, 0, 0, 0, 1529, 1530, 5, 115, 0, 0, 1530, 1531, 5, 118, 0, 0, 1531, 1536, 5, 100, 0, 0, 1532, 1533, 5, 83, 0, 0, 1533, 1534, 5, 86, 0, 0, 1534, 1536, 5, 68, 0, 0, 1535, 1529, 1, 0, 0, 0, 1535, 1532, 1, 0, 0, 0, 1536, 292, 1, 0, 0, 0, 1537, 1538, 5, 92, 0, 0, 1538, 1539, 5, 116, 0, 0, 1539, 1540, 5, 105, 0, 0, 1540, 1541, 5, 109, 0, 0, 1541, 1542, 5, 101, 0, 0, 1542, 1543, 5, 115, 0, 0, 1543, 294, 1, 0, 0, 0, 1544, 1545, 5, 92, 0, 0, 1545, 1546, 5, 99, 0, 0, 1546, 1547, 5, 100, 0, 0, 1547, 1548, 5, 111, 0, 0, 1548, 1549, 5, 116, 0, 0, 1549, 296, 1, 0, 0, 0, 1550, 1551, 5, 92, 0, 0, 1551, 1552, 5, 100, 0, 0, 1552, 1553, 5, 105, 0, 0, 1553, 1554, 5, 118, 0, 0, 1554, 298, 1, 0, 0, 0, 1555, 1556, 5, 92, 0, 0, 1556, 1557, 5, 102, 0, 0, 1557, 1558, 5, 114, 0, 0, 1558, 1559, 5, 97, 0, 0, 1559, 1560, 5, 99, 0, 0, 1560, 300, 1, 0, 0, 0, 1561, 1562, 5, 92, 0, 0, 1562, 1563, 5, 98, 0, 0, 1563, 1564, 5, 105, 0, 0, 1564, 1565, 5, 110, 0, 0, 1565, 1566, 5, 111, 0, 0, 1566, 1582, 5, 109, 0, 0, 1567, 1568, 5, 92, 0, 0, 1568, 1569, 5, 116, 0, 0, 1569, 1570, 5, 98, 0, 0, 1570, 1571, 5, 105, 0, 0, 1571, 1572, 5, 110, 0, 0, 1572, 1573, 5, 111, 0, 0, 1573, 1582, 5, 109, 0, 0, 1574, 1575, 5, 92, 0, 0, 1575, 1576, 5, 100, 0, 0, 1576, 1577, 5, 98, 0, 0, 1577, 1578, 5, 105, 0, 0, 1578, 1579, 5, 110, 0, 0, 1579, 1580, 5, 111, 0, 0, 1580, 1582, 5, 109, 0, 0, 1581, 1561, 1, 0, 0, 0, 1581, 1567, 1, 0, 0, 0, 1581, 1574, 1, 0, 0, 0, 1582, 302, 1, 0, 0, 0, 1583, 1584, 5, 92, 0, 0, 1584, 1585, 5, 99, 0, 0, 1585, 1586, 5, 104, 0, 0, 1586, 1587, 5, 111, 0, 0, 1587, 1588, 5, 111, 0, 0, 1588, 1589, 5, 115, 0, 0, 1589, 1590, 5, 101, 0, 0, 1590, 304, 1, 0, 0, 0, 1591, 1592, 5, 92, 0, 0, 1592, 1593, 5, 109, 0, 0, 1593, 1594, 5, 111, 0, 0, 1594, 1595, 5, 100, 0, 0, 1595, 306, 1, 0, 0, 0, 1596, 1597, 5, 92, 0, 0, 1597, 1598, 5, 109, 0, 0, 1598, 1599, 5, 97, 0, 0, 1599, 1600, 5, 116, 0, 0, 1600, 1601, 5, 104, 0, 0, 1601, 1602, 5, 105, 0, 0, 1602, 1603, 5, 116, 0, 0, 1603, 308, 1, 0, 0, 0, 1604, 1605, 5, 92, 0, 0, 1605, 1606, 5, 111, 0, 0, 1606, 1607, 5, 112, 0, 0, 1607, 1608, 5, 101, 0, 0, 1608, 1609, 5, 114, 0, 0, 1609, 1610, 5, 97, 0, 0, 1610, 1611, 5, 116, 0, 0, 1611, 1612, 5, 111, 0, 0, 1612, 1613, 5, 114, 0, 0, 1613, 1614, 5, 110, 0, 0, 1614, 1615, 5, 97, 0, 0, 1615, 1616, 5, 109, 0, 0, 1616, 1617, 5, 101, 0, 0, 1617, 310, 1, 0, 0, 0, 1618, 1619, 5, 109, 0, 0, 1619, 1620, 5, 97, 0, 0, 1620, 1621, 5, 116, 0, 0, 1621, 1622, 5, 114, 0, 0, 1622, 1623, 5, 105, 0, 0, 1623, 1624, 5, 120, 0, 0, 1624, 312, 1, 0, 0, 0, 1625, 1626, 5, 112, 0, 0, 1626, 1627, 5, 109, 0, 0, 1627, 1628, 5, 97, 0, 0, 1628, 1629, 5, 116, 0, 0, 1629, 1630, 5, 114, 0, 0, 1630, 1631, 5, 105, 0, 0, 1631, 1632, 5, 120, 0, 0, 1632, 314, 1, 0, 0, 0, 1633, 1634, 5, 98, 0, 0, 1634, 1635, 5, 109, 0, 0, 1635, 1636, 5, 97, 0, 0, 1636, 1637, 5, 116, 0, 0, 1637, 1638, 5, 114, 0, 0, 1638, 1639, 5, 105, 0, 0, 1639, 1640, 5, 120, 0, 0, 1640, 316, 1, 0, 0, 0, 1641, 1642, 5, 118, 0, 0, 1642, 1643, 5, 109, 0, 0, 1643, 1644, 5, 97, 0, 0, 1644, 1645, 5, 116, 0, 0, 1645, 1646, 5, 114, 0, 0, 1646, 1647, 5, 105, 0, 0, 1647, 1648, 5, 120, 0, 0, 1648, 318, 1, 0, 0, 0, 1649, 1653, 3, 311, 155, 0, 1650, 1653, 3, 313, 156, 0, 1651, 1653, 3, 315, 157, 0, 1652, 1649, 1, 0, 0, 0, 1652, 1650, 1, 0, 0, 0, 1652, 1651, 1, 0, 0, 0, 1653, 320, 1, 0, 0, 0, 1654, 1655, 5, 92, 0, 0, 1655, 1656, 5, 98, 0, 0, 1656, 1657, 5, 101, 0, 0, 1657, 1658, 5, 103, 0, 0, 1658, 1659, 5, 105, 0, 0, 1659, 1660, 5, 110, 0, 0, 1660, 1661, 1, 0, 0, 0, 1661, 1662, 3, 109, 54, 0, 1662, 1663, 3, 319, 159, 0, 1663, 1664, 3, 111, 55, 0, 1664, 322, 1, 0, 0, 0, 1665, 1666, 5, 92, 0, 0, 1666, 1667, 5, 101, 0, 0, 1667, 1668, 5, 110, 0, 0, 1668, 1669, 5, 100, 0, 0, 1669, 1670, 1, 0, 0, 0, 1670, 1671, 3, 109, 54, 0, 1671, 1672, 3, 319, 159, 0, 1672, 1673, 3, 111, 55, 0, 1673, 324, 1, 0, 0, 0, 1674, 1675, 5, 92, 0, 0, 1675, 1676, 5, 98, 0, 0, 1676, 1677, 5, 101, 0, 0, 1677, 1678, 5, 103, 0, 0, 1678, 1679, 5, 105, 0, 0, 1679, 1680, 5, 110, 0, 0, 1680, 1681, 1, 0, 0, 0, 1681, 1682, 3, 109, 54, 0, 1682, 1683, 3, 317, 158, 0, 1683, 1684, 3, 111, 55, 0, 1684, 326, 1, 0, 0, 0, 1685, 1686, 5, 92, 0, 0, 1686, 1687, 5, 101, 0, 0, 1687, 1688, 5, 110, 0, 0, 1688, 1689, 5, 100, 0, 0, 1689, 1690, 1, 0, 0, 0, 1690, 1691, 3, 109, 54, 0, 1691, 1692, 3, 317, 158, 0, 1692, 1693, 3, 111, 55, 0, 1693, 328, 1, 0, 0, 0, 1694, 1695, 5, 38, 0, 0, 1695, 330, 1, 0, 0, 0, 1696, 1697, 5, 92, 0, 0, 1697, 1698, 5, 92, 0, 0, 1698, 332, 1, 0, 0, 0, 1699, 1700, 5, 95, 0, 0, 1700, 334, 1, 0, 0, 0, 1701, 1702, 5, 94, 0, 0, 1702, 336, 1, 0, 0, 0, 1703, 1704, 5, 58, 0, 0, 1704, 338, 1, 0, 0, 0, 1705, 1706, 5, 59, 0, 0, 1706, 340, 1, 0, 0, 0, 1707, 1708, 5, 44, 0, 0, 1708, 342, 1, 0, 0, 0, 1709, 1710, 5, 46, 0, 0, 1710, 344, 1, 0, 0, 0, 1711, 1712, 7, 0, 0, 0, 1712, 346, 1, 0, 0, 0, 1713, 1717, 5, 100, 0, 0, 1714, 1716, 3, 345, 172, 0, 1715, 1714, 1, 0, 0, 0, 1716, 1719, 1, 0, 0, 0, 1717, 1718, 1, 0, 0, 0, 1717, 1715, 1, 0, 0, 0, 1718, 1727, 1, 0, 0, 0, 1719, 1717, 1, 0, 0, 0, 1720, 1728, 7, 1, 0, 0, 1721, 1723, 5, 92, 0, 0, 1722, 1724, 7, 1, 0, 0, 1723, 1722, 1, 0, 0, 0, 1724, 1725, 1, 0, 0, 0, 1725, 1723, 1, 0, 0, 0, 1725, 1726, 1, 0, 0, 0, 1726, 1728, 1, 0, 0, 0, 1727, 1720, 1, 0, 0, 0, 1727, 1721, 1, 0, 0, 0, 1728, 348, 1, 0, 0, 0, 1729, 1744, 5, 101, 0, 0, 1730, 1731, 5, 92, 0, 0, 1731, 1732, 5, 101, 0, 0, 1732, 1733, 5, 120, 0, 0, 1733, 1734, 5, 112, 0, 0, 1734, 1735, 5, 111, 0, 0, 1735, 1736, 5, 110, 0, 0, 1736, 1737, 5, 101, 0, 0, 1737, 1738, 5, 110, 0, 0, 1738, 1739, 5, 116, 0, 0, 1739, 1740, 5, 105, 0, 0, 1740, 1741, 5, 97, 0, 0, 1741, 1742, 5, 108, 0, 0, 1742, 1744, 5, 69, 0, 0, 1743, 1729, 1, 0, 0, 0, 1743, 1730, 1, 0, 0, 0, 1744, 350, 1, 0, 0, 0, 1745, 1746, 5, 69, 0, 0, 1746, 352, 1, 0, 0, 0, 1747, 1748, 7, 2, 0, 0, 1748, 354, 1, 0, 0, 0, 1749, 1750, 7, 1, 0, 0, 1750, 356, 1, 0, 0, 0, 1751, 1752, 7, 3, 0, 0, 1752, 358, 1, 0, 0, 0, 1753, 1754, 5, 92, 0, 0, 1754, 1755, 5, 120, 0, 0, 1755, 1756, 5, 114, 0, 0, 1756, 1757, 5, 105, 0, 0, 1757, 1758, 5, 103, 0, 0, 1758, 1759, 5, 104, 0, 0, 1759, 1760, 5, 116, 0, 0, 1760, 1761, 5, 97, 0, 0, 1761, 1762, 5, 114, 0, 0, 1762, 1763, 5, 114, 0, 0, 1763, 1764, 5, 111, 0, 0, 1764, 1778, 5, 119, 0, 0, 1765, 1766, 5, 92, 0, 0, 1766, 1767, 5, 120, 0, 0, 1767, 1768, 5, 82, 0, 0, 1768, 1769, 5, 105, 0, 0, 1769, 1770, 5, 103, 0, 0, 1770, 1771, 5, 104, 0, 0, 1771, 1772, 5, 116, 0, 0, 1772, 1773, 5, 97, 0, 0, 1773, 1774, 5, 114, 0, 0, 1774, 1775, 5, 114, 0, 0, 1775, 1776, 5, 111, 0, 0, 1776, 1778, 5, 119, 0, 0, 1777, 1753, 1, 0, 0, 0, 1777, 1765, 1, 0, 0, 0, 1778, 360, 1, 0, 0, 0, 1779, 1780, 5, 60, 0, 0, 1780, 1781, 5, 45, 0, 0, 1781, 1816, 5, 62, 0, 0, 1782, 1783, 5, 60, 0, 0, 1783, 1784, 5, 61, 0, 0, 1784, 1816, 5, 62, 0, 0, 1785, 1786, 5, 92, 0, 0, 1786, 1787, 5, 108, 0, 0, 1787, 1788, 5, 101, 0, 0, 1788, 1789, 5, 102, 0, 0, 1789, 1790, 5, 116, 0, 0, 1790, 1791, 5, 114, 0, 0, 1791, 1792, 5, 105, 0, 0, 1792, 1793, 5, 103, 0, 0, 1793, 1794, 5, 104, 0, 0, 1794, 1795, 5, 116, 0, 0, 1795, 1796, 5, 97, 0, 0, 1796, 1797, 5, 114, 0, 0, 1797, 1798, 5, 114, 0, 0, 1798, 1799, 5, 111, 0, 0, 1799, 1816, 5, 119, 0, 0, 1800, 1801, 5, 92, 0, 0, 1801, 1802, 5, 76, 0, 0, 1802, 1803, 5, 101, 0, 0, 1803, 1804, 5, 102, 0, 0, 1804, 1805, 5, 116, 0, 0, 1805, 1806, 5, 114, 0, 0, 1806, 1807, 5, 105, 0, 0, 1807, 1808, 5, 103, 0, 0, 1808, 1809, 5, 104, 0, 0, 1809, 1810, 5, 116, 0, 0, 1810, 1811, 5, 97, 0, 0, 1811, 1812, 5, 114, 0, 0, 1812, 1813, 5, 114, 0, 0, 1813, 1814, 5, 111, 0, 0, 1814, 1816, 5, 119, 0, 0, 1815, 1779, 1, 0, 0, 0, 1815, 1782, 1, 0, 0, 0, 1815, 1785, 1, 0, 0, 0, 1815, 1800, 1, 0, 0, 0, 1816, 362, 1, 0, 0, 0, 1817, 1819, 3, 357, 178, 0, 1818, 1817, 1, 0, 0, 0, 1819, 1820, 1, 0, 0, 0, 1820, 1818, 1, 0, 0, 0, 1820, 1821, 1, 0, 0, 0, 1821, 1829, 1, 0, 0, 0, 1822, 1823, 3, 341, 170, 0, 1823, 1824, 3, 357, 178, 0, 1824, 1825, 3, 357, 178, 0, 1825, 1826, 3, 357, 178, 0, 1826, 1828, 1, 0, 0, 0, 1827, 1822, 1, 0, 0, 0, 1828, 1831, 1, 0, 0, 0, 1829, 1827, 1, 0, 0, 0, 1829, 1830, 1, 0, 0, 0, 1830, 1855, 1, 0, 0, 0, 1831, 1829, 1, 0, 0, 0, 1832, 1834, 3, 357, 178, 0, 1833, 1832, 1, 0, 0, 0, 1834, 1837, 1, 0, 0, 0, 1835, 1833, 1, 0, 0, 0, 1835, 1836, 1, 0, 0, 0, 1836, 1845, 1, 0, 0, 0, 1837, 1835, 1, 0, 0, 0, 1838, 1839, 3, 341, 170, 0, 1839, 1840, 3, 357, 178, 0, 1840, 1841, 3, 357, 178, 0, 1841, 1842, 3, 357, 178, 0, 1842, 1844, 1, 0, 0, 0, 1843, 1838, 1, 0, 0, 0, 1844, 1847, 1, 0, 0, 0, 1845, 1843, 1, 0, 0, 0, 1845, 1846, 1, 0, 0, 0, 1846, 1848, 1, 0, 0, 0, 1847, 1845, 1, 0, 0, 0, 1848, 1850, 3, 343, 171, 0, 1849, 1851, 3, 357, 178, 0, 1850, 1849, 1, 0, 0, 0, 1851, 1852, 1, 0, 0, 0, 1852, 1850, 1, 0, 0, 0, 1852, 1853, 1, 0, 0, 0, 1853, 1855, 1, 0, 0, 0, 1854, 1818, 1, 0, 0, 0, 1854, 1835, 1, 0, 0, 0, 1855, 364, 1, 0, 0, 0, 1856, 1857, 3, 363, 181, 0, 1857, 1860, 3, 351, 175, 0, 1858, 1861, 3, 95, 47, 0, 1859, 1861, 3, 93, 46, 0, 1860, 1858, 1, 0, 0, 0, 1860, 1859, 1, 0, 0, 0, 1860, 1861, 1, 0, 0, 0, 1861, 1863, 1, 0, 0, 0, 1862, 1864, 3, 357, 178, 0, 1863, 1862, 1, 0, 0, 0, 1864, 1865, 1, 0, 0, 0, 1865, 1863, 1, 0, 0, 0, 1865, 1866, 1, 0, 0, 0, 1866, 366, 1, 0, 0, 0, 1867, 1868, 5, 92, 0, 0, 1868, 1869, 5, 105, 0, 0, 1869, 1870, 5, 110, 0, 0, 1870, 368, 1, 0, 0, 0, 1871, 1872, 5, 61, 0, 0, 1872, 370, 1, 0, 0, 0, 1873, 1874, 5, 61, 0, 0, 1874, 1882, 5, 61, 0, 0, 1875, 1876, 5, 92, 0, 0, 1876, 1877, 5, 101, 0, 0, 1877, 1878, 5, 113, 0, 0, 1878, 1879, 5, 117, 0, 0, 1879, 1880, 5, 105, 0, 0, 1880, 1882, 5, 118, 0, 0, 1881, 1873, 1, 0, 0, 0, 1881, 1875, 1, 0, 0, 0, 1882, 372, 1, 0, 0, 0, 1883, 1884, 5, 60, 0, 0, 1884, 374, 1, 0, 0, 0, 1885, 1886, 5, 92, 0, 0, 1886, 1887, 5, 108, 0, 0, 1887, 1888, 5, 101, 0, 0, 1888, 1902, 5, 113, 0, 0, 1889, 1890, 5, 92, 0, 0, 1890, 1891, 5, 108, 0, 0, 1891, 1902, 5, 101, 0, 0, 1892, 1893, 5, 92, 0, 0, 1893, 1894, 5, 108, 0, 0, 1894, 1895, 5, 101, 0, 0, 1895, 1896, 5, 113, 0, 0, 1896, 1897, 5, 115, 0, 0, 1897, 1898, 5, 108, 0, 0, 1898, 1899, 5, 97, 0, 0, 1899, 1900, 5, 110, 0, 0, 1900, 1902, 5, 116, 0, 0, 1901, 1885, 1, 0, 0, 0, 1901, 1889, 1, 0, 0, 0, 1901, 1892, 1, 0, 0, 0, 1902, 376, 1, 0, 0, 0, 1903, 1904, 5, 62, 0, 0, 1904, 378, 1, 0, 0, 0, 1905, 1906, 5, 92, 0, 0, 1906, 1907, 5, 103, 0, 0, 1907, 1908, 5, 101, 0, 0, 1908, 1922, 5, 113, 0, 0, 1909, 1910, 5, 92, 0, 0, 1910, 1911, 5, 103, 0, 0, 1911, 1922, 5, 101, 0, 0, 1912, 1913, 5, 92, 0, 0, 1913, 1914, 5, 103, 0, 0, 1914, 1915, 5, 101, 0, 0, 1915, 1916, 5, 113, 0, 0, 1916, 1917, 5, 115, 0, 0, 1917, 1918, 5, 108, 0, 0, 1918, 1919, 5, 97, 0, 0, 1919, 1920, 5, 110, 0, 0, 1920, 1922, 5, 116, 0, 0, 1921, 1905, 1, 0, 0, 0, 1921, 1909, 1, 0, 0, 0, 1921, 1912, 1, 0, 0, 0, 1922, 380, 1, 0, 0, 0, 1923, 1924, 5, 33, 0, 0, 1924, 1946, 5, 61, 0, 0, 1925, 1926, 5, 33, 0, 0, 1926, 1927, 5, 61, 0, 0, 1927, 1946, 5, 61, 0, 0, 1928, 1929, 5, 92, 0, 0, 1929, 1930, 5, 110, 0, 0, 1930, 1946, 5, 101, 0, 0, 1931, 1932, 5, 92, 0, 0, 1932, 1933, 5, 110, 0, 0, 1933, 1934, 5, 101, 0, 0, 1934, 1946, 5, 113, 0, 0, 1935, 1936, 5, 92, 0, 0, 1936, 1937, 5, 110, 0, 0, 1937, 1938, 5, 111, 0, 0, 1938, 1939, 5, 116, 0, 0, 1939, 1940, 5, 92, 0, 0, 1940, 1941, 5, 101, 0, 0, 1941, 1942, 5, 113, 0, 0, 1942, 1943, 5, 117, 0, 0, 1943, 1944, 5, 105, 0, 0, 1944, 1946, 5, 118, 0, 0, 1945, 1923, 1, 0, 0, 0, 1945, 1925, 1, 0, 0, 0, 1945, 1928, 1, 0, 0, 0, 1945, 1931, 1, 0, 0, 0, 1945, 1935, 1, 0, 0, 0, 1946, 382, 1, 0, 0, 0, 1947, 1948, 5, 33, 0, 0, 1948, 384, 1, 0, 0, 0, 1949, 1950, 5, 92, 0, 0, 1950, 1951, 5, 37, 0, 0, 1951, 386, 1, 0, 0, 0, 1952, 1953, 3, 363, 181, 0, 1953, 1954, 3, 385, 192, 0, 1954, 388, 1, 0, 0, 0, 1955, 1956, 5, 92, 0, 0, 1956, 1957, 5, 99, 0, 0, 1957, 1958, 5, 104, 0, 0, 1958, 1959, 5, 97, 0, 0, 1959, 1960, 5, 114, 0, 0, 1960, 1961, 5, 34, 0, 0, 1961, 1962, 5, 48, 0, 0, 1962, 1963, 5, 48, 0, 0, 1963, 1964, 5, 48, 0, 0, 1964, 1965, 5, 51, 0, 0, 1965, 1966, 5, 57, 0, 0, 1966, 2341, 5, 49, 0, 0, 1967, 1968, 5, 92, 0, 0, 1968, 1969, 5, 97, 0, 0, 1969, 1970, 5, 108, 0, 0, 1970, 1971, 5, 112, 0, 0, 1971, 1972, 5, 104, 0, 0, 1972, 2341, 5, 97, 0, 0, 1973, 1974, 5, 92, 0, 0, 1974, 1975, 5, 99, 0, 0, 1975, 1976, 5, 104, 0, 0, 1976, 1977, 5, 97, 0, 0, 1977, 1978, 5, 114, 0, 0, 1978, 1979, 5, 34, 0, 0, 1979, 1980, 5, 48, 0, 0, 1980, 1981, 5, 48, 0, 0, 1981, 1982, 5, 48, 0, 0, 1982, 1983, 5, 51, 0, 0, 1983, 1984, 5, 57, 0, 0, 1984, 2341, 5, 50, 0, 0, 1985, 1986, 5, 92, 0, 0, 1986, 1987, 5, 98, 0, 0, 1987, 1988, 5, 101, 0, 0, 1988, 1989, 5, 116, 0, 0, 1989, 2341, 5, 97, 0, 0, 1990, 1991, 5, 92, 0, 0, 1991, 1992, 5, 71, 0, 0, 1992, 1993, 5, 97, 0, 0, 1993, 1994, 5, 109, 0, 0, 1994, 1995, 5, 109, 0, 0, 1995, 2341, 5, 97, 0, 0, 1996, 1997, 5, 92, 0, 0, 1997, 1998, 5, 103, 0, 0, 1998, 1999, 5, 97, 0, 0, 1999, 2000, 5, 109, 0, 0, 2000, 2001, 5, 109, 0, 0, 2001, 2341, 5, 97, 0, 0, 2002, 2003, 5, 92, 0, 0, 2003, 2004, 5, 68, 0, 0, 2004, 2005, 5, 101, 0, 0, 2005, 2006, 5, 108, 0, 0, 2006, 2007, 5, 116, 0, 0, 2007, 2341, 5, 97, 0, 0, 2008, 2009, 5, 92, 0, 0, 2009, 2010, 5, 100, 0, 0, 2010, 2011, 5, 101, 0, 0, 2011, 2012, 5, 108, 0, 0, 2012, 2013, 5, 116, 0, 0, 2013, 2341, 5, 97, 0, 0, 2014, 2015, 5, 92, 0, 0, 2015, 2016, 5, 99, 0, 0, 2016, 2017, 5, 104, 0, 0, 2017, 2018, 5, 97, 0, 0, 2018, 2019, 5, 114, 0, 0, 2019, 2020, 5, 34, 0, 0, 2020, 2021, 5, 48, 0, 0, 2021, 2022, 5, 48, 0, 0, 2022, 2023, 5, 48, 0, 0, 2023, 2024, 5, 49, 0, 0, 2024, 2025, 5, 57, 0, 0, 2025, 2341, 5, 48, 0, 0, 2026, 2027, 5, 92, 0, 0, 2027, 2028, 5, 101, 0, 0, 2028, 2029, 5, 112, 0, 0, 2029, 2030, 5, 115, 0, 0, 2030, 2031, 5, 105, 0, 0, 2031, 2032, 5, 108, 0, 0, 2032, 2033, 5, 111, 0, 0, 2033, 2341, 5, 110, 0, 0, 2034, 2035, 5, 92, 0, 0, 2035, 2036, 5, 118, 0, 0, 2036, 2037, 5, 97, 0, 0, 2037, 2038, 5, 114, 0, 0, 2038, 2039, 5, 101, 0, 0, 2039, 2040, 5, 112, 0, 0, 2040, 2041, 5, 115, 0, 0, 2041, 2042, 5, 105, 0, 0, 2042, 2043, 5, 108, 0, 0, 2043, 2044, 5, 111, 0, 0, 2044, 2341, 5, 110, 0, 0, 2045, 2046, 5, 92, 0, 0, 2046, 2047, 5, 99, 0, 0, 2047, 2048, 5, 104, 0, 0, 2048, 2049, 5, 97, 0, 0, 2049, 2050, 5, 114, 0, 0, 2050, 2051, 5, 34, 0, 0, 2051, 2052, 5, 48, 0, 0, 2052, 2053, 5, 48, 0, 0, 2053, 2054, 5, 48, 0, 0, 2054, 2055, 5, 51, 0, 0, 2055, 2056, 5, 57, 0, 0, 2056, 2341, 5, 54, 0, 0, 2057, 2058, 5, 92, 0, 0, 2058, 2059, 5, 122, 0, 0, 2059, 2060, 5, 101, 0, 0, 2060, 2061, 5, 116, 0, 0, 2061, 2341, 5, 97, 0, 0, 2062, 2063, 5, 92, 0, 0, 2063, 2064, 5, 99, 0, 0, 2064, 2065, 5, 104, 0, 0, 2065, 2066, 5, 97, 0, 0, 2066, 2067, 5, 114, 0, 0, 2067, 2068, 5, 34, 0, 0, 2068, 2069, 5, 48, 0, 0, 2069, 2070, 5, 48, 0, 0, 2070, 2071, 5, 48, 0, 0, 2071, 2072, 5, 51, 0, 0, 2072, 2073, 5, 57, 0, 0, 2073, 2341, 5, 55, 0, 0, 2074, 2075, 5, 92, 0, 0, 2075, 2076, 5, 101, 0, 0, 2076, 2077, 5, 116, 0, 0, 2077, 2341, 5, 97, 0, 0, 2078, 2079, 5, 92, 0, 0, 2079, 2080, 5, 84, 0, 0, 2080, 2081, 5, 104, 0, 0, 2081, 2082, 5, 101, 0, 0, 2082, 2083, 5, 116, 0, 0, 2083, 2341, 5, 97, 0, 0, 2084, 2085, 5, 92, 0, 0, 2085, 2086, 5, 116, 0, 0, 2086, 2087, 5, 104, 0, 0, 2087, 2088, 5, 101, 0, 0, 2088, 2089, 5, 116, 0, 0, 2089, 2341, 5, 97, 0, 0, 2090, 2091, 5, 92, 0, 0, 2091, 2092, 5, 118, 0, 0, 2092, 2093, 5, 97, 0, 0, 2093, 2094, 5, 114, 0, 0, 2094, 2095, 5, 116, 0, 0, 2095, 2096, 5, 104, 0, 0, 2096, 2097, 5, 101, 0, 0, 2097, 2098, 5, 116, 0, 0, 2098, 2341, 5, 97, 0, 0, 2099, 2100, 5, 92, 0, 0, 2100, 2101, 5, 99, 0, 0, 2101, 2102, 5, 104, 0, 0, 2102, 2103, 5, 97, 0, 0, 2103, 2104, 5, 114, 0, 0, 2104, 2105, 5, 34, 0, 0, 2105, 2106, 5, 48, 0, 0, 2106, 2107, 5, 48, 0, 0, 2107, 2108, 5, 48, 0, 0, 2108, 2109, 5, 51, 0, 0, 2109, 2110, 5, 57, 0, 0, 2110, 2341, 5, 57, 0, 0, 2111, 2112, 5, 92, 0, 0, 2112, 2113, 5, 105, 0, 0, 2113, 2114, 5, 111, 0, 0, 2114, 2115, 5, 116, 0, 0, 2115, 2341, 5, 97, 0, 0, 2116, 2117, 5, 92, 0, 0, 2117, 2118, 5, 99, 0, 0, 2118, 2119, 5, 104, 0, 0, 2119, 2120, 5, 97, 0, 0, 2120, 2121, 5, 114, 0, 0, 2121, 2122, 5, 34, 0, 0, 2122, 2123, 5, 48, 0, 0, 2123, 2124, 5, 48, 0, 0, 2124, 2125, 5, 48, 0, 0, 2125, 2126, 5, 51, 0, 0, 2126, 2127, 5, 57, 0, 0, 2127, 2341, 5, 65, 0, 0, 2128, 2129, 5, 92, 0, 0, 2129, 2130, 5, 107, 0, 0, 2130, 2131, 5, 97, 0, 0, 2131, 2132, 5, 112, 0, 0, 2132, 2133, 5, 112, 0, 0, 2133, 2341, 5, 97, 0, 0, 2134, 2135, 5, 92, 0, 0, 2135, 2136, 5, 76, 0, 0, 2136, 2137, 5, 97, 0, 0, 2137, 2138, 5, 109, 0, 0, 2138, 2139, 5, 98, 0, 0, 2139, 2140, 5, 100, 0, 0, 2140, 2341, 5, 97, 0, 0, 2141, 2142, 5, 92, 0, 0, 2142, 2143, 5, 108, 0, 0, 2143, 2144, 5, 97, 0, 0, 2144, 2145, 5, 109, 0, 0, 2145, 2146, 5, 98, 0, 0, 2146, 2147, 5, 100, 0, 0, 2147, 2341, 5, 97, 0, 0, 2148, 2149, 5, 92, 0, 0, 2149, 2150, 5, 99, 0, 0, 2150, 2151, 5, 104, 0, 0, 2151, 2152, 5, 97, 0, 0, 2152, 2153, 5, 114, 0, 0, 2153, 2154, 5, 34, 0, 0, 2154, 2155, 5, 48, 0, 0, 2155, 2156, 5, 48, 0, 0, 2156, 2157, 5, 48, 0, 0, 2157, 2158, 5, 51, 0, 0, 2158, 2159, 5, 57, 0, 0, 2159, 2341, 5, 67, 0, 0, 2160, 2161, 5, 92, 0, 0, 2161, 2162, 5, 109, 0, 0, 2162, 2341, 5, 117, 0, 0, 2163, 2164, 5, 92, 0, 0, 2164, 2165, 5, 99, 0, 0, 2165, 2166, 5, 104, 0, 0, 2166, 2167, 5, 97, 0, 0, 2167, 2168, 5, 114, 0, 0, 2168, 2169, 5, 34, 0, 0, 2169, 2170, 5, 48, 0, 0, 2170, 2171, 5, 48, 0, 0, 2171, 2172, 5, 48, 0, 0, 2172, 2173, 5, 51, 0, 0, 2173, 2174, 5, 57, 0, 0, 2174, 2341, 5, 68, 0, 0, 2175, 2176, 5, 92, 0, 0, 2176, 2177, 5, 110, 0, 0, 2177, 2341, 5, 117, 0, 0, 2178, 2179, 5, 92, 0, 0, 2179, 2180, 5, 88, 0, 0, 2180, 2341, 5, 105, 0, 0, 2181, 2182, 5, 92, 0, 0, 2182, 2183, 5, 120, 0, 0, 2183, 2341, 5, 105, 0, 0, 2184, 2185, 5, 92, 0, 0, 2185, 2186, 5, 99, 0, 0, 2186, 2187, 5, 104, 0, 0, 2187, 2188, 5, 97, 0, 0, 2188, 2189, 5, 114, 0, 0, 2189, 2190, 5, 34, 0, 0, 2190, 2191, 5, 48, 0, 0, 2191, 2192, 5, 48, 0, 0, 2192, 2193, 5, 48, 0, 0, 2193, 2194, 5, 51, 0, 0, 2194, 2195, 5, 57, 0, 0, 2195, 2341, 5, 70, 0, 0, 2196, 2197, 5, 92, 0, 0, 2197, 2198, 5, 111, 0, 0, 2198, 2199, 5, 109, 0, 0, 2199, 2200, 5, 105, 0, 0, 2200, 2201, 5, 99, 0, 0, 2201, 2202, 5, 114, 0, 0, 2202, 2203, 5, 111, 0, 0, 2203, 2341, 5, 110, 0, 0, 2204, 2205, 5, 92, 0, 0, 2205, 2206, 5, 80, 0, 0, 2206, 2341, 5, 105, 0, 0, 2207, 2208, 5, 92, 0, 0, 2208, 2209, 5, 118, 0, 0, 2209, 2210, 5, 97, 0, 0, 2210, 2211, 5, 114, 0, 0, 2211, 2212, 5, 112, 0, 0, 2212, 2341, 5, 105, 0, 0, 2213, 2214, 5, 92, 0, 0, 2214, 2215, 5, 99, 0, 0, 2215, 2216, 5, 104, 0, 0, 2216, 2217, 5, 97, 0, 0, 2217, 2218, 5, 114, 0, 0, 2218, 2219, 5, 34, 0, 0, 2219, 2220, 5, 48, 0, 0, 2220, 2221, 5, 48, 0, 0, 2221, 2222, 5, 48, 0, 0, 2222, 2223, 5, 51, 0, 0, 2223, 2224, 5, 65, 0, 0, 2224, 2341, 5, 49, 0, 0, 2225, 2226, 5, 92, 0, 0, 2226, 2227, 5, 114, 0, 0, 2227, 2228, 5, 104, 0, 0, 2228, 2341, 5, 111, 0, 0, 2229, 2230, 5, 92, 0, 0, 2230, 2231, 5, 118, 0, 0, 2231, 2232, 5, 97, 0, 0, 2232, 2233, 5, 114, 0, 0, 2233, 2234, 5, 114, 0, 0, 2234, 2235, 5, 104, 0, 0, 2235, 2341, 5, 111, 0, 0, 2236, 2237, 5, 92, 0, 0, 2237, 2238, 5, 83, 0, 0, 2238, 2239, 5, 105, 0, 0, 2239, 2240, 5, 103, 0, 0, 2240, 2241, 5, 109, 0, 0, 2241, 2341, 5, 97, 0, 0, 2242, 2243, 5, 92, 0, 0, 2243, 2244, 5, 115, 0, 0, 2244, 2245, 5, 105, 0, 0, 2245, 2246, 5, 103, 0, 0, 2246, 2247, 5, 109, 0, 0, 2247, 2341, 5, 97, 0, 0, 2248, 2249, 5, 92, 0, 0, 2249, 2250, 5, 118, 0, 0, 2250, 2251, 5, 97, 0, 0, 2251, 2252, 5, 114, 0, 0, 2252, 2253, 5, 115, 0, 0, 2253, 2254, 5, 105, 0, 0, 2254, 2255, 5, 103, 0, 0, 2255, 2256, 5, 109, 0, 0, 2256, 2341, 5, 97, 0, 0, 2257, 2258, 5, 92, 0, 0, 2258, 2259, 5, 99, 0, 0, 2259, 2260, 5, 104, 0, 0, 2260, 2261, 5, 97, 0, 0, 2261, 2262, 5, 114, 0, 0, 2262, 2263, 5, 34, 0, 0, 2263, 2264, 5, 48, 0, 0, 2264, 2265, 5, 48, 0, 0, 2265, 2266, 5, 48, 0, 0, 2266, 2267, 5, 51, 0, 0, 2267, 2268, 5, 65, 0, 0, 2268, 2341, 5, 52, 0, 0, 2269, 2270, 5, 92, 0, 0, 2270, 2271, 5, 116, 0, 0, 2271, 2272, 5, 97, 0, 0, 2272, 2341, 5, 117, 0, 0, 2273, 2274, 5, 92, 0, 0, 2274, 2275, 5, 85, 0, 0, 2275, 2276, 5, 112, 0, 0, 2276, 2277, 5, 115, 0, 0, 2277, 2278, 5, 105, 0, 0, 2278, 2279, 5, 108, 0, 0, 2279, 2280, 5, 111, 0, 0, 2280, 2341, 5, 110, 0, 0, 2281, 2282, 5, 92, 0, 0, 2282, 2283, 5, 117, 0, 0, 2283, 2284, 5, 112, 0, 0, 2284, 2285, 5, 115, 0, 0, 2285, 2286, 5, 105, 0, 0, 2286, 2287, 5, 108, 0, 0, 2287, 2288, 5, 111, 0, 0, 2288, 2341, 5, 110, 0, 0, 2289, 2290, 5, 92, 0, 0, 2290, 2291, 5, 80, 0, 0, 2291, 2292, 5, 104, 0, 0, 2292, 2341, 5, 105, 0, 0, 2293, 2294, 5, 92, 0, 0, 2294, 2295, 5, 112, 0, 0, 2295, 2296, 5, 104, 0, 0, 2296, 2341, 5, 105, 0, 0, 2297, 2298, 5, 92, 0, 0, 2298, 2299, 5, 118, 0, 0, 2299, 2300, 5, 97, 0, 0, 2300, 2301, 5, 114, 0, 0, 2301, 2302, 5, 112, 0, 0, 2302, 2303, 5, 104, 0, 0, 2303, 2341, 5, 105, 0, 0, 2304, 2305, 5, 92, 0, 0, 2305, 2306, 5, 99, 0, 0, 2306, 2307, 5, 104, 0, 0, 2307, 2308, 5, 97, 0, 0, 2308, 2309, 5, 114, 0, 0, 2309, 2310, 5, 34, 0, 0, 2310, 2311, 5, 48, 0, 0, 2311, 2312, 5, 48, 0, 0, 2312, 2313, 5, 48, 0, 0, 2313, 2314, 5, 51, 0, 0, 2314, 2315, 5, 65, 0, 0, 2315, 2341, 5, 55, 0, 0, 2316, 2317, 5, 92, 0, 0, 2317, 2318, 5, 99, 0, 0, 2318, 2319, 5, 104, 0, 0, 2319, 2341, 5, 105, 0, 0, 2320, 2321, 5, 92, 0, 0, 2321, 2322, 5, 80, 0, 0, 2322, 2323, 5, 115, 0, 0, 2323, 2341, 5, 105, 0, 0, 2324, 2325, 5, 92, 0, 0, 2325, 2326, 5, 112, 0, 0, 2326, 2327, 5, 115, 0, 0, 2327, 2341, 5, 105, 0, 0, 2328, 2329, 5, 92, 0, 0, 2329, 2330, 5, 79, 0, 0, 2330, 2331, 5, 109, 0, 0, 2331, 2332, 5, 101, 0, 0, 2332, 2333, 5, 103, 0, 0, 2333, 2341, 5, 97, 0, 0, 2334, 2335, 5, 92, 0, 0, 2335, 2336, 5, 111, 0, 0, 2336, 2337, 5, 109, 0, 0, 2337, 2338, 5, 101, 0, 0, 2338, 2339, 5, 103, 0, 0, 2339, 2341, 5, 97, 0, 0, 2340, 1955, 1, 0, 0, 0, 2340, 1967, 1, 0, 0, 0, 2340, 1973, 1, 0, 0, 0, 2340, 1985, 1, 0, 0, 0, 2340, 1990, 1, 0, 0, 0, 2340, 1996, 1, 0, 0, 0, 2340, 2002, 1, 0, 0, 0, 2340, 2008, 1, 0, 0, 0, 2340, 2014, 1, 0, 0, 0, 2340, 2026, 1, 0, 0, 0, 2340, 2034, 1, 0, 0, 0, 2340, 2045, 1, 0, 0, 0, 2340, 2057, 1, 0, 0, 0, 2340, 2062, 1, 0, 0, 0, 2340, 2074, 1, 0, 0, 0, 2340, 2078, 1, 0, 0, 0, 2340, 2084, 1, 0, 0, 0, 2340, 2090, 1, 0, 0, 0, 2340, 2099, 1, 0, 0, 0, 2340, 2111, 1, 0, 0, 0, 2340, 2116, 1, 0, 0, 0, 2340, 2128, 1, 0, 0, 0, 2340, 2134, 1, 0, 0, 0, 2340, 2141, 1, 0, 0, 0, 2340, 2148, 1, 0, 0, 0, 2340, 2160, 1, 0, 0, 0, 2340, 2163, 1, 0, 0, 0, 2340, 2175, 1, 0, 0, 0, 2340, 2178, 1, 0, 0, 0, 2340, 2181, 1, 0, 0, 0, 2340, 2184, 1, 0, 0, 0, 2340, 2196, 1, 0, 0, 0, 2340, 2204, 1, 0, 0, 0, 2340, 2207, 1, 0, 0, 0, 2340, 2213, 1, 0, 0, 0, 2340, 2225, 1, 0, 0, 0, 2340, 2229, 1, 0, 0, 0, 2340, 2236, 1, 0, 0, 0, 2340, 2242, 1, 0, 0, 0, 2340, 2248, 1, 0, 0, 0, 2340, 2257, 1, 0, 0, 0, 2340, 2269, 1, 0, 0, 0, 2340, 2273, 1, 0, 0, 0, 2340, 2281, 1, 0, 0, 0, 2340, 2289, 1, 0, 0, 0, 2340, 2293, 1, 0, 0, 0, 2340, 2297, 1, 0, 0, 0, 2340, 2304, 1, 0, 0, 0, 2340, 2316, 1, 0, 0, 0, 2340, 2320, 1, 0, 0, 0, 2340, 2324, 1, 0, 0, 0, 2340, 2328, 1, 0, 0, 0, 2340, 2334, 1, 0, 0, 0, 2341, 390, 1, 0, 0, 0, 2342, 2344, 3, 389, 194, 0, 2343, 2345, 7, 4, 0, 0, 2344, 2343, 1, 0, 0, 0, 2344, 2345, 1, 0, 0, 0, 2345, 392, 1, 0, 0, 0, 2346, 2347, 5, 92, 0, 0, 2347, 2348, 5, 66, 0, 0, 2348, 2349, 5, 98, 0, 0, 2349, 2350, 5, 98, 0, 0, 2350, 2697, 5, 107, 0, 0, 2351, 2352, 5, 92, 0, 0, 2352, 2353, 5, 119, 0, 0, 2353, 2697, 5, 112, 0, 0, 2354, 2355, 5, 92, 0, 0, 2355, 2356, 5, 110, 0, 0, 2356, 2357, 5, 97, 0, 0, 2357, 2358, 5, 98, 0, 0, 2358, 2359, 5, 108, 0, 0, 2359, 2697, 5, 97, 0, 0, 2360, 2361, 5, 92, 0, 0, 2361, 2362, 5, 98, 0, 0, 2362, 2363, 5, 105, 0, 0, 2363, 2364, 5, 103, 0, 0, 2364, 2365, 5, 115, 0, 0, 2365, 2366, 5, 116, 0, 0, 2366, 2367, 5, 97, 0, 0, 2367, 2697, 5, 114, 0, 0, 2368, 2369, 5, 92, 0, 0, 2369, 2370, 5, 97, 0, 0, 2370, 2371, 5, 110, 0, 0, 2371, 2372, 5, 103, 0, 0, 2372, 2373, 5, 108, 0, 0, 2373, 2697, 5, 101, 0, 0, 2374, 2375, 5, 92, 0, 0, 2375, 2376, 5, 110, 0, 0, 2376, 2377, 5, 101, 0, 0, 2377, 2378, 5, 120, 0, 0, 2378, 2379, 5, 105, 0, 0, 2379, 2380, 5, 115, 0, 0, 2380, 2381, 5, 116, 0, 0, 2381, 2697, 5, 115, 0, 0, 2382, 2383, 5, 92, 0, 0, 2383, 2384, 5, 100, 0, 0, 2384, 2385, 5, 105, 0, 0, 2385, 2386, 5, 97, 0, 0, 2386, 2387, 5, 103, 0, 0, 2387, 2388, 5, 100, 0, 0, 2388, 2389, 5, 111, 0, 0, 2389, 2390, 5, 119, 0, 0, 2390, 2697, 5, 110, 0, 0, 2391, 2392, 5, 92, 0, 0, 2392, 2393, 5, 109, 0, 0, 2393, 2394, 5, 101, 0, 0, 2394, 2395, 5, 97, 0, 0, 2395, 2396, 5, 115, 0, 0, 2396, 2397, 5, 117, 0, 0, 2397, 2398, 5, 114, 0, 0, 2398, 2399, 5, 101, 0, 0, 2399, 2400, 5, 100, 0, 0, 2400, 2401, 5, 97, 0, 0, 2401, 2402, 5, 110, 0, 0, 2402, 2403, 5, 103, 0, 0, 2403, 2404, 5, 108, 0, 0, 2404, 2697, 5, 101, 0, 0, 2405, 2406, 5, 92, 0, 0, 2406, 2407, 5, 101, 0, 0, 2407, 2408, 5, 116, 0, 0, 2408, 2697, 5, 104, 0, 0, 2409, 2410, 5, 92, 0, 0, 2410, 2411, 5, 101, 0, 0, 2411, 2412, 5, 109, 0, 0, 2412, 2413, 5, 112, 0, 0, 2413, 2414, 5, 116, 0, 0, 2414, 2415, 5, 121, 0, 0, 2415, 2416, 5, 115, 0, 0, 2416, 2417, 5, 101, 0, 0, 2417, 2697, 5, 116, 0, 0, 2418, 2419, 5, 92, 0, 0, 2419, 2420, 5, 100, 0, 0, 2420, 2421, 5, 105, 0, 0, 2421, 2422, 5, 97, 0, 0, 2422, 2423, 5, 103, 0, 0, 2423, 2424, 5, 117, 0, 0, 2424, 2697, 5, 112, 0, 0, 2425, 2426, 5, 92, 0, 0, 2426, 2427, 5, 115, 0, 0, 2427, 2428, 5, 112, 0, 0, 2428, 2429, 5, 104, 0, 0, 2429, 2430, 5, 101, 0, 0, 2430, 2431, 5, 114, 0, 0, 2431, 2432, 5, 105, 0, 0, 2432, 2433, 5, 99, 0, 0, 2433, 2434, 5, 97, 0, 0, 2434, 2435, 5, 108, 0, 0, 2435, 2436, 5, 97, 0, 0, 2436, 2437, 5, 110, 0, 0, 2437, 2438, 5, 103, 0, 0, 2438, 2439, 5, 108, 0, 0, 2439, 2697, 5, 101, 0, 0, 2440, 2441, 5, 92, 0, 0, 2441, 2442, 5, 99, 0, 0, 2442, 2443, 5, 108, 0, 0, 2443, 2444, 5, 117, 0, 0, 2444, 2445, 5, 98, 0, 0, 2445, 2446, 5, 115, 0, 0, 2446, 2447, 5, 117, 0, 0, 2447, 2448, 5, 105, 0, 0, 2448, 2697, 5, 116, 0, 0, 2449, 2450, 5, 92, 0, 0, 2450, 2451, 5, 118, 0, 0, 2451, 2452, 5, 97, 0, 0, 2452, 2453, 5, 114, 0, 0, 2453, 2454, 5, 110, 0, 0, 2454, 2455, 5, 111, 0, 0, 2455, 2456, 5, 116, 0, 0, 2456, 2457, 5, 104, 0, 0, 2457, 2458, 5, 105, 0, 0, 2458, 2459, 5, 110, 0, 0, 2459, 2697, 5, 103, 0, 0, 2460, 2461, 5, 92, 0, 0, 2461, 2462, 5, 68, 0, 0, 2462, 2463, 5, 105, 0, 0, 2463, 2464, 5, 97, 0, 0, 2464, 2465, 5, 109, 0, 0, 2465, 2466, 5, 111, 0, 0, 2466, 2467, 5, 110, 0, 0, 2467, 2697, 5, 100, 0, 0, 2468, 2469, 5, 92, 0, 0, 2469, 2470, 5, 99, 0, 0, 2470, 2471, 5, 111, 0, 0, 2471, 2472, 5, 109, 0, 0, 2472, 2473, 5, 112, 0, 0, 2473, 2474, 5, 108, 0, 0, 2474, 2475, 5, 101, 0, 0, 2475, 2476, 5, 109, 0, 0, 2476, 2477, 5, 101, 0, 0, 2477, 2478, 5, 110, 0, 0, 2478, 2697, 5, 116, 0, 0, 2479, 2480, 5, 92, 0, 0, 2480, 2481, 5, 100, 0, 0, 2481, 2482, 5, 105, 0, 0, 2482, 2483, 5, 97, 0, 0, 2483, 2484, 5, 109, 0, 0, 2484, 2485, 5, 111, 0, 0, 2485, 2486, 5, 110, 0, 0, 2486, 2487, 5, 100, 0, 0, 2487, 2488, 5, 115, 0, 0, 2488, 2489, 5, 117, 0, 0, 2489, 2490, 5, 105, 0, 0, 2490, 2697, 5, 116, 0, 0, 2491, 2492, 5, 92, 0, 0, 2492, 2493, 5, 105, 0, 0, 2493, 2494, 5, 109, 0, 0, 2494, 2495, 5, 97, 0, 0, 2495, 2496, 5, 116, 0, 0, 2496, 2697, 5, 104, 0, 0, 2497, 2498, 5, 92, 0, 0, 2498, 2499, 5, 70, 0, 0, 2499, 2500, 5, 105, 0, 0, 2500, 2501, 5, 110, 0, 0, 2501, 2697, 5, 118, 0, 0, 2502, 2503, 5, 92, 0, 0, 2503, 2504, 5, 116, 0, 0, 2504, 2505, 5, 114, 0, 0, 2505, 2506, 5, 105, 0, 0, 2506, 2507, 5, 97, 0, 0, 2507, 2508, 5, 110, 0, 0, 2508, 2509, 5, 103, 0, 0, 2509, 2510, 5, 108, 0, 0, 2510, 2511, 5, 101, 0, 0, 2511, 2512, 5, 100, 0, 0, 2512, 2513, 5, 111, 0, 0, 2513, 2514, 5, 119, 0, 0, 2514, 2697, 5, 110, 0, 0, 2515, 2516, 5, 92, 0, 0, 2516, 2517, 5, 104, 0, 0, 2517, 2518, 5, 101, 0, 0, 2518, 2519, 5, 97, 0, 0, 2519, 2520, 5, 114, 0, 0, 2520, 2521, 5, 116, 0, 0, 2521, 2522, 5, 115, 0, 0, 2522, 2523, 5, 117, 0, 0, 2523, 2524, 5, 105, 0, 0, 2524, 2697, 5, 116, 0, 0, 2525, 2526, 5, 92, 0, 0, 2526, 2527, 5, 106, 0, 0, 2527, 2528, 5, 109, 0, 0, 2528, 2529, 5, 97, 0, 0, 2529, 2530, 5, 116, 0, 0, 2530, 2697, 5, 104, 0, 0, 2531, 2532, 5, 92, 0, 0, 2532, 2533, 5, 71, 0, 0, 2533, 2534, 5, 97, 0, 0, 2534, 2535, 5, 109, 0, 0, 2535, 2697, 5, 101, 0, 0, 2536, 2537, 5, 92, 0, 0, 2537, 2538, 5, 116, 0, 0, 2538, 2539, 5, 114, 0, 0, 2539, 2540, 5, 105, 0, 0, 2540, 2541, 5, 97, 0, 0, 2541, 2542, 5, 110, 0, 0, 2542, 2543, 5, 103, 0, 0, 2543, 2544, 5, 108, 0, 0, 2544, 2697, 5, 101, 0, 0, 2545, 2546, 5, 92, 0, 0, 2546, 2547, 5, 115, 0, 0, 2547, 2548, 5, 112, 0, 0, 2548, 2549, 5, 97, 0, 0, 2549, 2550, 5, 100, 0, 0, 2550, 2551, 5, 101, 0, 0, 2551, 2552, 5, 115, 0, 0, 2552, 2553, 5, 117, 0, 0, 2553, 2554, 5, 105, 0, 0, 2554, 2697, 5, 116, 0, 0, 2555, 2556, 5, 92, 0, 0, 2556, 2557, 5, 101, 0, 0, 2557, 2558, 5, 108, 0, 0, 2558, 2697, 5, 108, 0, 0, 2559, 2560, 5, 92, 0, 0, 2560, 2561, 5, 104, 0, 0, 2561, 2562, 5, 98, 0, 0, 2562, 2563, 5, 97, 0, 0, 2563, 2697, 5, 114, 0, 0, 2564, 2565, 5, 92, 0, 0, 2565, 2566, 5, 118, 0, 0, 2566, 2567, 5, 97, 0, 0, 2567, 2568, 5, 114, 0, 0, 2568, 2569, 5, 116, 0, 0, 2569, 2570, 5, 114, 0, 0, 2570, 2571, 5, 105, 0, 0, 2571, 2572, 5, 97, 0, 0, 2572, 2573, 5, 110, 0, 0, 2573, 2574, 5, 103, 0, 0, 2574, 2575, 5, 108, 0, 0, 2575, 2697, 5, 101, 0, 0, 2576, 2577, 5, 92, 0, 0, 2577, 2578, 5, 104, 0, 0, 2578, 2579, 5, 115, 0, 0, 2579, 2580, 5, 108, 0, 0, 2580, 2581, 5, 97, 0, 0, 2581, 2582, 5, 115, 0, 0, 2582, 2697, 5, 104, 0, 0, 2583, 2584, 5, 92, 0, 0, 2584, 2585, 5, 98, 0, 0, 2585, 2586, 5, 108, 0, 0, 2586, 2587, 5, 97, 0, 0, 2587, 2588, 5, 99, 0, 0, 2588, 2589, 5, 107, 0, 0, 2589, 2590, 5, 108, 0, 0, 2590, 2591, 5, 111, 0, 0, 2591, 2592, 5, 122, 0, 0, 2592, 2593, 5, 101, 0, 0, 2593, 2594, 5, 110, 0, 0, 2594, 2595, 5, 103, 0, 0, 2595, 2697, 5, 101, 0, 0, 2596, 2597, 5, 92, 0, 0, 2597, 2598, 5, 108, 0, 0, 2598, 2599, 5, 111, 0, 0, 2599, 2600, 5, 122, 0, 0, 2600, 2601, 5, 101, 0, 0, 2601, 2602, 5, 110, 0, 0, 2602, 2603, 5, 103, 0, 0, 2603, 2697, 5, 101, 0, 0, 2604, 2605, 5, 92, 0, 0, 2605, 2606, 5, 98, 0, 0, 2606, 2607, 5, 108, 0, 0, 2607, 2608, 5, 97, 0, 0, 2608, 2609, 5, 99, 0, 0, 2609, 2610, 5, 107, 0, 0, 2610, 2611, 5, 115, 0, 0, 2611, 2612, 5, 113, 0, 0, 2612, 2613, 5, 117, 0, 0, 2613, 2614, 5, 97, 0, 0, 2614, 2615, 5, 114, 0, 0, 2615, 2697, 5, 101, 0, 0, 2616, 2617, 5, 92, 0, 0, 2617, 2618, 5, 109, 0, 0, 2618, 2619, 5, 104, 0, 0, 2619, 2697, 5, 111, 0, 0, 2620, 2621, 5, 92, 0, 0, 2621, 2622, 5, 98, 0, 0, 2622, 2623, 5, 108, 0, 0, 2623, 2624, 5, 97, 0, 0, 2624, 2625, 5, 99, 0, 0, 2625, 2626, 5, 107, 0, 0, 2626, 2627, 5, 116, 0, 0, 2627, 2628, 5, 114, 0, 0, 2628, 2629, 5, 105, 0, 0, 2629, 2630, 5, 97, 0, 0, 2630, 2631, 5, 110, 0, 0, 2631, 2632, 5, 103, 0, 0, 2632, 2633, 5, 108, 0, 0, 2633, 2697, 5, 101, 0, 0, 2634, 2635, 5, 92, 0, 0, 2635, 2636, 5, 115, 0, 0, 2636, 2637, 5, 104, 0, 0, 2637, 2638, 5, 97, 0, 0, 2638, 2639, 5, 114, 0, 0, 2639, 2697, 5, 112, 0, 0, 2640, 2641, 5, 92, 0, 0, 2641, 2642, 5, 112, 0, 0, 2642, 2643, 5, 114, 0, 0, 2643, 2644, 5, 105, 0, 0, 2644, 2645, 5, 109, 0, 0, 2645, 2697, 5, 101, 0, 0, 2646, 2647, 5, 92, 0, 0, 2647, 2648, 5, 73, 0, 0, 2648, 2697, 5, 109, 0, 0, 2649, 2650, 5, 92, 0, 0, 2650, 2651, 5, 102, 0, 0, 2651, 2652, 5, 108, 0, 0, 2652, 2653, 5, 97, 0, 0, 2653, 2697, 5, 116, 0, 0, 2654, 2655, 5, 92, 0, 0, 2655, 2656, 5, 115, 0, 0, 2656, 2657, 5, 113, 0, 0, 2657, 2658, 5, 117, 0, 0, 2658, 2659, 5, 97, 0, 0, 2659, 2660, 5, 114, 0, 0, 2660, 2697, 5, 101, 0, 0, 2661, 2662, 5, 92, 0, 0, 2662, 2663, 5, 98, 0, 0, 2663, 2664, 5, 97, 0, 0, 2664, 2665, 5, 99, 0, 0, 2665, 2666, 5, 107, 0, 0, 2666, 2667, 5, 112, 0, 0, 2667, 2668, 5, 114, 0, 0, 2668, 2669, 5, 105, 0, 0, 2669, 2670, 5, 109, 0, 0, 2670, 2697, 5, 101, 0, 0, 2671, 2672, 5, 92, 0, 0, 2672, 2673, 5, 82, 0, 0, 2673, 2697, 5, 101, 0, 0, 2674, 2675, 5, 92, 0, 0, 2675, 2676, 5, 110, 0, 0, 2676, 2677, 5, 97, 0, 0, 2677, 2678, 5, 116, 0, 0, 2678, 2679, 5, 117, 0, 0, 2679, 2680, 5, 114, 0, 0, 2680, 2681, 5, 97, 0, 0, 2681, 2697, 5, 108, 0, 0, 2682, 2683, 5, 92, 0, 0, 2683, 2684, 5, 115, 0, 0, 2684, 2685, 5, 117, 0, 0, 2685, 2686, 5, 114, 0, 0, 2686, 2697, 5, 100, 0, 0, 2687, 2688, 5, 92, 0, 0, 2688, 2689, 5, 99, 0, 0, 2689, 2690, 5, 105, 0, 0, 2690, 2691, 5, 114, 0, 0, 2691, 2692, 5, 99, 0, 0, 2692, 2693, 5, 108, 0, 0, 2693, 2694, 5, 101, 0, 0, 2694, 2695, 5, 100, 0, 0, 2695, 2697, 5, 83, 0, 0, 2696, 2346, 1, 0, 0, 0, 2696, 2351, 1, 0, 0, 0, 2696, 2354, 1, 0, 0, 0, 2696, 2360, 1, 0, 0, 0, 2696, 2368, 1, 0, 0, 0, 2696, 2374, 1, 0, 0, 0, 2696, 2382, 1, 0, 0, 0, 2696, 2391, 1, 0, 0, 0, 2696, 2405, 1, 0, 0, 0, 2696, 2409, 1, 0, 0, 0, 2696, 2418, 1, 0, 0, 0, 2696, 2425, 1, 0, 0, 0, 2696, 2440, 1, 0, 0, 0, 2696, 2449, 1, 0, 0, 0, 2696, 2460, 1, 0, 0, 0, 2696, 2468, 1, 0, 0, 0, 2696, 2479, 1, 0, 0, 0, 2696, 2491, 1, 0, 0, 0, 2696, 2497, 1, 0, 0, 0, 2696, 2502, 1, 0, 0, 0, 2696, 2515, 1, 0, 0, 0, 2696, 2525, 1, 0, 0, 0, 2696, 2531, 1, 0, 0, 0, 2696, 2536, 1, 0, 0, 0, 2696, 2545, 1, 0, 0, 0, 2696, 2555, 1, 0, 0, 0, 2696, 2559, 1, 0, 0, 0, 2696, 2564, 1, 0, 0, 0, 2696, 2576, 1, 0, 0, 0, 2696, 2583, 1, 0, 0, 0, 2696, 2596, 1, 0, 0, 0, 2696, 2604, 1, 0, 0, 0, 2696, 2616, 1, 0, 0, 0, 2696, 2620, 1, 0, 0, 0, 2696, 2634, 1, 0, 0, 0, 2696, 2640, 1, 0, 0, 0, 2696, 2646, 1, 0, 0, 0, 2696, 2649, 1, 0, 0, 0, 2696, 2654, 1, 0, 0, 0, 2696, 2661, 1, 0, 0, 0, 2696, 2671, 1, 0, 0, 0, 2696, 2674, 1, 0, 0, 0, 2696, 2682, 1, 0, 0, 0, 2696, 2687, 1, 0, 0, 0, 2697, 394, 1, 0, 0, 0, 2698, 2700, 3, 393, 196, 0, 2699, 2701, 7, 4, 0, 0, 2700, 2699, 1, 0, 0, 0, 2700, 2701, 1, 0, 0, 0, 2701, 396, 1, 0, 0, 0, 2702, 2703, 5, 92, 0, 0, 2703, 2704, 5, 112, 0, 0, 2704, 2705, 5, 105, 0, 0, 2705, 398, 1, 0, 0, 0, 2706, 2707, 5, 92, 0, 0, 2707, 2708, 5, 105, 0, 0, 2708, 2709, 5, 110, 0, 0, 2709, 2710, 5, 102, 0, 0, 2710, 2711, 5, 116, 0, 0, 2711, 2712, 5, 121, 0, 0, 2712, 400, 1, 0, 0, 0, 2713, 2714, 5, 92, 0, 0, 2714, 2715, 5, 112, 0, 0, 2715, 2716, 5, 97, 0, 0, 2716, 2717, 5, 114, 0, 0, 2717, 2718, 5, 116, 0, 0, 2718, 2719, 5, 105, 0, 0, 2719, 2720, 5, 97, 0, 0, 2720, 2721, 5, 108, 0, 0, 2721, 402, 1, 0, 0, 0, 2722, 2730, 3, 399, 199, 0, 2723, 2724, 3, 91, 45, 0, 2724, 2725, 3, 399, 199, 0, 2725, 2730, 1, 0, 0, 0, 2726, 2727, 3, 399, 199, 0, 2727, 2728, 3, 385, 192, 0, 2728, 2730, 1, 0, 0, 0, 2729, 2722, 1, 0, 0, 0, 2729, 2723, 1, 0, 0, 0, 2729, 2726, 1, 0, 0, 0, 2730, 404, 1, 0, 0, 0, 2731, 2732, 5, 92, 0, 0, 2732, 2733, 5, 101, 0, 0, 2733, 2734, 5, 109, 0, 0, 2734, 2735, 5, 112, 0, 0, 2735, 2736, 5, 116, 0, 0, 2736, 2737, 5, 121, 0, 0, 2737, 2738, 5, 115, 0, 0, 2738, 2739, 5, 101, 0, 0, 2739, 2740, 5, 116, 0, 0, 2740, 406, 1, 0, 0, 0, 2741, 2746, 3, 397, 198, 0, 2742, 2746, 3, 401, 200, 0, 2743, 2746, 3, 403, 201, 0, 2744, 2746, 3, 405, 202, 0, 2745, 2741, 1, 0, 0, 0, 2745, 2742, 1, 0, 0, 0, 2745, 2743, 1, 0, 0, 0, 2745, 2744, 1, 0, 0, 0, 2746, 408, 1, 0, 0, 0, 2747, 2748, 5, 92, 0, 0, 2748, 2749, 5, 118, 0, 0, 2749, 2750, 5, 97, 0, 0, 2750, 2751, 5, 114, 0, 0, 2751, 2752, 5, 105, 0, 0, 2752, 2753, 5, 97, 0, 0, 2753, 2754, 5, 98, 0, 0, 2754, 2755, 5, 108, 0, 0, 2755, 2756, 5, 101, 0, 0, 2756, 410, 1, 0, 0, 0, 2757, 2762, 3, 391, 195, 0, 2758, 2762, 3, 395, 197, 0, 2759, 2762, 3, 355, 177, 0, 2760, 2762, 3, 357, 178, 0, 2761, 2757, 1, 0, 0, 0, 2761, 2758, 1, 0, 0, 0, 2761, 2759, 1, 0, 0, 0, 2761, 2760, 1, 0, 0, 0, 2762, 2763, 1, 0, 0, 0, 2763, 2761, 1, 0, 0, 0, 2763, 2764, 1, 0, 0, 0, 2764, 2786, 1, 0, 0, 0, 2765, 2784, 3, 333, 166, 0, 2766, 2772, 3, 109, 54, 0, 2767, 2773, 3, 391, 195, 0, 2768, 2773, 3, 395, 197, 0, 2769, 2773, 3, 355, 177, 0, 2770, 2773, 3, 357, 178, 0, 2771, 2773, 3, 341, 170, 0, 2772, 2767, 1, 0, 0, 0, 2772, 2768, 1, 0, 0, 0, 2772, 2769, 1, 0, 0, 0, 2772, 2770, 1, 0, 0, 0, 2772, 2771, 1, 0, 0, 0, 2773, 2774, 1, 0, 0, 0, 2774, 2772, 1, 0, 0, 0, 2774, 2775, 1, 0, 0, 0, 2775, 2776, 1, 0, 0, 0, 2776, 2777, 3, 111, 55, 0, 2777, 2785, 1, 0, 0, 0, 2778, 2783, 3, 391, 195, 0, 2779, 2783, 3, 395, 197, 0, 2780, 2783, 3, 355, 177, 0, 2781, 2783, 3, 357, 178, 0, 2782, 2778, 1, 0, 0, 0, 2782, 2779, 1, 0, 0, 0, 2782, 2780, 1, 0, 0, 0, 2782, 2781, 1, 0, 0, 0, 2783, 2785, 1, 0, 0, 0, 2784, 2766, 1, 0, 0, 0, 2784, 2782, 1, 0, 0, 0, 2785, 2787, 1, 0, 0, 0, 2786, 2765, 1, 0, 0, 0, 2786, 2787, 1, 0, 0, 0, 2787, 412, 1, 0, 0, 0, 2788, 2789, 3, 409, 204, 0, 2789, 2790, 3, 109, 54, 0, 2790, 2791, 3, 411, 205, 0, 2791, 2793, 3, 111, 55, 0, 2792, 2794, 3, 385, 192, 0, 2793, 2792, 1, 0, 0, 0, 2793, 2794, 1, 0, 0, 0, 2794, 414, 1, 0, 0, 0, 44, 0, 791, 812, 1063, 1397, 1450, 1481, 1503, 1527, 1535, 1581, 1652, 1717, 1725, 1727, 1743, 1777, 1815, 1820, 1829, 1835, 1845, 1852, 1854, 1860, 1865, 1881, 1901, 1921, 1945, 2340, 2344, 2696, 2700, 2729, 2745, 2761, 2763, 2772, 2774, 2782, 2784, 2786, 2793, 1, 6, 0, 0] \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.py b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.py
new file mode 100755
index 0000000..a6f9882
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.py
@@ -0,0 +1,1446 @@
+# Generated from PS.g4 by ANTLR 4.11.1
+# encoding: utf-8
+from __future__ import print_function
+from antlr4 import *
+from io import StringIO
+import sys
+
+
+def serializedATN():
+ return [
+ 4, 0, 194, 2795, 6, -1, 2, 0, 7, 0, 2, 1, 7, 1, 2, 2, 7, 2, 2, 3, 7, 3, 2, 4, 7, 4, 2, 5, 7,
+ 5, 2, 6, 7, 6, 2, 7, 7, 7, 2, 8, 7, 8, 2, 9, 7, 9, 2, 10, 7, 10, 2, 11, 7, 11, 2, 12, 7, 12,
+ 2, 13, 7, 13, 2, 14, 7, 14, 2, 15, 7, 15, 2, 16, 7, 16, 2, 17, 7, 17, 2, 18, 7, 18, 2, 19,
+ 7, 19, 2, 20, 7, 20, 2, 21, 7, 21, 2, 22, 7, 22, 2, 23, 7, 23, 2, 24, 7, 24, 2, 25, 7, 25,
+ 2, 26, 7, 26, 2, 27, 7, 27, 2, 28, 7, 28, 2, 29, 7, 29, 2, 30, 7, 30, 2, 31, 7, 31, 2, 32,
+ 7, 32, 2, 33, 7, 33, 2, 34, 7, 34, 2, 35, 7, 35, 2, 36, 7, 36, 2, 37, 7, 37, 2, 38, 7, 38,
+ 2, 39, 7, 39, 2, 40, 7, 40, 2, 41, 7, 41, 2, 42, 7, 42, 2, 43, 7, 43, 2, 44, 7, 44, 2, 45,
+ 7, 45, 2, 46, 7, 46, 2, 47, 7, 47, 2, 48, 7, 48, 2, 49, 7, 49, 2, 50, 7, 50, 2, 51, 7, 51,
+ 2, 52, 7, 52, 2, 53, 7, 53, 2, 54, 7, 54, 2, 55, 7, 55, 2, 56, 7, 56, 2, 57, 7, 57, 2, 58,
+ 7, 58, 2, 59, 7, 59, 2, 60, 7, 60, 2, 61, 7, 61, 2, 62, 7, 62, 2, 63, 7, 63, 2, 64, 7, 64,
+ 2, 65, 7, 65, 2, 66, 7, 66, 2, 67, 7, 67, 2, 68, 7, 68, 2, 69, 7, 69, 2, 70, 7, 70, 2, 71,
+ 7, 71, 2, 72, 7, 72, 2, 73, 7, 73, 2, 74, 7, 74, 2, 75, 7, 75, 2, 76, 7, 76, 2, 77, 7, 77,
+ 2, 78, 7, 78, 2, 79, 7, 79, 2, 80, 7, 80, 2, 81, 7, 81, 2, 82, 7, 82, 2, 83, 7, 83, 2, 84,
+ 7, 84, 2, 85, 7, 85, 2, 86, 7, 86, 2, 87, 7, 87, 2, 88, 7, 88, 2, 89, 7, 89, 2, 90, 7, 90,
+ 2, 91, 7, 91, 2, 92, 7, 92, 2, 93, 7, 93, 2, 94, 7, 94, 2, 95, 7, 95, 2, 96, 7, 96, 2, 97,
+ 7, 97, 2, 98, 7, 98, 2, 99, 7, 99, 2, 100, 7, 100, 2, 101, 7, 101, 2, 102, 7, 102, 2, 103,
+ 7, 103, 2, 104, 7, 104, 2, 105, 7, 105, 2, 106, 7, 106, 2, 107, 7, 107, 2, 108, 7, 108,
+ 2, 109, 7, 109, 2, 110, 7, 110, 2, 111, 7, 111, 2, 112, 7, 112, 2, 113, 7, 113, 2, 114,
+ 7, 114, 2, 115, 7, 115, 2, 116, 7, 116, 2, 117, 7, 117, 2, 118, 7, 118, 2, 119, 7, 119,
+ 2, 120, 7, 120, 2, 121, 7, 121, 2, 122, 7, 122, 2, 123, 7, 123, 2, 124, 7, 124, 2, 125,
+ 7, 125, 2, 126, 7, 126, 2, 127, 7, 127, 2, 128, 7, 128, 2, 129, 7, 129, 2, 130, 7, 130,
+ 2, 131, 7, 131, 2, 132, 7, 132, 2, 133, 7, 133, 2, 134, 7, 134, 2, 135, 7, 135, 2, 136,
+ 7, 136, 2, 137, 7, 137, 2, 138, 7, 138, 2, 139, 7, 139, 2, 140, 7, 140, 2, 141, 7, 141,
+ 2, 142, 7, 142, 2, 143, 7, 143, 2, 144, 7, 144, 2, 145, 7, 145, 2, 146, 7, 146, 2, 147,
+ 7, 147, 2, 148, 7, 148, 2, 149, 7, 149, 2, 150, 7, 150, 2, 151, 7, 151, 2, 152, 7, 152,
+ 2, 153, 7, 153, 2, 154, 7, 154, 2, 155, 7, 155, 2, 156, 7, 156, 2, 157, 7, 157, 2, 158,
+ 7, 158, 2, 159, 7, 159, 2, 160, 7, 160, 2, 161, 7, 161, 2, 162, 7, 162, 2, 163, 7, 163,
+ 2, 164, 7, 164, 2, 165, 7, 165, 2, 166, 7, 166, 2, 167, 7, 167, 2, 168, 7, 168, 2, 169,
+ 7, 169, 2, 170, 7, 170, 2, 171, 7, 171, 2, 172, 7, 172, 2, 173, 7, 173, 2, 174, 7, 174,
+ 2, 175, 7, 175, 2, 176, 7, 176, 2, 177, 7, 177, 2, 178, 7, 178, 2, 179, 7, 179, 2, 180,
+ 7, 180, 2, 181, 7, 181, 2, 182, 7, 182, 2, 183, 7, 183, 2, 184, 7, 184, 2, 185, 7, 185,
+ 2, 186, 7, 186, 2, 187, 7, 187, 2, 188, 7, 188, 2, 189, 7, 189, 2, 190, 7, 190, 2, 191,
+ 7, 191, 2, 192, 7, 192, 2, 193, 7, 193, 2, 194, 7, 194, 2, 195, 7, 195, 2, 196, 7, 196,
+ 2, 197, 7, 197, 2, 198, 7, 198, 2, 199, 7, 199, 2, 200, 7, 200, 2, 201, 7, 201, 2, 202,
+ 7, 202, 2, 203, 7, 203, 2, 204, 7, 204, 2, 205, 7, 205, 2, 206, 7, 206, 1, 0, 1, 0, 1,
+ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
+ 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1,
+ 4, 1, 4, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 6, 1, 6, 1,
+ 6, 1, 6, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 9, 1,
+ 9, 1, 9, 1, 9, 1, 9, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 11, 1, 11, 1, 11,
+ 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12,
+ 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13,
+ 1, 13, 1, 13, 1, 13, 1, 14, 1, 14, 1, 14, 1, 14, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15,
+ 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 16, 1, 17,
+ 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18,
+ 1, 18, 1, 18, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 20, 1, 20,
+ 1, 20, 1, 20, 1, 20, 1, 20, 1, 20, 1, 20, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21, 1, 21,
+ 1, 21, 1, 21, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 22, 1, 23,
+ 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 23, 1, 24, 1, 24, 1, 24,
+ 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 24, 1, 25, 1, 25,
+ 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26,
+ 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 26, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 27,
+ 1, 27, 1, 27, 1, 27, 1, 27, 1, 27, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28,
+ 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 30, 1, 30, 1, 30,
+ 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31,
+ 1, 31, 1, 31, 1, 31, 1, 31, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32,
+ 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 34, 1, 34, 1, 34,
+ 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35,
+ 1, 35, 1, 35, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 37, 1, 37,
+ 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38,
+ 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 38, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39,
+ 1, 39, 1, 39, 1, 40, 1, 40, 1, 40, 1, 41, 1, 41, 1, 41, 1, 41, 1, 41, 1, 42, 1, 42, 1, 42,
+ 1, 42, 1, 42, 1, 42, 1, 42, 1, 42, 1, 43, 1, 43, 1, 44, 4, 44, 790, 8, 44, 11, 44, 12, 44,
+ 791, 1, 44, 1, 44, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 46, 1, 46, 1, 47, 1, 47, 1, 48,
+ 1, 48, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 3, 49, 813, 8, 49, 1, 50, 1, 50, 1, 51,
+ 1, 51, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 52, 1, 53, 1, 53, 1, 53, 1, 53,
+ 1, 53, 1, 53, 1, 53, 1, 53, 1, 54, 1, 54, 1, 55, 1, 55, 1, 56, 1, 56, 1, 56, 1, 57, 1, 57,
+ 1, 57, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 58, 1, 59, 1, 59, 1, 59, 1, 59,
+ 1, 59, 1, 59, 1, 59, 1, 59, 1, 60, 1, 60, 1, 61, 1, 61, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62,
+ 1, 62, 1, 62, 1, 62, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 63, 1, 64, 1, 64,
+ 1, 65, 1, 65, 1, 65, 1, 65, 1, 65, 1, 65, 1, 65, 1, 66, 1, 66, 1, 66, 1, 66, 1, 66, 1, 66,
+ 1, 66, 1, 67, 1, 67, 1, 67, 1, 67, 1, 67, 1, 67, 1, 68, 1, 68, 1, 68, 1, 69, 1, 69, 1, 69,
+ 1, 69, 1, 69, 1, 69, 1, 69, 1, 69, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70, 1, 70,
+ 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 71, 1, 72, 1, 72, 1, 72,
+ 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 72, 1, 73, 1, 73, 1, 73, 1, 73, 1, 73, 1, 73,
+ 1, 73, 1, 74, 1, 74, 1, 74, 1, 74, 1, 74, 1, 74, 1, 74, 1, 75, 1, 75, 1, 75, 1, 75, 1, 75,
+ 1, 75, 1, 75, 1, 75, 1, 75, 1, 75, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76, 1, 76,
+ 1, 76, 1, 76, 1, 77, 1, 77, 1, 77, 1, 77, 1, 77, 1, 77, 1, 78, 1, 78, 1, 78, 1, 78, 1, 78,
+ 1, 78, 1, 78, 1, 79, 1, 79, 1, 79, 1, 79, 1, 79, 1, 79, 1, 79, 1, 80, 1, 80, 1, 80, 1, 80,
+ 1, 80, 1, 80, 1, 80, 1, 80, 1, 81, 1, 81, 1, 81, 1, 81, 1, 81, 1, 82, 1, 82, 1, 82, 1, 82,
+ 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82,
+ 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82,
+ 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82,
+ 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 1, 82, 3, 82,
+ 1064, 8, 82, 1, 83, 1, 83, 1, 83, 1, 83, 1, 83, 1, 84, 1, 84, 1, 84, 1, 84, 1, 84, 1, 85,
+ 1, 85, 1, 85, 1, 85, 1, 85, 1, 85, 1, 86, 1, 86, 1, 86, 1, 86, 1, 86, 1, 87, 1, 87, 1, 87,
+ 1, 87, 1, 88, 1, 88, 1, 88, 1, 88, 1, 88, 1, 89, 1, 89, 1, 89, 1, 89, 1, 89, 1, 90, 1, 90,
+ 1, 90, 1, 90, 1, 90, 1, 91, 1, 91, 1, 91, 1, 91, 1, 91, 1, 92, 1, 92, 1, 92, 1, 92, 1, 92,
+ 1, 93, 1, 93, 1, 93, 1, 93, 1, 93, 1, 94, 1, 94, 1, 94, 1, 94, 1, 94, 1, 95, 1, 95, 1, 95,
+ 1, 95, 1, 95, 1, 95, 1, 95, 1, 95, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96, 1, 96,
+ 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 97, 1, 98, 1, 98, 1, 98, 1, 98, 1, 98,
+ 1, 98, 1, 98, 1, 98, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 99, 1, 100, 1, 100,
+ 1, 100, 1, 100, 1, 100, 1, 100, 1, 100, 1, 100, 1, 101, 1, 101, 1, 101, 1, 101, 1, 101,
+ 1, 101, 1, 102, 1, 102, 1, 102, 1, 102, 1, 102, 1, 102, 1, 103, 1, 103, 1, 103, 1, 103,
+ 1, 103, 1, 103, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 104, 1, 105,
+ 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 105, 1, 106, 1, 106, 1, 106, 1, 106,
+ 1, 106, 1, 106, 1, 106, 1, 106, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107, 1, 107,
+ 1, 107, 1, 107, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108, 1, 108,
+ 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 109, 1, 110, 1, 110,
+ 1, 110, 1, 110, 1, 110, 1, 110, 1, 110, 1, 111, 1, 111, 1, 111, 1, 111, 1, 111, 1, 111,
+ 1, 111, 1, 111, 1, 112, 1, 112, 1, 112, 1, 112, 1, 112, 1, 112, 1, 112, 1, 113, 1, 113,
+ 1, 113, 1, 113, 1, 113, 1, 113, 1, 113, 1, 113, 1, 114, 1, 114, 1, 114, 1, 114, 1, 114,
+ 1, 114, 1, 114, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 115, 1, 116,
+ 1, 116, 1, 116, 1, 116, 1, 117, 1, 117, 1, 117, 1, 117, 1, 118, 1, 118, 1, 118, 1, 118,
+ 1, 118, 1, 118, 1, 119, 1, 119, 1, 119, 1, 119, 1, 119, 1, 120, 1, 120, 1, 120, 1, 120,
+ 1, 120, 1, 120, 1, 121, 1, 121, 1, 121, 1, 121, 1, 121, 1, 122, 1, 122, 1, 122, 1, 122,
+ 1, 122, 1, 123, 1, 123, 1, 123, 1, 123, 1, 123, 1, 123, 1, 123, 1, 124, 1, 124, 1, 124,
+ 1, 124, 1, 124, 1, 124, 1, 125, 1, 125, 1, 125, 1, 125, 1, 125, 1, 126, 1, 126, 1, 126,
+ 1, 126, 1, 126, 1, 127, 1, 127, 1, 127, 1, 127, 1, 127, 1, 128, 1, 128, 1, 128, 1, 128,
+ 1, 129, 1, 129, 1, 129, 1, 129, 1, 129, 1, 129, 1, 130, 1, 130, 1, 130, 1, 130, 1, 130,
+ 1, 131, 1, 131, 1, 131, 1, 131, 1, 131, 1, 132, 1, 132, 1, 132, 1, 132, 1, 132, 1, 133,
+ 1, 133, 1, 133, 1, 133, 1, 133, 1, 134, 1, 134, 1, 134, 1, 134, 1, 134, 1, 135, 1, 135,
+ 1, 135, 1, 135, 1, 135, 1, 136, 1, 136, 1, 136, 1, 136, 1, 136, 1, 136, 1, 136, 3, 136,
+ 1398, 8, 136, 1, 137, 1, 137, 1, 137, 1, 137, 1, 137, 1, 138, 1, 138, 1, 138, 1, 138,
+ 1, 138, 1, 138, 1, 138, 1, 139, 1, 139, 1, 139, 1, 139, 1, 139, 1, 139, 1, 139, 1, 140,
+ 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140,
+ 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140,
+ 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 1, 140, 3, 140, 1451,
+ 8, 140, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141, 1, 141,
+ 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142,
+ 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 1, 142, 3, 142, 1482, 8, 142,
+ 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143,
+ 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 1, 143, 3, 143, 1504,
+ 8, 143, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144,
+ 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144, 1, 144,
+ 1, 144, 3, 144, 1528, 8, 144, 1, 145, 1, 145, 1, 145, 1, 145, 1, 145, 1, 145, 3, 145,
+ 1536, 8, 145, 1, 146, 1, 146, 1, 146, 1, 146, 1, 146, 1, 146, 1, 146, 1, 147, 1, 147,
+ 1, 147, 1, 147, 1, 147, 1, 147, 1, 148, 1, 148, 1, 148, 1, 148, 1, 148, 1, 149, 1, 149,
+ 1, 149, 1, 149, 1, 149, 1, 149, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150,
+ 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150, 1, 150,
+ 1, 150, 1, 150, 3, 150, 1582, 8, 150, 1, 151, 1, 151, 1, 151, 1, 151, 1, 151, 1, 151,
+ 1, 151, 1, 151, 1, 152, 1, 152, 1, 152, 1, 152, 1, 152, 1, 153, 1, 153, 1, 153, 1, 153,
+ 1, 153, 1, 153, 1, 153, 1, 153, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154,
+ 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 154, 1, 155, 1, 155, 1, 155, 1, 155,
+ 1, 155, 1, 155, 1, 155, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156, 1, 156,
+ 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 157, 1, 158, 1, 158, 1, 158,
+ 1, 158, 1, 158, 1, 158, 1, 158, 1, 158, 1, 159, 1, 159, 1, 159, 3, 159, 1653, 8, 159,
+ 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160, 1, 160,
+ 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 161, 1, 162, 1, 162,
+ 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 162, 1, 163, 1, 163,
+ 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 163, 1, 164, 1, 164, 1, 165, 1, 165,
+ 1, 165, 1, 166, 1, 166, 1, 167, 1, 167, 1, 168, 1, 168, 1, 169, 1, 169, 1, 170, 1, 170,
+ 1, 171, 1, 171, 1, 172, 1, 172, 1, 173, 1, 173, 5, 173, 1716, 8, 173, 10, 173, 12, 173,
+ 1719, 9, 173, 1, 173, 1, 173, 1, 173, 4, 173, 1724, 8, 173, 11, 173, 12, 173, 1725,
+ 3, 173, 1728, 8, 173, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174,
+ 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 1, 174, 3, 174, 1744, 8, 174, 1, 175, 1, 175,
+ 1, 176, 1, 176, 1, 177, 1, 177, 1, 178, 1, 178, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179,
+ 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179,
+ 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 1, 179, 3, 179, 1778, 8, 179,
+ 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180,
+ 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180,
+ 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180, 1, 180,
+ 1, 180, 1, 180, 1, 180, 3, 180, 1816, 8, 180, 1, 181, 4, 181, 1819, 8, 181, 11, 181,
+ 12, 181, 1820, 1, 181, 1, 181, 1, 181, 1, 181, 1, 181, 5, 181, 1828, 8, 181, 10, 181,
+ 12, 181, 1831, 9, 181, 1, 181, 5, 181, 1834, 8, 181, 10, 181, 12, 181, 1837, 9, 181,
+ 1, 181, 1, 181, 1, 181, 1, 181, 1, 181, 5, 181, 1844, 8, 181, 10, 181, 12, 181, 1847,
+ 9, 181, 1, 181, 1, 181, 4, 181, 1851, 8, 181, 11, 181, 12, 181, 1852, 3, 181, 1855,
+ 8, 181, 1, 182, 1, 182, 1, 182, 1, 182, 3, 182, 1861, 8, 182, 1, 182, 4, 182, 1864,
+ 8, 182, 11, 182, 12, 182, 1865, 1, 183, 1, 183, 1, 183, 1, 183, 1, 184, 1, 184, 1, 185,
+ 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 1, 185, 3, 185, 1882, 8, 185, 1, 186,
+ 1, 186, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187,
+ 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 1, 187, 3, 187, 1902, 8, 187, 1, 188, 1, 188,
+ 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 1, 189,
+ 1, 189, 1, 189, 1, 189, 1, 189, 1, 189, 3, 189, 1922, 8, 189, 1, 190, 1, 190, 1, 190,
+ 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190,
+ 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 1, 190, 3, 190, 1946, 8, 190,
+ 1, 191, 1, 191, 1, 192, 1, 192, 1, 192, 1, 193, 1, 193, 1, 193, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194,
+ 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 1, 194, 3, 194, 2341, 8, 194,
+ 1, 195, 1, 195, 3, 195, 2345, 8, 195, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196, 1, 196,
+ 1, 196, 1, 196, 1, 196, 3, 196, 2697, 8, 196, 1, 197, 1, 197, 3, 197, 2701, 8, 197,
+ 1, 198, 1, 198, 1, 198, 1, 198, 1, 199, 1, 199, 1, 199, 1, 199, 1, 199, 1, 199, 1, 199,
+ 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 200, 1, 201, 1, 201,
+ 1, 201, 1, 201, 1, 201, 1, 201, 1, 201, 3, 201, 2730, 8, 201, 1, 202, 1, 202, 1, 202,
+ 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 202, 1, 203, 1, 203, 1, 203, 1, 203,
+ 3, 203, 2746, 8, 203, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204, 1, 204,
+ 1, 204, 1, 204, 1, 205, 1, 205, 1, 205, 1, 205, 4, 205, 2762, 8, 205, 11, 205, 12, 205,
+ 2763, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 4, 205, 2773, 8, 205,
+ 11, 205, 12, 205, 2774, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 1, 205, 3, 205, 2783,
+ 8, 205, 3, 205, 2785, 8, 205, 3, 205, 2787, 8, 205, 1, 206, 1, 206, 1, 206, 1, 206,
+ 1, 206, 3, 206, 2794, 8, 206, 1, 1717, 0, 207, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13,
+ 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18,
+ 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29,
+ 59, 30, 61, 31, 63, 32, 65, 33, 67, 34, 69, 35, 71, 36, 73, 37, 75, 38, 77, 39, 79, 40,
+ 81, 41, 83, 42, 85, 43, 87, 44, 89, 45, 91, 46, 93, 47, 95, 48, 97, 49, 99, 50, 101,
+ 51, 103, 52, 105, 53, 107, 54, 109, 55, 111, 56, 113, 57, 115, 58, 117, 59, 119, 60,
+ 121, 61, 123, 62, 125, 63, 127, 64, 129, 65, 131, 66, 133, 67, 135, 68, 137, 69, 139,
+ 70, 141, 71, 143, 72, 145, 73, 147, 74, 149, 75, 151, 76, 153, 77, 155, 78, 157, 79,
+ 159, 80, 161, 81, 163, 82, 165, 83, 167, 84, 169, 85, 171, 86, 173, 87, 175, 88, 177,
+ 89, 179, 90, 181, 91, 183, 92, 185, 93, 187, 94, 189, 95, 191, 96, 193, 97, 195, 98,
+ 197, 99, 199, 100, 201, 101, 203, 102, 205, 103, 207, 104, 209, 105, 211, 106, 213,
+ 107, 215, 108, 217, 109, 219, 110, 221, 111, 223, 112, 225, 113, 227, 114, 229,
+ 115, 231, 116, 233, 117, 235, 118, 237, 119, 239, 120, 241, 121, 243, 122, 245,
+ 123, 247, 124, 249, 125, 251, 126, 253, 127, 255, 128, 257, 129, 259, 130, 261,
+ 131, 263, 132, 265, 133, 267, 134, 269, 135, 271, 136, 273, 137, 275, 138, 277,
+ 139, 279, 140, 281, 141, 283, 142, 285, 143, 287, 144, 289, 145, 291, 146, 293,
+ 147, 295, 148, 297, 149, 299, 150, 301, 151, 303, 152, 305, 153, 307, 154, 309,
+ 155, 311, 156, 313, 157, 315, 158, 317, 159, 319, 160, 321, 161, 323, 162, 325,
+ 163, 327, 164, 329, 165, 331, 166, 333, 167, 335, 168, 337, 169, 339, 170, 341,
+ 171, 343, 172, 345, 0, 347, 173, 349, 174, 351, 175, 353, 176, 355, 0, 357, 0, 359,
+ 177, 361, 178, 363, 179, 365, 180, 367, 181, 369, 182, 371, 183, 373, 184, 375,
+ 185, 377, 186, 379, 187, 381, 188, 383, 189, 385, 0, 387, 190, 389, 0, 391, 191,
+ 393, 0, 395, 192, 397, 0, 399, 0, 401, 0, 403, 0, 405, 0, 407, 193, 409, 0, 411, 0,
+ 413, 194, 1, 0, 5, 3, 0, 9, 10, 13, 13, 32, 32, 2, 0, 65, 90, 97, 122, 4, 0, 65, 68, 70,
+ 90, 97, 100, 102, 122, 1, 0, 48, 57, 1, 0, 32, 32, 2943, 0, 1, 1, 0, 0, 0, 0, 3, 1, 0, 0,
+ 0, 0, 5, 1, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 13, 1, 0, 0, 0,
+ 0, 15, 1, 0, 0, 0, 0, 17, 1, 0, 0, 0, 0, 19, 1, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 23, 1, 0, 0, 0,
+ 0, 25, 1, 0, 0, 0, 0, 27, 1, 0, 0, 0, 0, 29, 1, 0, 0, 0, 0, 31, 1, 0, 0, 0, 0, 33, 1, 0, 0, 0,
+ 0, 35, 1, 0, 0, 0, 0, 37, 1, 0, 0, 0, 0, 39, 1, 0, 0, 0, 0, 41, 1, 0, 0, 0, 0, 43, 1, 0, 0, 0,
+ 0, 45, 1, 0, 0, 0, 0, 47, 1, 0, 0, 0, 0, 49, 1, 0, 0, 0, 0, 51, 1, 0, 0, 0, 0, 53, 1, 0, 0, 0,
+ 0, 55, 1, 0, 0, 0, 0, 57, 1, 0, 0, 0, 0, 59, 1, 0, 0, 0, 0, 61, 1, 0, 0, 0, 0, 63, 1, 0, 0, 0,
+ 0, 65, 1, 0, 0, 0, 0, 67, 1, 0, 0, 0, 0, 69, 1, 0, 0, 0, 0, 71, 1, 0, 0, 0, 0, 73, 1, 0, 0, 0,
+ 0, 75, 1, 0, 0, 0, 0, 77, 1, 0, 0, 0, 0, 79, 1, 0, 0, 0, 0, 81, 1, 0, 0, 0, 0, 83, 1, 0, 0, 0,
+ 0, 85, 1, 0, 0, 0, 0, 87, 1, 0, 0, 0, 0, 89, 1, 0, 0, 0, 0, 91, 1, 0, 0, 0, 0, 93, 1, 0, 0, 0,
+ 0, 95, 1, 0, 0, 0, 0, 97, 1, 0, 0, 0, 0, 99, 1, 0, 0, 0, 0, 101, 1, 0, 0, 0, 0, 103, 1, 0, 0,
+ 0, 0, 105, 1, 0, 0, 0, 0, 107, 1, 0, 0, 0, 0, 109, 1, 0, 0, 0, 0, 111, 1, 0, 0, 0, 0, 113,
+ 1, 0, 0, 0, 0, 115, 1, 0, 0, 0, 0, 117, 1, 0, 0, 0, 0, 119, 1, 0, 0, 0, 0, 121, 1, 0, 0, 0,
+ 0, 123, 1, 0, 0, 0, 0, 125, 1, 0, 0, 0, 0, 127, 1, 0, 0, 0, 0, 129, 1, 0, 0, 0, 0, 131, 1,
+ 0, 0, 0, 0, 133, 1, 0, 0, 0, 0, 135, 1, 0, 0, 0, 0, 137, 1, 0, 0, 0, 0, 139, 1, 0, 0, 0, 0,
+ 141, 1, 0, 0, 0, 0, 143, 1, 0, 0, 0, 0, 145, 1, 0, 0, 0, 0, 147, 1, 0, 0, 0, 0, 149, 1, 0,
+ 0, 0, 0, 151, 1, 0, 0, 0, 0, 153, 1, 0, 0, 0, 0, 155, 1, 0, 0, 0, 0, 157, 1, 0, 0, 0, 0, 159,
+ 1, 0, 0, 0, 0, 161, 1, 0, 0, 0, 0, 163, 1, 0, 0, 0, 0, 165, 1, 0, 0, 0, 0, 167, 1, 0, 0, 0,
+ 0, 169, 1, 0, 0, 0, 0, 171, 1, 0, 0, 0, 0, 173, 1, 0, 0, 0, 0, 175, 1, 0, 0, 0, 0, 177, 1,
+ 0, 0, 0, 0, 179, 1, 0, 0, 0, 0, 181, 1, 0, 0, 0, 0, 183, 1, 0, 0, 0, 0, 185, 1, 0, 0, 0, 0,
+ 187, 1, 0, 0, 0, 0, 189, 1, 0, 0, 0, 0, 191, 1, 0, 0, 0, 0, 193, 1, 0, 0, 0, 0, 195, 1, 0,
+ 0, 0, 0, 197, 1, 0, 0, 0, 0, 199, 1, 0, 0, 0, 0, 201, 1, 0, 0, 0, 0, 203, 1, 0, 0, 0, 0, 205,
+ 1, 0, 0, 0, 0, 207, 1, 0, 0, 0, 0, 209, 1, 0, 0, 0, 0, 211, 1, 0, 0, 0, 0, 213, 1, 0, 0, 0,
+ 0, 215, 1, 0, 0, 0, 0, 217, 1, 0, 0, 0, 0, 219, 1, 0, 0, 0, 0, 221, 1, 0, 0, 0, 0, 223, 1,
+ 0, 0, 0, 0, 225, 1, 0, 0, 0, 0, 227, 1, 0, 0, 0, 0, 229, 1, 0, 0, 0, 0, 231, 1, 0, 0, 0, 0,
+ 233, 1, 0, 0, 0, 0, 235, 1, 0, 0, 0, 0, 237, 1, 0, 0, 0, 0, 239, 1, 0, 0, 0, 0, 241, 1, 0,
+ 0, 0, 0, 243, 1, 0, 0, 0, 0, 245, 1, 0, 0, 0, 0, 247, 1, 0, 0, 0, 0, 249, 1, 0, 0, 0, 0, 251,
+ 1, 0, 0, 0, 0, 253, 1, 0, 0, 0, 0, 255, 1, 0, 0, 0, 0, 257, 1, 0, 0, 0, 0, 259, 1, 0, 0, 0,
+ 0, 261, 1, 0, 0, 0, 0, 263, 1, 0, 0, 0, 0, 265, 1, 0, 0, 0, 0, 267, 1, 0, 0, 0, 0, 269, 1,
+ 0, 0, 0, 0, 271, 1, 0, 0, 0, 0, 273, 1, 0, 0, 0, 0, 275, 1, 0, 0, 0, 0, 277, 1, 0, 0, 0, 0,
+ 279, 1, 0, 0, 0, 0, 281, 1, 0, 0, 0, 0, 283, 1, 0, 0, 0, 0, 285, 1, 0, 0, 0, 0, 287, 1, 0,
+ 0, 0, 0, 289, 1, 0, 0, 0, 0, 291, 1, 0, 0, 0, 0, 293, 1, 0, 0, 0, 0, 295, 1, 0, 0, 0, 0, 297,
+ 1, 0, 0, 0, 0, 299, 1, 0, 0, 0, 0, 301, 1, 0, 0, 0, 0, 303, 1, 0, 0, 0, 0, 305, 1, 0, 0, 0,
+ 0, 307, 1, 0, 0, 0, 0, 309, 1, 0, 0, 0, 0, 311, 1, 0, 0, 0, 0, 313, 1, 0, 0, 0, 0, 315, 1,
+ 0, 0, 0, 0, 317, 1, 0, 0, 0, 0, 319, 1, 0, 0, 0, 0, 321, 1, 0, 0, 0, 0, 323, 1, 0, 0, 0, 0,
+ 325, 1, 0, 0, 0, 0, 327, 1, 0, 0, 0, 0, 329, 1, 0, 0, 0, 0, 331, 1, 0, 0, 0, 0, 333, 1, 0,
+ 0, 0, 0, 335, 1, 0, 0, 0, 0, 337, 1, 0, 0, 0, 0, 339, 1, 0, 0, 0, 0, 341, 1, 0, 0, 0, 0, 343,
+ 1, 0, 0, 0, 0, 347, 1, 0, 0, 0, 0, 349, 1, 0, 0, 0, 0, 351, 1, 0, 0, 0, 0, 353, 1, 0, 0, 0,
+ 0, 359, 1, 0, 0, 0, 0, 361, 1, 0, 0, 0, 0, 363, 1, 0, 0, 0, 0, 365, 1, 0, 0, 0, 0, 367, 1,
+ 0, 0, 0, 0, 369, 1, 0, 0, 0, 0, 371, 1, 0, 0, 0, 0, 373, 1, 0, 0, 0, 0, 375, 1, 0, 0, 0, 0,
+ 377, 1, 0, 0, 0, 0, 379, 1, 0, 0, 0, 0, 381, 1, 0, 0, 0, 0, 383, 1, 0, 0, 0, 0, 387, 1, 0,
+ 0, 0, 0, 391, 1, 0, 0, 0, 0, 395, 1, 0, 0, 0, 0, 407, 1, 0, 0, 0, 0, 413, 1, 0, 0, 0, 1, 415,
+ 1, 0, 0, 0, 3, 422, 1, 0, 0, 0, 5, 427, 1, 0, 0, 0, 7, 437, 1, 0, 0, 0, 9, 444, 1, 0, 0, 0,
+ 11, 451, 1, 0, 0, 0, 13, 462, 1, 0, 0, 0, 15, 467, 1, 0, 0, 0, 17, 473, 1, 0, 0, 0, 19, 480,
+ 1, 0, 0, 0, 21, 485, 1, 0, 0, 0, 23, 492, 1, 0, 0, 0, 25, 503, 1, 0, 0, 0, 27, 508, 1, 0,
+ 0, 0, 29, 524, 1, 0, 0, 0, 31, 528, 1, 0, 0, 0, 33, 540, 1, 0, 0, 0, 35, 546, 1, 0, 0, 0,
+ 37, 554, 1, 0, 0, 0, 39, 562, 1, 0, 0, 0, 41, 571, 1, 0, 0, 0, 43, 579, 1, 0, 0, 0, 45, 588,
+ 1, 0, 0, 0, 47, 598, 1, 0, 0, 0, 49, 609, 1, 0, 0, 0, 51, 623, 1, 0, 0, 0, 53, 633, 1, 0,
+ 0, 0, 55, 644, 1, 0, 0, 0, 57, 656, 1, 0, 0, 0, 59, 664, 1, 0, 0, 0, 61, 674, 1, 0, 0, 0,
+ 63, 683, 1, 0, 0, 0, 65, 694, 1, 0, 0, 0, 67, 703, 1, 0, 0, 0, 69, 713, 1, 0, 0, 0, 71, 723,
+ 1, 0, 0, 0, 73, 731, 1, 0, 0, 0, 75, 740, 1, 0, 0, 0, 77, 748, 1, 0, 0, 0, 79, 762, 1, 0,
+ 0, 0, 81, 770, 1, 0, 0, 0, 83, 773, 1, 0, 0, 0, 85, 778, 1, 0, 0, 0, 87, 786, 1, 0, 0, 0,
+ 89, 789, 1, 0, 0, 0, 91, 795, 1, 0, 0, 0, 93, 800, 1, 0, 0, 0, 95, 802, 1, 0, 0, 0, 97, 804,
+ 1, 0, 0, 0, 99, 812, 1, 0, 0, 0, 101, 814, 1, 0, 0, 0, 103, 816, 1, 0, 0, 0, 105, 818, 1,
+ 0, 0, 0, 107, 826, 1, 0, 0, 0, 109, 834, 1, 0, 0, 0, 111, 836, 1, 0, 0, 0, 113, 838, 1,
+ 0, 0, 0, 115, 841, 1, 0, 0, 0, 117, 844, 1, 0, 0, 0, 119, 852, 1, 0, 0, 0, 121, 860, 1,
+ 0, 0, 0, 123, 862, 1, 0, 0, 0, 125, 864, 1, 0, 0, 0, 127, 872, 1, 0, 0, 0, 129, 880, 1,
+ 0, 0, 0, 131, 882, 1, 0, 0, 0, 133, 889, 1, 0, 0, 0, 135, 896, 1, 0, 0, 0, 137, 902, 1,
+ 0, 0, 0, 139, 905, 1, 0, 0, 0, 141, 913, 1, 0, 0, 0, 143, 921, 1, 0, 0, 0, 145, 931, 1,
+ 0, 0, 0, 147, 941, 1, 0, 0, 0, 149, 948, 1, 0, 0, 0, 151, 955, 1, 0, 0, 0, 153, 965, 1,
+ 0, 0, 0, 155, 975, 1, 0, 0, 0, 157, 981, 1, 0, 0, 0, 159, 988, 1, 0, 0, 0, 161, 995, 1,
+ 0, 0, 0, 163, 1003, 1, 0, 0, 0, 165, 1063, 1, 0, 0, 0, 167, 1065, 1, 0, 0, 0, 169, 1070,
+ 1, 0, 0, 0, 171, 1075, 1, 0, 0, 0, 173, 1081, 1, 0, 0, 0, 175, 1086, 1, 0, 0, 0, 177, 1090,
+ 1, 0, 0, 0, 179, 1095, 1, 0, 0, 0, 181, 1100, 1, 0, 0, 0, 183, 1105, 1, 0, 0, 0, 185, 1110,
+ 1, 0, 0, 0, 187, 1115, 1, 0, 0, 0, 189, 1120, 1, 0, 0, 0, 191, 1125, 1, 0, 0, 0, 193, 1133,
+ 1, 0, 0, 0, 195, 1141, 1, 0, 0, 0, 197, 1149, 1, 0, 0, 0, 199, 1157, 1, 0, 0, 0, 201, 1165,
+ 1, 0, 0, 0, 203, 1173, 1, 0, 0, 0, 205, 1179, 1, 0, 0, 0, 207, 1185, 1, 0, 0, 0, 209, 1191,
+ 1, 0, 0, 0, 211, 1199, 1, 0, 0, 0, 213, 1207, 1, 0, 0, 0, 215, 1215, 1, 0, 0, 0, 217, 1224,
+ 1, 0, 0, 0, 219, 1233, 1, 0, 0, 0, 221, 1242, 1, 0, 0, 0, 223, 1249, 1, 0, 0, 0, 225, 1257,
+ 1, 0, 0, 0, 227, 1264, 1, 0, 0, 0, 229, 1272, 1, 0, 0, 0, 231, 1279, 1, 0, 0, 0, 233, 1287,
+ 1, 0, 0, 0, 235, 1291, 1, 0, 0, 0, 237, 1295, 1, 0, 0, 0, 239, 1301, 1, 0, 0, 0, 241, 1306,
+ 1, 0, 0, 0, 243, 1312, 1, 0, 0, 0, 245, 1317, 1, 0, 0, 0, 247, 1322, 1, 0, 0, 0, 249, 1329,
+ 1, 0, 0, 0, 251, 1335, 1, 0, 0, 0, 253, 1340, 1, 0, 0, 0, 255, 1345, 1, 0, 0, 0, 257, 1350,
+ 1, 0, 0, 0, 259, 1354, 1, 0, 0, 0, 261, 1360, 1, 0, 0, 0, 263, 1365, 1, 0, 0, 0, 265, 1370,
+ 1, 0, 0, 0, 267, 1375, 1, 0, 0, 0, 269, 1380, 1, 0, 0, 0, 271, 1385, 1, 0, 0, 0, 273, 1397,
+ 1, 0, 0, 0, 275, 1399, 1, 0, 0, 0, 277, 1404, 1, 0, 0, 0, 279, 1411, 1, 0, 0, 0, 281, 1450,
+ 1, 0, 0, 0, 283, 1452, 1, 0, 0, 0, 285, 1481, 1, 0, 0, 0, 287, 1503, 1, 0, 0, 0, 289, 1527,
+ 1, 0, 0, 0, 291, 1535, 1, 0, 0, 0, 293, 1537, 1, 0, 0, 0, 295, 1544, 1, 0, 0, 0, 297, 1550,
+ 1, 0, 0, 0, 299, 1555, 1, 0, 0, 0, 301, 1581, 1, 0, 0, 0, 303, 1583, 1, 0, 0, 0, 305, 1591,
+ 1, 0, 0, 0, 307, 1596, 1, 0, 0, 0, 309, 1604, 1, 0, 0, 0, 311, 1618, 1, 0, 0, 0, 313, 1625,
+ 1, 0, 0, 0, 315, 1633, 1, 0, 0, 0, 317, 1641, 1, 0, 0, 0, 319, 1652, 1, 0, 0, 0, 321, 1654,
+ 1, 0, 0, 0, 323, 1665, 1, 0, 0, 0, 325, 1674, 1, 0, 0, 0, 327, 1685, 1, 0, 0, 0, 329, 1694,
+ 1, 0, 0, 0, 331, 1696, 1, 0, 0, 0, 333, 1699, 1, 0, 0, 0, 335, 1701, 1, 0, 0, 0, 337, 1703,
+ 1, 0, 0, 0, 339, 1705, 1, 0, 0, 0, 341, 1707, 1, 0, 0, 0, 343, 1709, 1, 0, 0, 0, 345, 1711,
+ 1, 0, 0, 0, 347, 1713, 1, 0, 0, 0, 349, 1743, 1, 0, 0, 0, 351, 1745, 1, 0, 0, 0, 353, 1747,
+ 1, 0, 0, 0, 355, 1749, 1, 0, 0, 0, 357, 1751, 1, 0, 0, 0, 359, 1777, 1, 0, 0, 0, 361, 1815,
+ 1, 0, 0, 0, 363, 1854, 1, 0, 0, 0, 365, 1856, 1, 0, 0, 0, 367, 1867, 1, 0, 0, 0, 369, 1871,
+ 1, 0, 0, 0, 371, 1881, 1, 0, 0, 0, 373, 1883, 1, 0, 0, 0, 375, 1901, 1, 0, 0, 0, 377, 1903,
+ 1, 0, 0, 0, 379, 1921, 1, 0, 0, 0, 381, 1945, 1, 0, 0, 0, 383, 1947, 1, 0, 0, 0, 385, 1949,
+ 1, 0, 0, 0, 387, 1952, 1, 0, 0, 0, 389, 2340, 1, 0, 0, 0, 391, 2342, 1, 0, 0, 0, 393, 2696,
+ 1, 0, 0, 0, 395, 2698, 1, 0, 0, 0, 397, 2702, 1, 0, 0, 0, 399, 2706, 1, 0, 0, 0, 401, 2713,
+ 1, 0, 0, 0, 403, 2729, 1, 0, 0, 0, 405, 2731, 1, 0, 0, 0, 407, 2745, 1, 0, 0, 0, 409, 2747,
+ 1, 0, 0, 0, 411, 2761, 1, 0, 0, 0, 413, 2788, 1, 0, 0, 0, 415, 416, 5, 92, 0, 0, 416, 417,
+ 5, 97, 0, 0, 417, 418, 5, 99, 0, 0, 418, 419, 5, 117, 0, 0, 419, 420, 5, 116, 0, 0, 420,
+ 421, 5, 101, 0, 0, 421, 2, 1, 0, 0, 0, 422, 423, 5, 92, 0, 0, 423, 424, 5, 98, 0, 0, 424,
+ 425, 5, 97, 0, 0, 425, 426, 5, 114, 0, 0, 426, 4, 1, 0, 0, 0, 427, 428, 5, 92, 0, 0, 428,
+ 429, 5, 111, 0, 0, 429, 430, 5, 118, 0, 0, 430, 431, 5, 101, 0, 0, 431, 432, 5, 114,
+ 0, 0, 432, 433, 5, 108, 0, 0, 433, 434, 5, 105, 0, 0, 434, 435, 5, 110, 0, 0, 435, 436,
+ 5, 101, 0, 0, 436, 6, 1, 0, 0, 0, 437, 438, 5, 92, 0, 0, 438, 439, 5, 98, 0, 0, 439, 440,
+ 5, 114, 0, 0, 440, 441, 5, 101, 0, 0, 441, 442, 5, 118, 0, 0, 442, 443, 5, 101, 0, 0,
+ 443, 8, 1, 0, 0, 0, 444, 445, 5, 92, 0, 0, 445, 446, 5, 99, 0, 0, 446, 447, 5, 104, 0,
+ 0, 447, 448, 5, 101, 0, 0, 448, 449, 5, 99, 0, 0, 449, 450, 5, 107, 0, 0, 450, 10, 1,
+ 0, 0, 0, 451, 452, 5, 92, 0, 0, 452, 453, 5, 119, 0, 0, 453, 454, 5, 105, 0, 0, 454, 455,
+ 5, 100, 0, 0, 455, 456, 5, 101, 0, 0, 456, 457, 5, 99, 0, 0, 457, 458, 5, 104, 0, 0, 458,
+ 459, 5, 101, 0, 0, 459, 460, 5, 99, 0, 0, 460, 461, 5, 107, 0, 0, 461, 12, 1, 0, 0, 0,
+ 462, 463, 5, 92, 0, 0, 463, 464, 5, 100, 0, 0, 464, 465, 5, 111, 0, 0, 465, 466, 5, 116,
+ 0, 0, 466, 14, 1, 0, 0, 0, 467, 468, 5, 92, 0, 0, 468, 469, 5, 100, 0, 0, 469, 470, 5,
+ 100, 0, 0, 470, 471, 5, 111, 0, 0, 471, 472, 5, 116, 0, 0, 472, 16, 1, 0, 0, 0, 473, 474,
+ 5, 92, 0, 0, 474, 475, 5, 103, 0, 0, 475, 476, 5, 114, 0, 0, 476, 477, 5, 97, 0, 0, 477,
+ 478, 5, 118, 0, 0, 478, 479, 5, 101, 0, 0, 479, 18, 1, 0, 0, 0, 480, 481, 5, 92, 0, 0,
+ 481, 482, 5, 104, 0, 0, 482, 483, 5, 97, 0, 0, 483, 484, 5, 116, 0, 0, 484, 20, 1, 0,
+ 0, 0, 485, 486, 5, 92, 0, 0, 486, 487, 5, 116, 0, 0, 487, 488, 5, 105, 0, 0, 488, 489,
+ 5, 108, 0, 0, 489, 490, 5, 100, 0, 0, 490, 491, 5, 101, 0, 0, 491, 22, 1, 0, 0, 0, 492,
+ 493, 5, 92, 0, 0, 493, 494, 5, 119, 0, 0, 494, 495, 5, 105, 0, 0, 495, 496, 5, 100, 0,
+ 0, 496, 497, 5, 101, 0, 0, 497, 498, 5, 116, 0, 0, 498, 499, 5, 105, 0, 0, 499, 500,
+ 5, 108, 0, 0, 500, 501, 5, 100, 0, 0, 501, 502, 5, 101, 0, 0, 502, 24, 1, 0, 0, 0, 503,
+ 504, 5, 92, 0, 0, 504, 505, 5, 118, 0, 0, 505, 506, 5, 101, 0, 0, 506, 507, 5, 99, 0,
+ 0, 507, 26, 1, 0, 0, 0, 508, 509, 5, 92, 0, 0, 509, 510, 5, 111, 0, 0, 510, 511, 5, 118,
+ 0, 0, 511, 512, 5, 101, 0, 0, 512, 513, 5, 114, 0, 0, 513, 514, 5, 114, 0, 0, 514, 515,
+ 5, 105, 0, 0, 515, 516, 5, 103, 0, 0, 516, 517, 5, 104, 0, 0, 517, 518, 5, 116, 0, 0,
+ 518, 519, 5, 97, 0, 0, 519, 520, 5, 114, 0, 0, 520, 521, 5, 114, 0, 0, 521, 522, 5, 111,
+ 0, 0, 522, 523, 5, 119, 0, 0, 523, 28, 1, 0, 0, 0, 524, 525, 5, 92, 0, 0, 525, 526, 5,
+ 98, 0, 0, 526, 527, 5, 109, 0, 0, 527, 30, 1, 0, 0, 0, 528, 529, 5, 92, 0, 0, 529, 530,
+ 5, 98, 0, 0, 530, 531, 5, 111, 0, 0, 531, 532, 5, 108, 0, 0, 532, 533, 5, 100, 0, 0, 533,
+ 534, 5, 115, 0, 0, 534, 535, 5, 121, 0, 0, 535, 536, 5, 109, 0, 0, 536, 537, 5, 98, 0,
+ 0, 537, 538, 5, 111, 0, 0, 538, 539, 5, 108, 0, 0, 539, 32, 1, 0, 0, 0, 540, 541, 5, 92,
+ 0, 0, 541, 542, 5, 116, 0, 0, 542, 543, 5, 101, 0, 0, 543, 544, 5, 120, 0, 0, 544, 545,
+ 5, 116, 0, 0, 545, 34, 1, 0, 0, 0, 546, 547, 5, 92, 0, 0, 547, 548, 5, 116, 0, 0, 548,
+ 549, 5, 101, 0, 0, 549, 550, 5, 120, 0, 0, 550, 551, 5, 116, 0, 0, 551, 552, 5, 105,
+ 0, 0, 552, 553, 5, 116, 0, 0, 553, 36, 1, 0, 0, 0, 554, 555, 5, 92, 0, 0, 555, 556, 5,
+ 109, 0, 0, 556, 557, 5, 97, 0, 0, 557, 558, 5, 116, 0, 0, 558, 559, 5, 104, 0, 0, 559,
+ 560, 5, 98, 0, 0, 560, 561, 5, 98, 0, 0, 561, 38, 1, 0, 0, 0, 562, 563, 5, 92, 0, 0, 563,
+ 564, 5, 109, 0, 0, 564, 565, 5, 97, 0, 0, 565, 566, 5, 116, 0, 0, 566, 567, 5, 104, 0,
+ 0, 567, 568, 5, 98, 0, 0, 568, 569, 5, 105, 0, 0, 569, 570, 5, 110, 0, 0, 570, 40, 1,
+ 0, 0, 0, 571, 572, 5, 92, 0, 0, 572, 573, 5, 109, 0, 0, 573, 574, 5, 97, 0, 0, 574, 575,
+ 5, 116, 0, 0, 575, 576, 5, 104, 0, 0, 576, 577, 5, 98, 0, 0, 577, 578, 5, 102, 0, 0, 578,
+ 42, 1, 0, 0, 0, 579, 580, 5, 92, 0, 0, 580, 581, 5, 109, 0, 0, 581, 582, 5, 97, 0, 0, 582,
+ 583, 5, 116, 0, 0, 583, 584, 5, 104, 0, 0, 584, 585, 5, 99, 0, 0, 585, 586, 5, 97, 0,
+ 0, 586, 587, 5, 108, 0, 0, 587, 44, 1, 0, 0, 0, 588, 589, 5, 92, 0, 0, 589, 590, 5, 109,
+ 0, 0, 590, 591, 5, 97, 0, 0, 591, 592, 5, 116, 0, 0, 592, 593, 5, 104, 0, 0, 593, 594,
+ 5, 99, 0, 0, 594, 595, 5, 108, 0, 0, 595, 596, 5, 97, 0, 0, 596, 597, 5, 112, 0, 0, 597,
+ 46, 1, 0, 0, 0, 598, 599, 5, 92, 0, 0, 599, 600, 5, 109, 0, 0, 600, 601, 5, 97, 0, 0, 601,
+ 602, 5, 116, 0, 0, 602, 603, 5, 104, 0, 0, 603, 604, 5, 99, 0, 0, 604, 605, 5, 108, 0,
+ 0, 605, 606, 5, 111, 0, 0, 606, 607, 5, 115, 0, 0, 607, 608, 5, 101, 0, 0, 608, 48, 1,
+ 0, 0, 0, 609, 610, 5, 92, 0, 0, 610, 611, 5, 109, 0, 0, 611, 612, 5, 97, 0, 0, 612, 613,
+ 5, 116, 0, 0, 613, 614, 5, 104, 0, 0, 614, 615, 5, 101, 0, 0, 615, 616, 5, 108, 0, 0,
+ 616, 617, 5, 108, 0, 0, 617, 618, 5, 105, 0, 0, 618, 619, 5, 112, 0, 0, 619, 620, 5,
+ 115, 0, 0, 620, 621, 5, 105, 0, 0, 621, 622, 5, 115, 0, 0, 622, 50, 1, 0, 0, 0, 623, 624,
+ 5, 92, 0, 0, 624, 625, 5, 109, 0, 0, 625, 626, 5, 97, 0, 0, 626, 627, 5, 116, 0, 0, 627,
+ 628, 5, 104, 0, 0, 628, 629, 5, 102, 0, 0, 629, 630, 5, 114, 0, 0, 630, 631, 5, 97, 0,
+ 0, 631, 632, 5, 107, 0, 0, 632, 52, 1, 0, 0, 0, 633, 634, 5, 92, 0, 0, 634, 635, 5, 109,
+ 0, 0, 635, 636, 5, 97, 0, 0, 636, 637, 5, 116, 0, 0, 637, 638, 5, 104, 0, 0, 638, 639,
+ 5, 105, 0, 0, 639, 640, 5, 110, 0, 0, 640, 641, 5, 110, 0, 0, 641, 642, 5, 101, 0, 0,
+ 642, 643, 5, 114, 0, 0, 643, 54, 1, 0, 0, 0, 644, 645, 5, 92, 0, 0, 645, 646, 5, 109,
+ 0, 0, 646, 647, 5, 97, 0, 0, 647, 648, 5, 116, 0, 0, 648, 649, 5, 104, 0, 0, 649, 650,
+ 5, 110, 0, 0, 650, 651, 5, 111, 0, 0, 651, 652, 5, 114, 0, 0, 652, 653, 5, 109, 0, 0,
+ 653, 654, 5, 97, 0, 0, 654, 655, 5, 108, 0, 0, 655, 56, 1, 0, 0, 0, 656, 657, 5, 92, 0,
+ 0, 657, 658, 5, 109, 0, 0, 658, 659, 5, 97, 0, 0, 659, 660, 5, 116, 0, 0, 660, 661, 5,
+ 104, 0, 0, 661, 662, 5, 111, 0, 0, 662, 663, 5, 112, 0, 0, 663, 58, 1, 0, 0, 0, 664, 665,
+ 5, 92, 0, 0, 665, 666, 5, 109, 0, 0, 666, 667, 5, 97, 0, 0, 667, 668, 5, 116, 0, 0, 668,
+ 669, 5, 104, 0, 0, 669, 670, 5, 111, 0, 0, 670, 671, 5, 112, 0, 0, 671, 672, 5, 101,
+ 0, 0, 672, 673, 5, 110, 0, 0, 673, 60, 1, 0, 0, 0, 674, 675, 5, 92, 0, 0, 675, 676, 5,
+ 109, 0, 0, 676, 677, 5, 97, 0, 0, 677, 678, 5, 116, 0, 0, 678, 679, 5, 104, 0, 0, 679,
+ 680, 5, 111, 0, 0, 680, 681, 5, 114, 0, 0, 681, 682, 5, 100, 0, 0, 682, 62, 1, 0, 0, 0,
+ 683, 684, 5, 92, 0, 0, 684, 685, 5, 109, 0, 0, 685, 686, 5, 97, 0, 0, 686, 687, 5, 116,
+ 0, 0, 687, 688, 5, 104, 0, 0, 688, 689, 5, 112, 0, 0, 689, 690, 5, 117, 0, 0, 690, 691,
+ 5, 110, 0, 0, 691, 692, 5, 99, 0, 0, 692, 693, 5, 116, 0, 0, 693, 64, 1, 0, 0, 0, 694,
+ 695, 5, 92, 0, 0, 695, 696, 5, 109, 0, 0, 696, 697, 5, 97, 0, 0, 697, 698, 5, 116, 0,
+ 0, 698, 699, 5, 104, 0, 0, 699, 700, 5, 114, 0, 0, 700, 701, 5, 101, 0, 0, 701, 702,
+ 5, 108, 0, 0, 702, 66, 1, 0, 0, 0, 703, 704, 5, 92, 0, 0, 704, 705, 5, 109, 0, 0, 705,
+ 706, 5, 97, 0, 0, 706, 707, 5, 116, 0, 0, 707, 708, 5, 104, 0, 0, 708, 709, 5, 114, 0,
+ 0, 709, 710, 5, 105, 0, 0, 710, 711, 5, 110, 0, 0, 711, 712, 5, 103, 0, 0, 712, 68, 1,
+ 0, 0, 0, 713, 714, 5, 92, 0, 0, 714, 715, 5, 109, 0, 0, 715, 716, 5, 97, 0, 0, 716, 717,
+ 5, 116, 0, 0, 717, 718, 5, 104, 0, 0, 718, 719, 5, 114, 0, 0, 719, 720, 5, 108, 0, 0,
+ 720, 721, 5, 97, 0, 0, 721, 722, 5, 112, 0, 0, 722, 70, 1, 0, 0, 0, 723, 724, 5, 92, 0,
+ 0, 724, 725, 5, 109, 0, 0, 725, 726, 5, 97, 0, 0, 726, 727, 5, 116, 0, 0, 727, 728, 5,
+ 104, 0, 0, 728, 729, 5, 114, 0, 0, 729, 730, 5, 109, 0, 0, 730, 72, 1, 0, 0, 0, 731, 732,
+ 5, 92, 0, 0, 732, 733, 5, 109, 0, 0, 733, 734, 5, 97, 0, 0, 734, 735, 5, 116, 0, 0, 735,
+ 736, 5, 104, 0, 0, 736, 737, 5, 115, 0, 0, 737, 738, 5, 99, 0, 0, 738, 739, 5, 114, 0,
+ 0, 739, 74, 1, 0, 0, 0, 740, 741, 5, 92, 0, 0, 741, 742, 5, 109, 0, 0, 742, 743, 5, 97,
+ 0, 0, 743, 744, 5, 116, 0, 0, 744, 745, 5, 104, 0, 0, 745, 746, 5, 115, 0, 0, 746, 747,
+ 5, 102, 0, 0, 747, 76, 1, 0, 0, 0, 748, 749, 5, 92, 0, 0, 749, 750, 5, 109, 0, 0, 750,
+ 751, 5, 97, 0, 0, 751, 752, 5, 116, 0, 0, 752, 753, 5, 104, 0, 0, 753, 754, 5, 115, 0,
+ 0, 754, 755, 5, 116, 0, 0, 755, 756, 5, 101, 0, 0, 756, 757, 5, 114, 0, 0, 757, 758,
+ 5, 108, 0, 0, 758, 759, 5, 105, 0, 0, 759, 760, 5, 110, 0, 0, 760, 761, 5, 103, 0, 0,
+ 761, 78, 1, 0, 0, 0, 762, 763, 5, 92, 0, 0, 763, 764, 5, 109, 0, 0, 764, 765, 5, 97, 0,
+ 0, 765, 766, 5, 116, 0, 0, 766, 767, 5, 104, 0, 0, 767, 768, 5, 116, 0, 0, 768, 769,
+ 5, 116, 0, 0, 769, 80, 1, 0, 0, 0, 770, 771, 5, 94, 0, 0, 771, 772, 5, 84, 0, 0, 772, 82,
+ 1, 0, 0, 0, 773, 774, 5, 94, 0, 0, 774, 775, 5, 123, 0, 0, 775, 776, 5, 84, 0, 0, 776,
+ 777, 5, 125, 0, 0, 777, 84, 1, 0, 0, 0, 778, 779, 5, 94, 0, 0, 779, 780, 5, 123, 0, 0,
+ 780, 781, 5, 92, 0, 0, 781, 782, 5, 116, 0, 0, 782, 783, 5, 111, 0, 0, 783, 784, 5, 112,
+ 0, 0, 784, 785, 5, 125, 0, 0, 785, 86, 1, 0, 0, 0, 786, 787, 5, 39, 0, 0, 787, 88, 1, 0,
+ 0, 0, 788, 790, 7, 0, 0, 0, 789, 788, 1, 0, 0, 0, 790, 791, 1, 0, 0, 0, 791, 789, 1, 0,
+ 0, 0, 791, 792, 1, 0, 0, 0, 792, 793, 1, 0, 0, 0, 793, 794, 6, 44, 0, 0, 794, 90, 1, 0,
+ 0, 0, 795, 796, 5, 92, 0, 0, 796, 797, 5, 36, 0, 0, 797, 798, 1, 0, 0, 0, 798, 799, 6,
+ 45, 0, 0, 799, 92, 1, 0, 0, 0, 800, 801, 5, 43, 0, 0, 801, 94, 1, 0, 0, 0, 802, 803, 5,
+ 45, 0, 0, 803, 96, 1, 0, 0, 0, 804, 805, 5, 42, 0, 0, 805, 98, 1, 0, 0, 0, 806, 813, 5,
+ 47, 0, 0, 807, 808, 5, 92, 0, 0, 808, 809, 5, 111, 0, 0, 809, 810, 5, 118, 0, 0, 810,
+ 811, 5, 101, 0, 0, 811, 813, 5, 114, 0, 0, 812, 806, 1, 0, 0, 0, 812, 807, 1, 0, 0, 0,
+ 813, 100, 1, 0, 0, 0, 814, 815, 5, 40, 0, 0, 815, 102, 1, 0, 0, 0, 816, 817, 5, 41, 0,
+ 0, 817, 104, 1, 0, 0, 0, 818, 819, 5, 92, 0, 0, 819, 820, 5, 108, 0, 0, 820, 821, 5, 103,
+ 0, 0, 821, 822, 5, 114, 0, 0, 822, 823, 5, 111, 0, 0, 823, 824, 5, 117, 0, 0, 824, 825,
+ 5, 112, 0, 0, 825, 106, 1, 0, 0, 0, 826, 827, 5, 92, 0, 0, 827, 828, 5, 114, 0, 0, 828,
+ 829, 5, 103, 0, 0, 829, 830, 5, 114, 0, 0, 830, 831, 5, 111, 0, 0, 831, 832, 5, 117,
+ 0, 0, 832, 833, 5, 112, 0, 0, 833, 108, 1, 0, 0, 0, 834, 835, 5, 123, 0, 0, 835, 110,
+ 1, 0, 0, 0, 836, 837, 5, 125, 0, 0, 837, 112, 1, 0, 0, 0, 838, 839, 5, 92, 0, 0, 839, 840,
+ 5, 123, 0, 0, 840, 114, 1, 0, 0, 0, 841, 842, 5, 92, 0, 0, 842, 843, 5, 125, 0, 0, 843,
+ 116, 1, 0, 0, 0, 844, 845, 5, 92, 0, 0, 845, 846, 5, 108, 0, 0, 846, 847, 5, 98, 0, 0,
+ 847, 848, 5, 114, 0, 0, 848, 849, 5, 97, 0, 0, 849, 850, 5, 99, 0, 0, 850, 851, 5, 101,
+ 0, 0, 851, 118, 1, 0, 0, 0, 852, 853, 5, 92, 0, 0, 853, 854, 5, 114, 0, 0, 854, 855, 5,
+ 98, 0, 0, 855, 856, 5, 114, 0, 0, 856, 857, 5, 97, 0, 0, 857, 858, 5, 99, 0, 0, 858, 859,
+ 5, 101, 0, 0, 859, 120, 1, 0, 0, 0, 860, 861, 5, 91, 0, 0, 861, 122, 1, 0, 0, 0, 862, 863,
+ 5, 93, 0, 0, 863, 124, 1, 0, 0, 0, 864, 865, 5, 92, 0, 0, 865, 866, 5, 108, 0, 0, 866,
+ 867, 5, 98, 0, 0, 867, 868, 5, 114, 0, 0, 868, 869, 5, 97, 0, 0, 869, 870, 5, 99, 0, 0,
+ 870, 871, 5, 107, 0, 0, 871, 126, 1, 0, 0, 0, 872, 873, 5, 92, 0, 0, 873, 874, 5, 114,
+ 0, 0, 874, 875, 5, 98, 0, 0, 875, 876, 5, 114, 0, 0, 876, 877, 5, 97, 0, 0, 877, 878,
+ 5, 99, 0, 0, 878, 879, 5, 107, 0, 0, 879, 128, 1, 0, 0, 0, 880, 881, 5, 124, 0, 0, 881,
+ 130, 1, 0, 0, 0, 882, 883, 5, 92, 0, 0, 883, 884, 5, 108, 0, 0, 884, 885, 5, 118, 0, 0,
+ 885, 886, 5, 101, 0, 0, 886, 887, 5, 114, 0, 0, 887, 888, 5, 116, 0, 0, 888, 132, 1,
+ 0, 0, 0, 889, 890, 5, 92, 0, 0, 890, 891, 5, 114, 0, 0, 891, 892, 5, 118, 0, 0, 892, 893,
+ 5, 101, 0, 0, 893, 894, 5, 114, 0, 0, 894, 895, 5, 116, 0, 0, 895, 134, 1, 0, 0, 0, 896,
+ 897, 5, 92, 0, 0, 897, 898, 5, 118, 0, 0, 898, 899, 5, 101, 0, 0, 899, 900, 5, 114, 0,
+ 0, 900, 901, 5, 116, 0, 0, 901, 136, 1, 0, 0, 0, 902, 903, 5, 92, 0, 0, 903, 904, 5, 124,
+ 0, 0, 904, 138, 1, 0, 0, 0, 905, 906, 5, 92, 0, 0, 906, 907, 5, 108, 0, 0, 907, 908, 5,
+ 102, 0, 0, 908, 909, 5, 108, 0, 0, 909, 910, 5, 111, 0, 0, 910, 911, 5, 111, 0, 0, 911,
+ 912, 5, 114, 0, 0, 912, 140, 1, 0, 0, 0, 913, 914, 5, 92, 0, 0, 914, 915, 5, 114, 0, 0,
+ 915, 916, 5, 102, 0, 0, 916, 917, 5, 108, 0, 0, 917, 918, 5, 111, 0, 0, 918, 919, 5,
+ 111, 0, 0, 919, 920, 5, 114, 0, 0, 920, 142, 1, 0, 0, 0, 921, 922, 5, 92, 0, 0, 922, 923,
+ 5, 108, 0, 0, 923, 924, 5, 108, 0, 0, 924, 925, 5, 99, 0, 0, 925, 926, 5, 111, 0, 0, 926,
+ 927, 5, 114, 0, 0, 927, 928, 5, 110, 0, 0, 928, 929, 5, 101, 0, 0, 929, 930, 5, 114,
+ 0, 0, 930, 144, 1, 0, 0, 0, 931, 932, 5, 92, 0, 0, 932, 933, 5, 108, 0, 0, 933, 934, 5,
+ 114, 0, 0, 934, 935, 5, 99, 0, 0, 935, 936, 5, 111, 0, 0, 936, 937, 5, 114, 0, 0, 937,
+ 938, 5, 110, 0, 0, 938, 939, 5, 101, 0, 0, 939, 940, 5, 114, 0, 0, 940, 146, 1, 0, 0,
+ 0, 941, 942, 5, 92, 0, 0, 942, 943, 5, 108, 0, 0, 943, 944, 5, 99, 0, 0, 944, 945, 5,
+ 101, 0, 0, 945, 946, 5, 105, 0, 0, 946, 947, 5, 108, 0, 0, 947, 148, 1, 0, 0, 0, 948,
+ 949, 5, 92, 0, 0, 949, 950, 5, 114, 0, 0, 950, 951, 5, 99, 0, 0, 951, 952, 5, 101, 0,
+ 0, 952, 953, 5, 105, 0, 0, 953, 954, 5, 108, 0, 0, 954, 150, 1, 0, 0, 0, 955, 956, 5,
+ 92, 0, 0, 956, 957, 5, 117, 0, 0, 957, 958, 5, 108, 0, 0, 958, 959, 5, 99, 0, 0, 959,
+ 960, 5, 111, 0, 0, 960, 961, 5, 114, 0, 0, 961, 962, 5, 110, 0, 0, 962, 963, 5, 101,
+ 0, 0, 963, 964, 5, 114, 0, 0, 964, 152, 1, 0, 0, 0, 965, 966, 5, 92, 0, 0, 966, 967, 5,
+ 117, 0, 0, 967, 968, 5, 114, 0, 0, 968, 969, 5, 99, 0, 0, 969, 970, 5, 111, 0, 0, 970,
+ 971, 5, 114, 0, 0, 971, 972, 5, 110, 0, 0, 972, 973, 5, 101, 0, 0, 973, 974, 5, 114,
+ 0, 0, 974, 154, 1, 0, 0, 0, 975, 976, 5, 92, 0, 0, 976, 977, 5, 108, 0, 0, 977, 978, 5,
+ 101, 0, 0, 978, 979, 5, 102, 0, 0, 979, 980, 5, 116, 0, 0, 980, 156, 1, 0, 0, 0, 981,
+ 982, 5, 92, 0, 0, 982, 983, 5, 114, 0, 0, 983, 984, 5, 105, 0, 0, 984, 985, 5, 103, 0,
+ 0, 985, 986, 5, 104, 0, 0, 986, 987, 5, 116, 0, 0, 987, 158, 1, 0, 0, 0, 988, 989, 5,
+ 92, 0, 0, 989, 990, 5, 109, 0, 0, 990, 991, 5, 108, 0, 0, 991, 992, 5, 101, 0, 0, 992,
+ 993, 5, 102, 0, 0, 993, 994, 5, 116, 0, 0, 994, 160, 1, 0, 0, 0, 995, 996, 5, 92, 0, 0,
+ 996, 997, 5, 109, 0, 0, 997, 998, 5, 114, 0, 0, 998, 999, 5, 105, 0, 0, 999, 1000, 5,
+ 103, 0, 0, 1000, 1001, 5, 104, 0, 0, 1001, 1002, 5, 116, 0, 0, 1002, 162, 1, 0, 0, 0,
+ 1003, 1004, 5, 92, 0, 0, 1004, 1005, 5, 108, 0, 0, 1005, 1006, 5, 105, 0, 0, 1006,
+ 1007, 5, 109, 0, 0, 1007, 164, 1, 0, 0, 0, 1008, 1009, 5, 92, 0, 0, 1009, 1010, 5, 116,
+ 0, 0, 1010, 1064, 5, 111, 0, 0, 1011, 1012, 5, 92, 0, 0, 1012, 1013, 5, 114, 0, 0, 1013,
+ 1014, 5, 105, 0, 0, 1014, 1015, 5, 103, 0, 0, 1015, 1016, 5, 104, 0, 0, 1016, 1017,
+ 5, 116, 0, 0, 1017, 1018, 5, 97, 0, 0, 1018, 1019, 5, 114, 0, 0, 1019, 1020, 5, 114,
+ 0, 0, 1020, 1021, 5, 111, 0, 0, 1021, 1064, 5, 119, 0, 0, 1022, 1023, 5, 92, 0, 0, 1023,
+ 1024, 5, 82, 0, 0, 1024, 1025, 5, 105, 0, 0, 1025, 1026, 5, 103, 0, 0, 1026, 1027,
+ 5, 104, 0, 0, 1027, 1028, 5, 116, 0, 0, 1028, 1029, 5, 97, 0, 0, 1029, 1030, 5, 114,
+ 0, 0, 1030, 1031, 5, 114, 0, 0, 1031, 1032, 5, 111, 0, 0, 1032, 1064, 5, 119, 0, 0,
+ 1033, 1034, 5, 92, 0, 0, 1034, 1035, 5, 108, 0, 0, 1035, 1036, 5, 111, 0, 0, 1036,
+ 1037, 5, 110, 0, 0, 1037, 1038, 5, 103, 0, 0, 1038, 1039, 5, 114, 0, 0, 1039, 1040,
+ 5, 105, 0, 0, 1040, 1041, 5, 103, 0, 0, 1041, 1042, 5, 104, 0, 0, 1042, 1043, 5, 116,
+ 0, 0, 1043, 1044, 5, 97, 0, 0, 1044, 1045, 5, 114, 0, 0, 1045, 1046, 5, 114, 0, 0, 1046,
+ 1047, 5, 111, 0, 0, 1047, 1064, 5, 119, 0, 0, 1048, 1049, 5, 92, 0, 0, 1049, 1050,
+ 5, 76, 0, 0, 1050, 1051, 5, 111, 0, 0, 1051, 1052, 5, 110, 0, 0, 1052, 1053, 5, 103,
+ 0, 0, 1053, 1054, 5, 114, 0, 0, 1054, 1055, 5, 105, 0, 0, 1055, 1056, 5, 103, 0, 0,
+ 1056, 1057, 5, 104, 0, 0, 1057, 1058, 5, 116, 0, 0, 1058, 1059, 5, 97, 0, 0, 1059,
+ 1060, 5, 114, 0, 0, 1060, 1061, 5, 114, 0, 0, 1061, 1062, 5, 111, 0, 0, 1062, 1064,
+ 5, 119, 0, 0, 1063, 1008, 1, 0, 0, 0, 1063, 1011, 1, 0, 0, 0, 1063, 1022, 1, 0, 0, 0,
+ 1063, 1033, 1, 0, 0, 0, 1063, 1048, 1, 0, 0, 0, 1064, 166, 1, 0, 0, 0, 1065, 1066, 5,
+ 92, 0, 0, 1066, 1067, 5, 105, 0, 0, 1067, 1068, 5, 110, 0, 0, 1068, 1069, 5, 116, 0,
+ 0, 1069, 168, 1, 0, 0, 0, 1070, 1071, 5, 92, 0, 0, 1071, 1072, 5, 115, 0, 0, 1072, 1073,
+ 5, 117, 0, 0, 1073, 1074, 5, 109, 0, 0, 1074, 170, 1, 0, 0, 0, 1075, 1076, 5, 92, 0,
+ 0, 1076, 1077, 5, 112, 0, 0, 1077, 1078, 5, 114, 0, 0, 1078, 1079, 5, 111, 0, 0, 1079,
+ 1080, 5, 100, 0, 0, 1080, 172, 1, 0, 0, 0, 1081, 1082, 5, 92, 0, 0, 1082, 1083, 5, 108,
+ 0, 0, 1083, 1084, 5, 111, 0, 0, 1084, 1085, 5, 103, 0, 0, 1085, 174, 1, 0, 0, 0, 1086,
+ 1087, 5, 92, 0, 0, 1087, 1088, 5, 108, 0, 0, 1088, 1089, 5, 110, 0, 0, 1089, 176, 1,
+ 0, 0, 0, 1090, 1091, 5, 92, 0, 0, 1091, 1092, 5, 101, 0, 0, 1092, 1093, 5, 120, 0, 0,
+ 1093, 1094, 5, 112, 0, 0, 1094, 178, 1, 0, 0, 0, 1095, 1096, 5, 92, 0, 0, 1096, 1097,
+ 5, 115, 0, 0, 1097, 1098, 5, 105, 0, 0, 1098, 1099, 5, 110, 0, 0, 1099, 180, 1, 0, 0,
+ 0, 1100, 1101, 5, 92, 0, 0, 1101, 1102, 5, 99, 0, 0, 1102, 1103, 5, 111, 0, 0, 1103,
+ 1104, 5, 115, 0, 0, 1104, 182, 1, 0, 0, 0, 1105, 1106, 5, 92, 0, 0, 1106, 1107, 5, 116,
+ 0, 0, 1107, 1108, 5, 97, 0, 0, 1108, 1109, 5, 110, 0, 0, 1109, 184, 1, 0, 0, 0, 1110,
+ 1111, 5, 92, 0, 0, 1111, 1112, 5, 99, 0, 0, 1112, 1113, 5, 115, 0, 0, 1113, 1114, 5,
+ 99, 0, 0, 1114, 186, 1, 0, 0, 0, 1115, 1116, 5, 92, 0, 0, 1116, 1117, 5, 115, 0, 0, 1117,
+ 1118, 5, 101, 0, 0, 1118, 1119, 5, 99, 0, 0, 1119, 188, 1, 0, 0, 0, 1120, 1121, 5, 92,
+ 0, 0, 1121, 1122, 5, 99, 0, 0, 1122, 1123, 5, 111, 0, 0, 1123, 1124, 5, 116, 0, 0, 1124,
+ 190, 1, 0, 0, 0, 1125, 1126, 5, 92, 0, 0, 1126, 1127, 5, 97, 0, 0, 1127, 1128, 5, 114,
+ 0, 0, 1128, 1129, 5, 99, 0, 0, 1129, 1130, 5, 115, 0, 0, 1130, 1131, 5, 105, 0, 0, 1131,
+ 1132, 5, 110, 0, 0, 1132, 192, 1, 0, 0, 0, 1133, 1134, 5, 92, 0, 0, 1134, 1135, 5, 97,
+ 0, 0, 1135, 1136, 5, 114, 0, 0, 1136, 1137, 5, 99, 0, 0, 1137, 1138, 5, 99, 0, 0, 1138,
+ 1139, 5, 111, 0, 0, 1139, 1140, 5, 115, 0, 0, 1140, 194, 1, 0, 0, 0, 1141, 1142, 5,
+ 92, 0, 0, 1142, 1143, 5, 97, 0, 0, 1143, 1144, 5, 114, 0, 0, 1144, 1145, 5, 99, 0, 0,
+ 1145, 1146, 5, 116, 0, 0, 1146, 1147, 5, 97, 0, 0, 1147, 1148, 5, 110, 0, 0, 1148,
+ 196, 1, 0, 0, 0, 1149, 1150, 5, 92, 0, 0, 1150, 1151, 5, 97, 0, 0, 1151, 1152, 5, 114,
+ 0, 0, 1152, 1153, 5, 99, 0, 0, 1153, 1154, 5, 99, 0, 0, 1154, 1155, 5, 115, 0, 0, 1155,
+ 1156, 5, 99, 0, 0, 1156, 198, 1, 0, 0, 0, 1157, 1158, 5, 92, 0, 0, 1158, 1159, 5, 97,
+ 0, 0, 1159, 1160, 5, 114, 0, 0, 1160, 1161, 5, 99, 0, 0, 1161, 1162, 5, 115, 0, 0, 1162,
+ 1163, 5, 101, 0, 0, 1163, 1164, 5, 99, 0, 0, 1164, 200, 1, 0, 0, 0, 1165, 1166, 5, 92,
+ 0, 0, 1166, 1167, 5, 97, 0, 0, 1167, 1168, 5, 114, 0, 0, 1168, 1169, 5, 99, 0, 0, 1169,
+ 1170, 5, 99, 0, 0, 1170, 1171, 5, 111, 0, 0, 1171, 1172, 5, 116, 0, 0, 1172, 202, 1,
+ 0, 0, 0, 1173, 1174, 5, 92, 0, 0, 1174, 1175, 5, 115, 0, 0, 1175, 1176, 5, 105, 0, 0,
+ 1176, 1177, 5, 110, 0, 0, 1177, 1178, 5, 104, 0, 0, 1178, 204, 1, 0, 0, 0, 1179, 1180,
+ 5, 92, 0, 0, 1180, 1181, 5, 99, 0, 0, 1181, 1182, 5, 111, 0, 0, 1182, 1183, 5, 115,
+ 0, 0, 1183, 1184, 5, 104, 0, 0, 1184, 206, 1, 0, 0, 0, 1185, 1186, 5, 92, 0, 0, 1186,
+ 1187, 5, 116, 0, 0, 1187, 1188, 5, 97, 0, 0, 1188, 1189, 5, 110, 0, 0, 1189, 1190,
+ 5, 104, 0, 0, 1190, 208, 1, 0, 0, 0, 1191, 1192, 5, 92, 0, 0, 1192, 1193, 5, 97, 0, 0,
+ 1193, 1194, 5, 114, 0, 0, 1194, 1195, 5, 115, 0, 0, 1195, 1196, 5, 105, 0, 0, 1196,
+ 1197, 5, 110, 0, 0, 1197, 1198, 5, 104, 0, 0, 1198, 210, 1, 0, 0, 0, 1199, 1200, 5,
+ 92, 0, 0, 1200, 1201, 5, 97, 0, 0, 1201, 1202, 5, 114, 0, 0, 1202, 1203, 5, 99, 0, 0,
+ 1203, 1204, 5, 111, 0, 0, 1204, 1205, 5, 115, 0, 0, 1205, 1206, 5, 104, 0, 0, 1206,
+ 212, 1, 0, 0, 0, 1207, 1208, 5, 92, 0, 0, 1208, 1209, 5, 97, 0, 0, 1209, 1210, 5, 114,
+ 0, 0, 1210, 1211, 5, 116, 0, 0, 1211, 1212, 5, 97, 0, 0, 1212, 1213, 5, 110, 0, 0, 1213,
+ 1214, 5, 104, 0, 0, 1214, 214, 1, 0, 0, 0, 1215, 1216, 5, 92, 0, 0, 1216, 1217, 5, 97,
+ 0, 0, 1217, 1218, 5, 114, 0, 0, 1218, 1219, 5, 99, 0, 0, 1219, 1220, 5, 115, 0, 0, 1220,
+ 1221, 5, 105, 0, 0, 1221, 1222, 5, 110, 0, 0, 1222, 1223, 5, 104, 0, 0, 1223, 216,
+ 1, 0, 0, 0, 1224, 1225, 5, 92, 0, 0, 1225, 1226, 5, 97, 0, 0, 1226, 1227, 5, 114, 0,
+ 0, 1227, 1228, 5, 99, 0, 0, 1228, 1229, 5, 99, 0, 0, 1229, 1230, 5, 111, 0, 0, 1230,
+ 1231, 5, 115, 0, 0, 1231, 1232, 5, 104, 0, 0, 1232, 218, 1, 0, 0, 0, 1233, 1234, 5,
+ 92, 0, 0, 1234, 1235, 5, 97, 0, 0, 1235, 1236, 5, 114, 0, 0, 1236, 1237, 5, 99, 0, 0,
+ 1237, 1238, 5, 116, 0, 0, 1238, 1239, 5, 97, 0, 0, 1239, 1240, 5, 110, 0, 0, 1240,
+ 1241, 5, 104, 0, 0, 1241, 220, 1, 0, 0, 0, 1242, 1243, 5, 97, 0, 0, 1243, 1244, 5, 114,
+ 0, 0, 1244, 1245, 5, 115, 0, 0, 1245, 1246, 5, 105, 0, 0, 1246, 1247, 5, 110, 0, 0,
+ 1247, 1248, 5, 104, 0, 0, 1248, 222, 1, 0, 0, 0, 1249, 1250, 5, 97, 0, 0, 1250, 1251,
+ 5, 114, 0, 0, 1251, 1252, 5, 99, 0, 0, 1252, 1253, 5, 115, 0, 0, 1253, 1254, 5, 105,
+ 0, 0, 1254, 1255, 5, 110, 0, 0, 1255, 1256, 5, 104, 0, 0, 1256, 224, 1, 0, 0, 0, 1257,
+ 1258, 5, 97, 0, 0, 1258, 1259, 5, 114, 0, 0, 1259, 1260, 5, 99, 0, 0, 1260, 1261, 5,
+ 111, 0, 0, 1261, 1262, 5, 115, 0, 0, 1262, 1263, 5, 104, 0, 0, 1263, 226, 1, 0, 0, 0,
+ 1264, 1265, 5, 97, 0, 0, 1265, 1266, 5, 114, 0, 0, 1266, 1267, 5, 99, 0, 0, 1267, 1268,
+ 5, 99, 0, 0, 1268, 1269, 5, 111, 0, 0, 1269, 1270, 5, 115, 0, 0, 1270, 1271, 5, 104,
+ 0, 0, 1271, 228, 1, 0, 0, 0, 1272, 1273, 5, 97, 0, 0, 1273, 1274, 5, 114, 0, 0, 1274,
+ 1275, 5, 116, 0, 0, 1275, 1276, 5, 97, 0, 0, 1276, 1277, 5, 110, 0, 0, 1277, 1278,
+ 5, 104, 0, 0, 1278, 230, 1, 0, 0, 0, 1279, 1280, 5, 97, 0, 0, 1280, 1281, 5, 114, 0,
+ 0, 1281, 1282, 5, 99, 0, 0, 1282, 1283, 5, 116, 0, 0, 1283, 1284, 5, 97, 0, 0, 1284,
+ 1285, 5, 110, 0, 0, 1285, 1286, 5, 104, 0, 0, 1286, 232, 1, 0, 0, 0, 1287, 1288, 5,
+ 103, 0, 0, 1288, 1289, 5, 99, 0, 0, 1289, 1290, 5, 100, 0, 0, 1290, 234, 1, 0, 0, 0,
+ 1291, 1292, 5, 108, 0, 0, 1292, 1293, 5, 99, 0, 0, 1293, 1294, 5, 109, 0, 0, 1294,
+ 236, 1, 0, 0, 0, 1295, 1296, 5, 102, 0, 0, 1296, 1297, 5, 108, 0, 0, 1297, 1298, 5,
+ 111, 0, 0, 1298, 1299, 5, 111, 0, 0, 1299, 1300, 5, 114, 0, 0, 1300, 238, 1, 0, 0, 0,
+ 1301, 1302, 5, 99, 0, 0, 1302, 1303, 5, 101, 0, 0, 1303, 1304, 5, 105, 0, 0, 1304,
+ 1305, 5, 108, 0, 0, 1305, 240, 1, 0, 0, 0, 1306, 1307, 5, 92, 0, 0, 1307, 1308, 5, 115,
+ 0, 0, 1308, 1309, 5, 113, 0, 0, 1309, 1310, 5, 114, 0, 0, 1310, 1311, 5, 116, 0, 0,
+ 1311, 242, 1, 0, 0, 0, 1312, 1313, 5, 92, 0, 0, 1313, 1314, 5, 103, 0, 0, 1314, 1315,
+ 5, 99, 0, 0, 1315, 1316, 5, 100, 0, 0, 1316, 244, 1, 0, 0, 0, 1317, 1318, 5, 92, 0, 0,
+ 1318, 1319, 5, 108, 0, 0, 1319, 1320, 5, 99, 0, 0, 1320, 1321, 5, 109, 0, 0, 1321,
+ 246, 1, 0, 0, 0, 1322, 1323, 5, 92, 0, 0, 1323, 1324, 5, 102, 0, 0, 1324, 1325, 5, 108,
+ 0, 0, 1325, 1326, 5, 111, 0, 0, 1326, 1327, 5, 111, 0, 0, 1327, 1328, 5, 114, 0, 0,
+ 1328, 248, 1, 0, 0, 0, 1329, 1330, 5, 92, 0, 0, 1330, 1331, 5, 99, 0, 0, 1331, 1332,
+ 5, 101, 0, 0, 1332, 1333, 5, 105, 0, 0, 1333, 1334, 5, 108, 0, 0, 1334, 250, 1, 0, 0,
+ 0, 1335, 1336, 5, 92, 0, 0, 1336, 1337, 5, 109, 0, 0, 1337, 1338, 5, 97, 0, 0, 1338,
+ 1339, 5, 120, 0, 0, 1339, 252, 1, 0, 0, 0, 1340, 1341, 5, 92, 0, 0, 1341, 1342, 5, 109,
+ 0, 0, 1342, 1343, 5, 105, 0, 0, 1343, 1344, 5, 110, 0, 0, 1344, 254, 1, 0, 0, 0, 1345,
+ 1346, 5, 92, 0, 0, 1346, 1347, 5, 100, 0, 0, 1347, 1348, 5, 101, 0, 0, 1348, 1349,
+ 5, 116, 0, 0, 1349, 256, 1, 0, 0, 0, 1350, 1351, 5, 101, 0, 0, 1351, 1352, 5, 121, 0,
+ 0, 1352, 1353, 5, 101, 0, 0, 1353, 258, 1, 0, 0, 0, 1354, 1355, 5, 122, 0, 0, 1355,
+ 1356, 5, 101, 0, 0, 1356, 1357, 5, 114, 0, 0, 1357, 1358, 5, 111, 0, 0, 1358, 1359,
+ 5, 115, 0, 0, 1359, 260, 1, 0, 0, 0, 1360, 1361, 5, 111, 0, 0, 1361, 1362, 5, 110, 0,
+ 0, 1362, 1363, 5, 101, 0, 0, 1363, 1364, 5, 115, 0, 0, 1364, 262, 1, 0, 0, 0, 1365,
+ 1366, 5, 99, 0, 0, 1366, 1367, 5, 111, 0, 0, 1367, 1368, 5, 108, 0, 0, 1368, 1369,
+ 5, 115, 0, 0, 1369, 264, 1, 0, 0, 0, 1370, 1371, 5, 114, 0, 0, 1371, 1372, 5, 111, 0,
+ 0, 1372, 1373, 5, 119, 0, 0, 1373, 1374, 5, 115, 0, 0, 1374, 266, 1, 0, 0, 0, 1375,
+ 1376, 5, 100, 0, 0, 1376, 1377, 5, 105, 0, 0, 1377, 1378, 5, 97, 0, 0, 1378, 1379,
+ 5, 103, 0, 0, 1379, 268, 1, 0, 0, 0, 1380, 1381, 5, 110, 0, 0, 1381, 1382, 5, 111, 0,
+ 0, 1382, 1383, 5, 114, 0, 0, 1383, 1384, 5, 109, 0, 0, 1384, 270, 1, 0, 0, 0, 1385,
+ 1386, 5, 114, 0, 0, 1386, 1387, 5, 97, 0, 0, 1387, 1388, 5, 110, 0, 0, 1388, 1389,
+ 5, 107, 0, 0, 1389, 272, 1, 0, 0, 0, 1390, 1391, 5, 116, 0, 0, 1391, 1392, 5, 114, 0,
+ 0, 1392, 1393, 5, 97, 0, 0, 1393, 1394, 5, 99, 0, 0, 1394, 1398, 5, 101, 0, 0, 1395,
+ 1396, 5, 116, 0, 0, 1396, 1398, 5, 114, 0, 0, 1397, 1390, 1, 0, 0, 0, 1397, 1395, 1,
+ 0, 0, 0, 1398, 274, 1, 0, 0, 0, 1399, 1400, 5, 114, 0, 0, 1400, 1401, 5, 114, 0, 0, 1401,
+ 1402, 5, 101, 0, 0, 1402, 1403, 5, 102, 0, 0, 1403, 276, 1, 0, 0, 0, 1404, 1405, 5,
+ 104, 0, 0, 1405, 1406, 5, 115, 0, 0, 1406, 1407, 5, 116, 0, 0, 1407, 1408, 5, 97, 0,
+ 0, 1408, 1409, 5, 99, 0, 0, 1409, 1410, 5, 107, 0, 0, 1410, 278, 1, 0, 0, 0, 1411, 1412,
+ 5, 118, 0, 0, 1412, 1413, 5, 115, 0, 0, 1413, 1414, 5, 116, 0, 0, 1414, 1415, 5, 97,
+ 0, 0, 1415, 1416, 5, 99, 0, 0, 1416, 1417, 5, 107, 0, 0, 1417, 280, 1, 0, 0, 0, 1418,
+ 1419, 5, 111, 0, 0, 1419, 1420, 5, 114, 0, 0, 1420, 1421, 5, 116, 0, 0, 1421, 1451,
+ 5, 104, 0, 0, 1422, 1423, 5, 111, 0, 0, 1423, 1424, 5, 114, 0, 0, 1424, 1425, 5, 116,
+ 0, 0, 1425, 1426, 5, 104, 0, 0, 1426, 1451, 5, 111, 0, 0, 1427, 1428, 5, 111, 0, 0,
+ 1428, 1429, 5, 114, 0, 0, 1429, 1430, 5, 116, 0, 0, 1430, 1431, 5, 104, 0, 0, 1431,
+ 1432, 5, 111, 0, 0, 1432, 1433, 5, 103, 0, 0, 1433, 1434, 5, 111, 0, 0, 1434, 1435,
+ 5, 110, 0, 0, 1435, 1436, 5, 97, 0, 0, 1436, 1451, 5, 108, 0, 0, 1437, 1438, 5, 111,
+ 0, 0, 1438, 1439, 5, 114, 0, 0, 1439, 1440, 5, 116, 0, 0, 1440, 1441, 5, 104, 0, 0,
+ 1441, 1442, 5, 111, 0, 0, 1442, 1443, 5, 103, 0, 0, 1443, 1444, 5, 111, 0, 0, 1444,
+ 1445, 5, 110, 0, 0, 1445, 1446, 5, 97, 0, 0, 1446, 1447, 5, 108, 0, 0, 1447, 1448,
+ 5, 105, 0, 0, 1448, 1449, 5, 122, 0, 0, 1449, 1451, 5, 101, 0, 0, 1450, 1418, 1, 0,
+ 0, 0, 1450, 1422, 1, 0, 0, 0, 1450, 1427, 1, 0, 0, 0, 1450, 1437, 1, 0, 0, 0, 1451, 282,
+ 1, 0, 0, 0, 1452, 1453, 5, 110, 0, 0, 1453, 1454, 5, 117, 0, 0, 1454, 1455, 5, 108,
+ 0, 0, 1455, 1456, 5, 108, 0, 0, 1456, 1457, 5, 115, 0, 0, 1457, 1458, 5, 112, 0, 0,
+ 1458, 1459, 5, 97, 0, 0, 1459, 1460, 5, 99, 0, 0, 1460, 1461, 5, 101, 0, 0, 1461, 284,
+ 1, 0, 0, 0, 1462, 1463, 5, 101, 0, 0, 1463, 1464, 5, 105, 0, 0, 1464, 1482, 5, 103,
+ 0, 0, 1465, 1466, 5, 101, 0, 0, 1466, 1467, 5, 105, 0, 0, 1467, 1468, 5, 103, 0, 0,
+ 1468, 1469, 5, 101, 0, 0, 1469, 1482, 5, 110, 0, 0, 1470, 1471, 5, 100, 0, 0, 1471,
+ 1472, 5, 105, 0, 0, 1472, 1473, 5, 97, 0, 0, 1473, 1474, 5, 103, 0, 0, 1474, 1475,
+ 5, 111, 0, 0, 1475, 1476, 5, 110, 0, 0, 1476, 1477, 5, 97, 0, 0, 1477, 1478, 5, 108,
+ 0, 0, 1478, 1479, 5, 105, 0, 0, 1479, 1480, 5, 122, 0, 0, 1480, 1482, 5, 101, 0, 0,
+ 1481, 1462, 1, 0, 0, 0, 1481, 1465, 1, 0, 0, 0, 1481, 1470, 1, 0, 0, 0, 1482, 286, 1,
+ 0, 0, 0, 1483, 1484, 5, 101, 0, 0, 1484, 1485, 5, 105, 0, 0, 1485, 1486, 5, 103, 0,
+ 0, 1486, 1487, 5, 101, 0, 0, 1487, 1488, 5, 110, 0, 0, 1488, 1489, 5, 118, 0, 0, 1489,
+ 1490, 5, 97, 0, 0, 1490, 1491, 5, 108, 0, 0, 1491, 1504, 5, 115, 0, 0, 1492, 1493,
+ 5, 101, 0, 0, 1493, 1494, 5, 105, 0, 0, 1494, 1495, 5, 103, 0, 0, 1495, 1496, 5, 101,
+ 0, 0, 1496, 1497, 5, 110, 0, 0, 1497, 1498, 5, 118, 0, 0, 1498, 1499, 5, 97, 0, 0, 1499,
+ 1500, 5, 108, 0, 0, 1500, 1501, 5, 117, 0, 0, 1501, 1502, 5, 101, 0, 0, 1502, 1504,
+ 5, 115, 0, 0, 1503, 1483, 1, 0, 0, 0, 1503, 1492, 1, 0, 0, 0, 1504, 288, 1, 0, 0, 0, 1505,
+ 1506, 5, 101, 0, 0, 1506, 1507, 5, 105, 0, 0, 1507, 1508, 5, 103, 0, 0, 1508, 1509,
+ 5, 101, 0, 0, 1509, 1510, 5, 110, 0, 0, 1510, 1511, 5, 118, 0, 0, 1511, 1512, 5, 101,
+ 0, 0, 1512, 1513, 5, 99, 0, 0, 1513, 1514, 5, 116, 0, 0, 1514, 1528, 5, 115, 0, 0, 1515,
+ 1516, 5, 101, 0, 0, 1516, 1517, 5, 105, 0, 0, 1517, 1518, 5, 103, 0, 0, 1518, 1519,
+ 5, 101, 0, 0, 1519, 1520, 5, 110, 0, 0, 1520, 1521, 5, 118, 0, 0, 1521, 1522, 5, 101,
+ 0, 0, 1522, 1523, 5, 99, 0, 0, 1523, 1524, 5, 116, 0, 0, 1524, 1525, 5, 111, 0, 0, 1525,
+ 1526, 5, 114, 0, 0, 1526, 1528, 5, 115, 0, 0, 1527, 1505, 1, 0, 0, 0, 1527, 1515, 1,
+ 0, 0, 0, 1528, 290, 1, 0, 0, 0, 1529, 1530, 5, 115, 0, 0, 1530, 1531, 5, 118, 0, 0, 1531,
+ 1536, 5, 100, 0, 0, 1532, 1533, 5, 83, 0, 0, 1533, 1534, 5, 86, 0, 0, 1534, 1536, 5,
+ 68, 0, 0, 1535, 1529, 1, 0, 0, 0, 1535, 1532, 1, 0, 0, 0, 1536, 292, 1, 0, 0, 0, 1537,
+ 1538, 5, 92, 0, 0, 1538, 1539, 5, 116, 0, 0, 1539, 1540, 5, 105, 0, 0, 1540, 1541,
+ 5, 109, 0, 0, 1541, 1542, 5, 101, 0, 0, 1542, 1543, 5, 115, 0, 0, 1543, 294, 1, 0, 0,
+ 0, 1544, 1545, 5, 92, 0, 0, 1545, 1546, 5, 99, 0, 0, 1546, 1547, 5, 100, 0, 0, 1547,
+ 1548, 5, 111, 0, 0, 1548, 1549, 5, 116, 0, 0, 1549, 296, 1, 0, 0, 0, 1550, 1551, 5,
+ 92, 0, 0, 1551, 1552, 5, 100, 0, 0, 1552, 1553, 5, 105, 0, 0, 1553, 1554, 5, 118, 0,
+ 0, 1554, 298, 1, 0, 0, 0, 1555, 1556, 5, 92, 0, 0, 1556, 1557, 5, 102, 0, 0, 1557, 1558,
+ 5, 114, 0, 0, 1558, 1559, 5, 97, 0, 0, 1559, 1560, 5, 99, 0, 0, 1560, 300, 1, 0, 0, 0,
+ 1561, 1562, 5, 92, 0, 0, 1562, 1563, 5, 98, 0, 0, 1563, 1564, 5, 105, 0, 0, 1564, 1565,
+ 5, 110, 0, 0, 1565, 1566, 5, 111, 0, 0, 1566, 1582, 5, 109, 0, 0, 1567, 1568, 5, 92,
+ 0, 0, 1568, 1569, 5, 116, 0, 0, 1569, 1570, 5, 98, 0, 0, 1570, 1571, 5, 105, 0, 0, 1571,
+ 1572, 5, 110, 0, 0, 1572, 1573, 5, 111, 0, 0, 1573, 1582, 5, 109, 0, 0, 1574, 1575,
+ 5, 92, 0, 0, 1575, 1576, 5, 100, 0, 0, 1576, 1577, 5, 98, 0, 0, 1577, 1578, 5, 105,
+ 0, 0, 1578, 1579, 5, 110, 0, 0, 1579, 1580, 5, 111, 0, 0, 1580, 1582, 5, 109, 0, 0,
+ 1581, 1561, 1, 0, 0, 0, 1581, 1567, 1, 0, 0, 0, 1581, 1574, 1, 0, 0, 0, 1582, 302, 1,
+ 0, 0, 0, 1583, 1584, 5, 92, 0, 0, 1584, 1585, 5, 99, 0, 0, 1585, 1586, 5, 104, 0, 0,
+ 1586, 1587, 5, 111, 0, 0, 1587, 1588, 5, 111, 0, 0, 1588, 1589, 5, 115, 0, 0, 1589,
+ 1590, 5, 101, 0, 0, 1590, 304, 1, 0, 0, 0, 1591, 1592, 5, 92, 0, 0, 1592, 1593, 5, 109,
+ 0, 0, 1593, 1594, 5, 111, 0, 0, 1594, 1595, 5, 100, 0, 0, 1595, 306, 1, 0, 0, 0, 1596,
+ 1597, 5, 92, 0, 0, 1597, 1598, 5, 109, 0, 0, 1598, 1599, 5, 97, 0, 0, 1599, 1600, 5,
+ 116, 0, 0, 1600, 1601, 5, 104, 0, 0, 1601, 1602, 5, 105, 0, 0, 1602, 1603, 5, 116,
+ 0, 0, 1603, 308, 1, 0, 0, 0, 1604, 1605, 5, 92, 0, 0, 1605, 1606, 5, 111, 0, 0, 1606,
+ 1607, 5, 112, 0, 0, 1607, 1608, 5, 101, 0, 0, 1608, 1609, 5, 114, 0, 0, 1609, 1610,
+ 5, 97, 0, 0, 1610, 1611, 5, 116, 0, 0, 1611, 1612, 5, 111, 0, 0, 1612, 1613, 5, 114,
+ 0, 0, 1613, 1614, 5, 110, 0, 0, 1614, 1615, 5, 97, 0, 0, 1615, 1616, 5, 109, 0, 0, 1616,
+ 1617, 5, 101, 0, 0, 1617, 310, 1, 0, 0, 0, 1618, 1619, 5, 109, 0, 0, 1619, 1620, 5,
+ 97, 0, 0, 1620, 1621, 5, 116, 0, 0, 1621, 1622, 5, 114, 0, 0, 1622, 1623, 5, 105, 0,
+ 0, 1623, 1624, 5, 120, 0, 0, 1624, 312, 1, 0, 0, 0, 1625, 1626, 5, 112, 0, 0, 1626,
+ 1627, 5, 109, 0, 0, 1627, 1628, 5, 97, 0, 0, 1628, 1629, 5, 116, 0, 0, 1629, 1630,
+ 5, 114, 0, 0, 1630, 1631, 5, 105, 0, 0, 1631, 1632, 5, 120, 0, 0, 1632, 314, 1, 0, 0,
+ 0, 1633, 1634, 5, 98, 0, 0, 1634, 1635, 5, 109, 0, 0, 1635, 1636, 5, 97, 0, 0, 1636,
+ 1637, 5, 116, 0, 0, 1637, 1638, 5, 114, 0, 0, 1638, 1639, 5, 105, 0, 0, 1639, 1640,
+ 5, 120, 0, 0, 1640, 316, 1, 0, 0, 0, 1641, 1642, 5, 118, 0, 0, 1642, 1643, 5, 109, 0,
+ 0, 1643, 1644, 5, 97, 0, 0, 1644, 1645, 5, 116, 0, 0, 1645, 1646, 5, 114, 0, 0, 1646,
+ 1647, 5, 105, 0, 0, 1647, 1648, 5, 120, 0, 0, 1648, 318, 1, 0, 0, 0, 1649, 1653, 3,
+ 311, 155, 0, 1650, 1653, 3, 313, 156, 0, 1651, 1653, 3, 315, 157, 0, 1652, 1649,
+ 1, 0, 0, 0, 1652, 1650, 1, 0, 0, 0, 1652, 1651, 1, 0, 0, 0, 1653, 320, 1, 0, 0, 0, 1654,
+ 1655, 5, 92, 0, 0, 1655, 1656, 5, 98, 0, 0, 1656, 1657, 5, 101, 0, 0, 1657, 1658, 5,
+ 103, 0, 0, 1658, 1659, 5, 105, 0, 0, 1659, 1660, 5, 110, 0, 0, 1660, 1661, 1, 0, 0,
+ 0, 1661, 1662, 3, 109, 54, 0, 1662, 1663, 3, 319, 159, 0, 1663, 1664, 3, 111, 55,
+ 0, 1664, 322, 1, 0, 0, 0, 1665, 1666, 5, 92, 0, 0, 1666, 1667, 5, 101, 0, 0, 1667, 1668,
+ 5, 110, 0, 0, 1668, 1669, 5, 100, 0, 0, 1669, 1670, 1, 0, 0, 0, 1670, 1671, 3, 109,
+ 54, 0, 1671, 1672, 3, 319, 159, 0, 1672, 1673, 3, 111, 55, 0, 1673, 324, 1, 0, 0, 0,
+ 1674, 1675, 5, 92, 0, 0, 1675, 1676, 5, 98, 0, 0, 1676, 1677, 5, 101, 0, 0, 1677, 1678,
+ 5, 103, 0, 0, 1678, 1679, 5, 105, 0, 0, 1679, 1680, 5, 110, 0, 0, 1680, 1681, 1, 0,
+ 0, 0, 1681, 1682, 3, 109, 54, 0, 1682, 1683, 3, 317, 158, 0, 1683, 1684, 3, 111, 55,
+ 0, 1684, 326, 1, 0, 0, 0, 1685, 1686, 5, 92, 0, 0, 1686, 1687, 5, 101, 0, 0, 1687, 1688,
+ 5, 110, 0, 0, 1688, 1689, 5, 100, 0, 0, 1689, 1690, 1, 0, 0, 0, 1690, 1691, 3, 109,
+ 54, 0, 1691, 1692, 3, 317, 158, 0, 1692, 1693, 3, 111, 55, 0, 1693, 328, 1, 0, 0, 0,
+ 1694, 1695, 5, 38, 0, 0, 1695, 330, 1, 0, 0, 0, 1696, 1697, 5, 92, 0, 0, 1697, 1698,
+ 5, 92, 0, 0, 1698, 332, 1, 0, 0, 0, 1699, 1700, 5, 95, 0, 0, 1700, 334, 1, 0, 0, 0, 1701,
+ 1702, 5, 94, 0, 0, 1702, 336, 1, 0, 0, 0, 1703, 1704, 5, 58, 0, 0, 1704, 338, 1, 0, 0,
+ 0, 1705, 1706, 5, 59, 0, 0, 1706, 340, 1, 0, 0, 0, 1707, 1708, 5, 44, 0, 0, 1708, 342,
+ 1, 0, 0, 0, 1709, 1710, 5, 46, 0, 0, 1710, 344, 1, 0, 0, 0, 1711, 1712, 7, 0, 0, 0, 1712,
+ 346, 1, 0, 0, 0, 1713, 1717, 5, 100, 0, 0, 1714, 1716, 3, 345, 172, 0, 1715, 1714,
+ 1, 0, 0, 0, 1716, 1719, 1, 0, 0, 0, 1717, 1718, 1, 0, 0, 0, 1717, 1715, 1, 0, 0, 0, 1718,
+ 1727, 1, 0, 0, 0, 1719, 1717, 1, 0, 0, 0, 1720, 1728, 7, 1, 0, 0, 1721, 1723, 5, 92,
+ 0, 0, 1722, 1724, 7, 1, 0, 0, 1723, 1722, 1, 0, 0, 0, 1724, 1725, 1, 0, 0, 0, 1725, 1723,
+ 1, 0, 0, 0, 1725, 1726, 1, 0, 0, 0, 1726, 1728, 1, 0, 0, 0, 1727, 1720, 1, 0, 0, 0, 1727,
+ 1721, 1, 0, 0, 0, 1728, 348, 1, 0, 0, 0, 1729, 1744, 5, 101, 0, 0, 1730, 1731, 5, 92,
+ 0, 0, 1731, 1732, 5, 101, 0, 0, 1732, 1733, 5, 120, 0, 0, 1733, 1734, 5, 112, 0, 0,
+ 1734, 1735, 5, 111, 0, 0, 1735, 1736, 5, 110, 0, 0, 1736, 1737, 5, 101, 0, 0, 1737,
+ 1738, 5, 110, 0, 0, 1738, 1739, 5, 116, 0, 0, 1739, 1740, 5, 105, 0, 0, 1740, 1741,
+ 5, 97, 0, 0, 1741, 1742, 5, 108, 0, 0, 1742, 1744, 5, 69, 0, 0, 1743, 1729, 1, 0, 0,
+ 0, 1743, 1730, 1, 0, 0, 0, 1744, 350, 1, 0, 0, 0, 1745, 1746, 5, 69, 0, 0, 1746, 352,
+ 1, 0, 0, 0, 1747, 1748, 7, 2, 0, 0, 1748, 354, 1, 0, 0, 0, 1749, 1750, 7, 1, 0, 0, 1750,
+ 356, 1, 0, 0, 0, 1751, 1752, 7, 3, 0, 0, 1752, 358, 1, 0, 0, 0, 1753, 1754, 5, 92, 0,
+ 0, 1754, 1755, 5, 120, 0, 0, 1755, 1756, 5, 114, 0, 0, 1756, 1757, 5, 105, 0, 0, 1757,
+ 1758, 5, 103, 0, 0, 1758, 1759, 5, 104, 0, 0, 1759, 1760, 5, 116, 0, 0, 1760, 1761,
+ 5, 97, 0, 0, 1761, 1762, 5, 114, 0, 0, 1762, 1763, 5, 114, 0, 0, 1763, 1764, 5, 111,
+ 0, 0, 1764, 1778, 5, 119, 0, 0, 1765, 1766, 5, 92, 0, 0, 1766, 1767, 5, 120, 0, 0, 1767,
+ 1768, 5, 82, 0, 0, 1768, 1769, 5, 105, 0, 0, 1769, 1770, 5, 103, 0, 0, 1770, 1771,
+ 5, 104, 0, 0, 1771, 1772, 5, 116, 0, 0, 1772, 1773, 5, 97, 0, 0, 1773, 1774, 5, 114,
+ 0, 0, 1774, 1775, 5, 114, 0, 0, 1775, 1776, 5, 111, 0, 0, 1776, 1778, 5, 119, 0, 0,
+ 1777, 1753, 1, 0, 0, 0, 1777, 1765, 1, 0, 0, 0, 1778, 360, 1, 0, 0, 0, 1779, 1780, 5,
+ 60, 0, 0, 1780, 1781, 5, 45, 0, 0, 1781, 1816, 5, 62, 0, 0, 1782, 1783, 5, 60, 0, 0,
+ 1783, 1784, 5, 61, 0, 0, 1784, 1816, 5, 62, 0, 0, 1785, 1786, 5, 92, 0, 0, 1786, 1787,
+ 5, 108, 0, 0, 1787, 1788, 5, 101, 0, 0, 1788, 1789, 5, 102, 0, 0, 1789, 1790, 5, 116,
+ 0, 0, 1790, 1791, 5, 114, 0, 0, 1791, 1792, 5, 105, 0, 0, 1792, 1793, 5, 103, 0, 0,
+ 1793, 1794, 5, 104, 0, 0, 1794, 1795, 5, 116, 0, 0, 1795, 1796, 5, 97, 0, 0, 1796,
+ 1797, 5, 114, 0, 0, 1797, 1798, 5, 114, 0, 0, 1798, 1799, 5, 111, 0, 0, 1799, 1816,
+ 5, 119, 0, 0, 1800, 1801, 5, 92, 0, 0, 1801, 1802, 5, 76, 0, 0, 1802, 1803, 5, 101,
+ 0, 0, 1803, 1804, 5, 102, 0, 0, 1804, 1805, 5, 116, 0, 0, 1805, 1806, 5, 114, 0, 0,
+ 1806, 1807, 5, 105, 0, 0, 1807, 1808, 5, 103, 0, 0, 1808, 1809, 5, 104, 0, 0, 1809,
+ 1810, 5, 116, 0, 0, 1810, 1811, 5, 97, 0, 0, 1811, 1812, 5, 114, 0, 0, 1812, 1813,
+ 5, 114, 0, 0, 1813, 1814, 5, 111, 0, 0, 1814, 1816, 5, 119, 0, 0, 1815, 1779, 1, 0,
+ 0, 0, 1815, 1782, 1, 0, 0, 0, 1815, 1785, 1, 0, 0, 0, 1815, 1800, 1, 0, 0, 0, 1816, 362,
+ 1, 0, 0, 0, 1817, 1819, 3, 357, 178, 0, 1818, 1817, 1, 0, 0, 0, 1819, 1820, 1, 0, 0,
+ 0, 1820, 1818, 1, 0, 0, 0, 1820, 1821, 1, 0, 0, 0, 1821, 1829, 1, 0, 0, 0, 1822, 1823,
+ 3, 341, 170, 0, 1823, 1824, 3, 357, 178, 0, 1824, 1825, 3, 357, 178, 0, 1825, 1826,
+ 3, 357, 178, 0, 1826, 1828, 1, 0, 0, 0, 1827, 1822, 1, 0, 0, 0, 1828, 1831, 1, 0, 0,
+ 0, 1829, 1827, 1, 0, 0, 0, 1829, 1830, 1, 0, 0, 0, 1830, 1855, 1, 0, 0, 0, 1831, 1829,
+ 1, 0, 0, 0, 1832, 1834, 3, 357, 178, 0, 1833, 1832, 1, 0, 0, 0, 1834, 1837, 1, 0, 0,
+ 0, 1835, 1833, 1, 0, 0, 0, 1835, 1836, 1, 0, 0, 0, 1836, 1845, 1, 0, 0, 0, 1837, 1835,
+ 1, 0, 0, 0, 1838, 1839, 3, 341, 170, 0, 1839, 1840, 3, 357, 178, 0, 1840, 1841, 3,
+ 357, 178, 0, 1841, 1842, 3, 357, 178, 0, 1842, 1844, 1, 0, 0, 0, 1843, 1838, 1, 0,
+ 0, 0, 1844, 1847, 1, 0, 0, 0, 1845, 1843, 1, 0, 0, 0, 1845, 1846, 1, 0, 0, 0, 1846, 1848,
+ 1, 0, 0, 0, 1847, 1845, 1, 0, 0, 0, 1848, 1850, 3, 343, 171, 0, 1849, 1851, 3, 357,
+ 178, 0, 1850, 1849, 1, 0, 0, 0, 1851, 1852, 1, 0, 0, 0, 1852, 1850, 1, 0, 0, 0, 1852,
+ 1853, 1, 0, 0, 0, 1853, 1855, 1, 0, 0, 0, 1854, 1818, 1, 0, 0, 0, 1854, 1835, 1, 0, 0,
+ 0, 1855, 364, 1, 0, 0, 0, 1856, 1857, 3, 363, 181, 0, 1857, 1860, 3, 351, 175, 0, 1858,
+ 1861, 3, 95, 47, 0, 1859, 1861, 3, 93, 46, 0, 1860, 1858, 1, 0, 0, 0, 1860, 1859, 1,
+ 0, 0, 0, 1860, 1861, 1, 0, 0, 0, 1861, 1863, 1, 0, 0, 0, 1862, 1864, 3, 357, 178, 0,
+ 1863, 1862, 1, 0, 0, 0, 1864, 1865, 1, 0, 0, 0, 1865, 1863, 1, 0, 0, 0, 1865, 1866,
+ 1, 0, 0, 0, 1866, 366, 1, 0, 0, 0, 1867, 1868, 5, 92, 0, 0, 1868, 1869, 5, 105, 0, 0,
+ 1869, 1870, 5, 110, 0, 0, 1870, 368, 1, 0, 0, 0, 1871, 1872, 5, 61, 0, 0, 1872, 370,
+ 1, 0, 0, 0, 1873, 1874, 5, 61, 0, 0, 1874, 1882, 5, 61, 0, 0, 1875, 1876, 5, 92, 0, 0,
+ 1876, 1877, 5, 101, 0, 0, 1877, 1878, 5, 113, 0, 0, 1878, 1879, 5, 117, 0, 0, 1879,
+ 1880, 5, 105, 0, 0, 1880, 1882, 5, 118, 0, 0, 1881, 1873, 1, 0, 0, 0, 1881, 1875, 1,
+ 0, 0, 0, 1882, 372, 1, 0, 0, 0, 1883, 1884, 5, 60, 0, 0, 1884, 374, 1, 0, 0, 0, 1885,
+ 1886, 5, 92, 0, 0, 1886, 1887, 5, 108, 0, 0, 1887, 1888, 5, 101, 0, 0, 1888, 1902,
+ 5, 113, 0, 0, 1889, 1890, 5, 92, 0, 0, 1890, 1891, 5, 108, 0, 0, 1891, 1902, 5, 101,
+ 0, 0, 1892, 1893, 5, 92, 0, 0, 1893, 1894, 5, 108, 0, 0, 1894, 1895, 5, 101, 0, 0, 1895,
+ 1896, 5, 113, 0, 0, 1896, 1897, 5, 115, 0, 0, 1897, 1898, 5, 108, 0, 0, 1898, 1899,
+ 5, 97, 0, 0, 1899, 1900, 5, 110, 0, 0, 1900, 1902, 5, 116, 0, 0, 1901, 1885, 1, 0, 0,
+ 0, 1901, 1889, 1, 0, 0, 0, 1901, 1892, 1, 0, 0, 0, 1902, 376, 1, 0, 0, 0, 1903, 1904,
+ 5, 62, 0, 0, 1904, 378, 1, 0, 0, 0, 1905, 1906, 5, 92, 0, 0, 1906, 1907, 5, 103, 0, 0,
+ 1907, 1908, 5, 101, 0, 0, 1908, 1922, 5, 113, 0, 0, 1909, 1910, 5, 92, 0, 0, 1910,
+ 1911, 5, 103, 0, 0, 1911, 1922, 5, 101, 0, 0, 1912, 1913, 5, 92, 0, 0, 1913, 1914,
+ 5, 103, 0, 0, 1914, 1915, 5, 101, 0, 0, 1915, 1916, 5, 113, 0, 0, 1916, 1917, 5, 115,
+ 0, 0, 1917, 1918, 5, 108, 0, 0, 1918, 1919, 5, 97, 0, 0, 1919, 1920, 5, 110, 0, 0, 1920,
+ 1922, 5, 116, 0, 0, 1921, 1905, 1, 0, 0, 0, 1921, 1909, 1, 0, 0, 0, 1921, 1912, 1, 0,
+ 0, 0, 1922, 380, 1, 0, 0, 0, 1923, 1924, 5, 33, 0, 0, 1924, 1946, 5, 61, 0, 0, 1925,
+ 1926, 5, 33, 0, 0, 1926, 1927, 5, 61, 0, 0, 1927, 1946, 5, 61, 0, 0, 1928, 1929, 5,
+ 92, 0, 0, 1929, 1930, 5, 110, 0, 0, 1930, 1946, 5, 101, 0, 0, 1931, 1932, 5, 92, 0,
+ 0, 1932, 1933, 5, 110, 0, 0, 1933, 1934, 5, 101, 0, 0, 1934, 1946, 5, 113, 0, 0, 1935,
+ 1936, 5, 92, 0, 0, 1936, 1937, 5, 110, 0, 0, 1937, 1938, 5, 111, 0, 0, 1938, 1939,
+ 5, 116, 0, 0, 1939, 1940, 5, 92, 0, 0, 1940, 1941, 5, 101, 0, 0, 1941, 1942, 5, 113,
+ 0, 0, 1942, 1943, 5, 117, 0, 0, 1943, 1944, 5, 105, 0, 0, 1944, 1946, 5, 118, 0, 0,
+ 1945, 1923, 1, 0, 0, 0, 1945, 1925, 1, 0, 0, 0, 1945, 1928, 1, 0, 0, 0, 1945, 1931,
+ 1, 0, 0, 0, 1945, 1935, 1, 0, 0, 0, 1946, 382, 1, 0, 0, 0, 1947, 1948, 5, 33, 0, 0, 1948,
+ 384, 1, 0, 0, 0, 1949, 1950, 5, 92, 0, 0, 1950, 1951, 5, 37, 0, 0, 1951, 386, 1, 0, 0,
+ 0, 1952, 1953, 3, 363, 181, 0, 1953, 1954, 3, 385, 192, 0, 1954, 388, 1, 0, 0, 0, 1955,
+ 1956, 5, 92, 0, 0, 1956, 1957, 5, 99, 0, 0, 1957, 1958, 5, 104, 0, 0, 1958, 1959, 5,
+ 97, 0, 0, 1959, 1960, 5, 114, 0, 0, 1960, 1961, 5, 34, 0, 0, 1961, 1962, 5, 48, 0, 0,
+ 1962, 1963, 5, 48, 0, 0, 1963, 1964, 5, 48, 0, 0, 1964, 1965, 5, 51, 0, 0, 1965, 1966,
+ 5, 57, 0, 0, 1966, 2341, 5, 49, 0, 0, 1967, 1968, 5, 92, 0, 0, 1968, 1969, 5, 97, 0,
+ 0, 1969, 1970, 5, 108, 0, 0, 1970, 1971, 5, 112, 0, 0, 1971, 1972, 5, 104, 0, 0, 1972,
+ 2341, 5, 97, 0, 0, 1973, 1974, 5, 92, 0, 0, 1974, 1975, 5, 99, 0, 0, 1975, 1976, 5,
+ 104, 0, 0, 1976, 1977, 5, 97, 0, 0, 1977, 1978, 5, 114, 0, 0, 1978, 1979, 5, 34, 0,
+ 0, 1979, 1980, 5, 48, 0, 0, 1980, 1981, 5, 48, 0, 0, 1981, 1982, 5, 48, 0, 0, 1982,
+ 1983, 5, 51, 0, 0, 1983, 1984, 5, 57, 0, 0, 1984, 2341, 5, 50, 0, 0, 1985, 1986, 5,
+ 92, 0, 0, 1986, 1987, 5, 98, 0, 0, 1987, 1988, 5, 101, 0, 0, 1988, 1989, 5, 116, 0,
+ 0, 1989, 2341, 5, 97, 0, 0, 1990, 1991, 5, 92, 0, 0, 1991, 1992, 5, 71, 0, 0, 1992,
+ 1993, 5, 97, 0, 0, 1993, 1994, 5, 109, 0, 0, 1994, 1995, 5, 109, 0, 0, 1995, 2341,
+ 5, 97, 0, 0, 1996, 1997, 5, 92, 0, 0, 1997, 1998, 5, 103, 0, 0, 1998, 1999, 5, 97, 0,
+ 0, 1999, 2000, 5, 109, 0, 0, 2000, 2001, 5, 109, 0, 0, 2001, 2341, 5, 97, 0, 0, 2002,
+ 2003, 5, 92, 0, 0, 2003, 2004, 5, 68, 0, 0, 2004, 2005, 5, 101, 0, 0, 2005, 2006, 5,
+ 108, 0, 0, 2006, 2007, 5, 116, 0, 0, 2007, 2341, 5, 97, 0, 0, 2008, 2009, 5, 92, 0,
+ 0, 2009, 2010, 5, 100, 0, 0, 2010, 2011, 5, 101, 0, 0, 2011, 2012, 5, 108, 0, 0, 2012,
+ 2013, 5, 116, 0, 0, 2013, 2341, 5, 97, 0, 0, 2014, 2015, 5, 92, 0, 0, 2015, 2016, 5,
+ 99, 0, 0, 2016, 2017, 5, 104, 0, 0, 2017, 2018, 5, 97, 0, 0, 2018, 2019, 5, 114, 0,
+ 0, 2019, 2020, 5, 34, 0, 0, 2020, 2021, 5, 48, 0, 0, 2021, 2022, 5, 48, 0, 0, 2022,
+ 2023, 5, 48, 0, 0, 2023, 2024, 5, 49, 0, 0, 2024, 2025, 5, 57, 0, 0, 2025, 2341, 5,
+ 48, 0, 0, 2026, 2027, 5, 92, 0, 0, 2027, 2028, 5, 101, 0, 0, 2028, 2029, 5, 112, 0,
+ 0, 2029, 2030, 5, 115, 0, 0, 2030, 2031, 5, 105, 0, 0, 2031, 2032, 5, 108, 0, 0, 2032,
+ 2033, 5, 111, 0, 0, 2033, 2341, 5, 110, 0, 0, 2034, 2035, 5, 92, 0, 0, 2035, 2036,
+ 5, 118, 0, 0, 2036, 2037, 5, 97, 0, 0, 2037, 2038, 5, 114, 0, 0, 2038, 2039, 5, 101,
+ 0, 0, 2039, 2040, 5, 112, 0, 0, 2040, 2041, 5, 115, 0, 0, 2041, 2042, 5, 105, 0, 0,
+ 2042, 2043, 5, 108, 0, 0, 2043, 2044, 5, 111, 0, 0, 2044, 2341, 5, 110, 0, 0, 2045,
+ 2046, 5, 92, 0, 0, 2046, 2047, 5, 99, 0, 0, 2047, 2048, 5, 104, 0, 0, 2048, 2049, 5,
+ 97, 0, 0, 2049, 2050, 5, 114, 0, 0, 2050, 2051, 5, 34, 0, 0, 2051, 2052, 5, 48, 0, 0,
+ 2052, 2053, 5, 48, 0, 0, 2053, 2054, 5, 48, 0, 0, 2054, 2055, 5, 51, 0, 0, 2055, 2056,
+ 5, 57, 0, 0, 2056, 2341, 5, 54, 0, 0, 2057, 2058, 5, 92, 0, 0, 2058, 2059, 5, 122, 0,
+ 0, 2059, 2060, 5, 101, 0, 0, 2060, 2061, 5, 116, 0, 0, 2061, 2341, 5, 97, 0, 0, 2062,
+ 2063, 5, 92, 0, 0, 2063, 2064, 5, 99, 0, 0, 2064, 2065, 5, 104, 0, 0, 2065, 2066, 5,
+ 97, 0, 0, 2066, 2067, 5, 114, 0, 0, 2067, 2068, 5, 34, 0, 0, 2068, 2069, 5, 48, 0, 0,
+ 2069, 2070, 5, 48, 0, 0, 2070, 2071, 5, 48, 0, 0, 2071, 2072, 5, 51, 0, 0, 2072, 2073,
+ 5, 57, 0, 0, 2073, 2341, 5, 55, 0, 0, 2074, 2075, 5, 92, 0, 0, 2075, 2076, 5, 101, 0,
+ 0, 2076, 2077, 5, 116, 0, 0, 2077, 2341, 5, 97, 0, 0, 2078, 2079, 5, 92, 0, 0, 2079,
+ 2080, 5, 84, 0, 0, 2080, 2081, 5, 104, 0, 0, 2081, 2082, 5, 101, 0, 0, 2082, 2083,
+ 5, 116, 0, 0, 2083, 2341, 5, 97, 0, 0, 2084, 2085, 5, 92, 0, 0, 2085, 2086, 5, 116,
+ 0, 0, 2086, 2087, 5, 104, 0, 0, 2087, 2088, 5, 101, 0, 0, 2088, 2089, 5, 116, 0, 0,
+ 2089, 2341, 5, 97, 0, 0, 2090, 2091, 5, 92, 0, 0, 2091, 2092, 5, 118, 0, 0, 2092, 2093,
+ 5, 97, 0, 0, 2093, 2094, 5, 114, 0, 0, 2094, 2095, 5, 116, 0, 0, 2095, 2096, 5, 104,
+ 0, 0, 2096, 2097, 5, 101, 0, 0, 2097, 2098, 5, 116, 0, 0, 2098, 2341, 5, 97, 0, 0, 2099,
+ 2100, 5, 92, 0, 0, 2100, 2101, 5, 99, 0, 0, 2101, 2102, 5, 104, 0, 0, 2102, 2103, 5,
+ 97, 0, 0, 2103, 2104, 5, 114, 0, 0, 2104, 2105, 5, 34, 0, 0, 2105, 2106, 5, 48, 0, 0,
+ 2106, 2107, 5, 48, 0, 0, 2107, 2108, 5, 48, 0, 0, 2108, 2109, 5, 51, 0, 0, 2109, 2110,
+ 5, 57, 0, 0, 2110, 2341, 5, 57, 0, 0, 2111, 2112, 5, 92, 0, 0, 2112, 2113, 5, 105, 0,
+ 0, 2113, 2114, 5, 111, 0, 0, 2114, 2115, 5, 116, 0, 0, 2115, 2341, 5, 97, 0, 0, 2116,
+ 2117, 5, 92, 0, 0, 2117, 2118, 5, 99, 0, 0, 2118, 2119, 5, 104, 0, 0, 2119, 2120, 5,
+ 97, 0, 0, 2120, 2121, 5, 114, 0, 0, 2121, 2122, 5, 34, 0, 0, 2122, 2123, 5, 48, 0, 0,
+ 2123, 2124, 5, 48, 0, 0, 2124, 2125, 5, 48, 0, 0, 2125, 2126, 5, 51, 0, 0, 2126, 2127,
+ 5, 57, 0, 0, 2127, 2341, 5, 65, 0, 0, 2128, 2129, 5, 92, 0, 0, 2129, 2130, 5, 107, 0,
+ 0, 2130, 2131, 5, 97, 0, 0, 2131, 2132, 5, 112, 0, 0, 2132, 2133, 5, 112, 0, 0, 2133,
+ 2341, 5, 97, 0, 0, 2134, 2135, 5, 92, 0, 0, 2135, 2136, 5, 76, 0, 0, 2136, 2137, 5,
+ 97, 0, 0, 2137, 2138, 5, 109, 0, 0, 2138, 2139, 5, 98, 0, 0, 2139, 2140, 5, 100, 0,
+ 0, 2140, 2341, 5, 97, 0, 0, 2141, 2142, 5, 92, 0, 0, 2142, 2143, 5, 108, 0, 0, 2143,
+ 2144, 5, 97, 0, 0, 2144, 2145, 5, 109, 0, 0, 2145, 2146, 5, 98, 0, 0, 2146, 2147, 5,
+ 100, 0, 0, 2147, 2341, 5, 97, 0, 0, 2148, 2149, 5, 92, 0, 0, 2149, 2150, 5, 99, 0, 0,
+ 2150, 2151, 5, 104, 0, 0, 2151, 2152, 5, 97, 0, 0, 2152, 2153, 5, 114, 0, 0, 2153,
+ 2154, 5, 34, 0, 0, 2154, 2155, 5, 48, 0, 0, 2155, 2156, 5, 48, 0, 0, 2156, 2157, 5,
+ 48, 0, 0, 2157, 2158, 5, 51, 0, 0, 2158, 2159, 5, 57, 0, 0, 2159, 2341, 5, 67, 0, 0,
+ 2160, 2161, 5, 92, 0, 0, 2161, 2162, 5, 109, 0, 0, 2162, 2341, 5, 117, 0, 0, 2163,
+ 2164, 5, 92, 0, 0, 2164, 2165, 5, 99, 0, 0, 2165, 2166, 5, 104, 0, 0, 2166, 2167, 5,
+ 97, 0, 0, 2167, 2168, 5, 114, 0, 0, 2168, 2169, 5, 34, 0, 0, 2169, 2170, 5, 48, 0, 0,
+ 2170, 2171, 5, 48, 0, 0, 2171, 2172, 5, 48, 0, 0, 2172, 2173, 5, 51, 0, 0, 2173, 2174,
+ 5, 57, 0, 0, 2174, 2341, 5, 68, 0, 0, 2175, 2176, 5, 92, 0, 0, 2176, 2177, 5, 110, 0,
+ 0, 2177, 2341, 5, 117, 0, 0, 2178, 2179, 5, 92, 0, 0, 2179, 2180, 5, 88, 0, 0, 2180,
+ 2341, 5, 105, 0, 0, 2181, 2182, 5, 92, 0, 0, 2182, 2183, 5, 120, 0, 0, 2183, 2341,
+ 5, 105, 0, 0, 2184, 2185, 5, 92, 0, 0, 2185, 2186, 5, 99, 0, 0, 2186, 2187, 5, 104,
+ 0, 0, 2187, 2188, 5, 97, 0, 0, 2188, 2189, 5, 114, 0, 0, 2189, 2190, 5, 34, 0, 0, 2190,
+ 2191, 5, 48, 0, 0, 2191, 2192, 5, 48, 0, 0, 2192, 2193, 5, 48, 0, 0, 2193, 2194, 5,
+ 51, 0, 0, 2194, 2195, 5, 57, 0, 0, 2195, 2341, 5, 70, 0, 0, 2196, 2197, 5, 92, 0, 0,
+ 2197, 2198, 5, 111, 0, 0, 2198, 2199, 5, 109, 0, 0, 2199, 2200, 5, 105, 0, 0, 2200,
+ 2201, 5, 99, 0, 0, 2201, 2202, 5, 114, 0, 0, 2202, 2203, 5, 111, 0, 0, 2203, 2341,
+ 5, 110, 0, 0, 2204, 2205, 5, 92, 0, 0, 2205, 2206, 5, 80, 0, 0, 2206, 2341, 5, 105,
+ 0, 0, 2207, 2208, 5, 92, 0, 0, 2208, 2209, 5, 118, 0, 0, 2209, 2210, 5, 97, 0, 0, 2210,
+ 2211, 5, 114, 0, 0, 2211, 2212, 5, 112, 0, 0, 2212, 2341, 5, 105, 0, 0, 2213, 2214,
+ 5, 92, 0, 0, 2214, 2215, 5, 99, 0, 0, 2215, 2216, 5, 104, 0, 0, 2216, 2217, 5, 97, 0,
+ 0, 2217, 2218, 5, 114, 0, 0, 2218, 2219, 5, 34, 0, 0, 2219, 2220, 5, 48, 0, 0, 2220,
+ 2221, 5, 48, 0, 0, 2221, 2222, 5, 48, 0, 0, 2222, 2223, 5, 51, 0, 0, 2223, 2224, 5,
+ 65, 0, 0, 2224, 2341, 5, 49, 0, 0, 2225, 2226, 5, 92, 0, 0, 2226, 2227, 5, 114, 0, 0,
+ 2227, 2228, 5, 104, 0, 0, 2228, 2341, 5, 111, 0, 0, 2229, 2230, 5, 92, 0, 0, 2230,
+ 2231, 5, 118, 0, 0, 2231, 2232, 5, 97, 0, 0, 2232, 2233, 5, 114, 0, 0, 2233, 2234,
+ 5, 114, 0, 0, 2234, 2235, 5, 104, 0, 0, 2235, 2341, 5, 111, 0, 0, 2236, 2237, 5, 92,
+ 0, 0, 2237, 2238, 5, 83, 0, 0, 2238, 2239, 5, 105, 0, 0, 2239, 2240, 5, 103, 0, 0, 2240,
+ 2241, 5, 109, 0, 0, 2241, 2341, 5, 97, 0, 0, 2242, 2243, 5, 92, 0, 0, 2243, 2244, 5,
+ 115, 0, 0, 2244, 2245, 5, 105, 0, 0, 2245, 2246, 5, 103, 0, 0, 2246, 2247, 5, 109,
+ 0, 0, 2247, 2341, 5, 97, 0, 0, 2248, 2249, 5, 92, 0, 0, 2249, 2250, 5, 118, 0, 0, 2250,
+ 2251, 5, 97, 0, 0, 2251, 2252, 5, 114, 0, 0, 2252, 2253, 5, 115, 0, 0, 2253, 2254,
+ 5, 105, 0, 0, 2254, 2255, 5, 103, 0, 0, 2255, 2256, 5, 109, 0, 0, 2256, 2341, 5, 97,
+ 0, 0, 2257, 2258, 5, 92, 0, 0, 2258, 2259, 5, 99, 0, 0, 2259, 2260, 5, 104, 0, 0, 2260,
+ 2261, 5, 97, 0, 0, 2261, 2262, 5, 114, 0, 0, 2262, 2263, 5, 34, 0, 0, 2263, 2264, 5,
+ 48, 0, 0, 2264, 2265, 5, 48, 0, 0, 2265, 2266, 5, 48, 0, 0, 2266, 2267, 5, 51, 0, 0,
+ 2267, 2268, 5, 65, 0, 0, 2268, 2341, 5, 52, 0, 0, 2269, 2270, 5, 92, 0, 0, 2270, 2271,
+ 5, 116, 0, 0, 2271, 2272, 5, 97, 0, 0, 2272, 2341, 5, 117, 0, 0, 2273, 2274, 5, 92,
+ 0, 0, 2274, 2275, 5, 85, 0, 0, 2275, 2276, 5, 112, 0, 0, 2276, 2277, 5, 115, 0, 0, 2277,
+ 2278, 5, 105, 0, 0, 2278, 2279, 5, 108, 0, 0, 2279, 2280, 5, 111, 0, 0, 2280, 2341,
+ 5, 110, 0, 0, 2281, 2282, 5, 92, 0, 0, 2282, 2283, 5, 117, 0, 0, 2283, 2284, 5, 112,
+ 0, 0, 2284, 2285, 5, 115, 0, 0, 2285, 2286, 5, 105, 0, 0, 2286, 2287, 5, 108, 0, 0,
+ 2287, 2288, 5, 111, 0, 0, 2288, 2341, 5, 110, 0, 0, 2289, 2290, 5, 92, 0, 0, 2290,
+ 2291, 5, 80, 0, 0, 2291, 2292, 5, 104, 0, 0, 2292, 2341, 5, 105, 0, 0, 2293, 2294,
+ 5, 92, 0, 0, 2294, 2295, 5, 112, 0, 0, 2295, 2296, 5, 104, 0, 0, 2296, 2341, 5, 105,
+ 0, 0, 2297, 2298, 5, 92, 0, 0, 2298, 2299, 5, 118, 0, 0, 2299, 2300, 5, 97, 0, 0, 2300,
+ 2301, 5, 114, 0, 0, 2301, 2302, 5, 112, 0, 0, 2302, 2303, 5, 104, 0, 0, 2303, 2341,
+ 5, 105, 0, 0, 2304, 2305, 5, 92, 0, 0, 2305, 2306, 5, 99, 0, 0, 2306, 2307, 5, 104,
+ 0, 0, 2307, 2308, 5, 97, 0, 0, 2308, 2309, 5, 114, 0, 0, 2309, 2310, 5, 34, 0, 0, 2310,
+ 2311, 5, 48, 0, 0, 2311, 2312, 5, 48, 0, 0, 2312, 2313, 5, 48, 0, 0, 2313, 2314, 5,
+ 51, 0, 0, 2314, 2315, 5, 65, 0, 0, 2315, 2341, 5, 55, 0, 0, 2316, 2317, 5, 92, 0, 0,
+ 2317, 2318, 5, 99, 0, 0, 2318, 2319, 5, 104, 0, 0, 2319, 2341, 5, 105, 0, 0, 2320,
+ 2321, 5, 92, 0, 0, 2321, 2322, 5, 80, 0, 0, 2322, 2323, 5, 115, 0, 0, 2323, 2341, 5,
+ 105, 0, 0, 2324, 2325, 5, 92, 0, 0, 2325, 2326, 5, 112, 0, 0, 2326, 2327, 5, 115, 0,
+ 0, 2327, 2341, 5, 105, 0, 0, 2328, 2329, 5, 92, 0, 0, 2329, 2330, 5, 79, 0, 0, 2330,
+ 2331, 5, 109, 0, 0, 2331, 2332, 5, 101, 0, 0, 2332, 2333, 5, 103, 0, 0, 2333, 2341,
+ 5, 97, 0, 0, 2334, 2335, 5, 92, 0, 0, 2335, 2336, 5, 111, 0, 0, 2336, 2337, 5, 109,
+ 0, 0, 2337, 2338, 5, 101, 0, 0, 2338, 2339, 5, 103, 0, 0, 2339, 2341, 5, 97, 0, 0, 2340,
+ 1955, 1, 0, 0, 0, 2340, 1967, 1, 0, 0, 0, 2340, 1973, 1, 0, 0, 0, 2340, 1985, 1, 0, 0,
+ 0, 2340, 1990, 1, 0, 0, 0, 2340, 1996, 1, 0, 0, 0, 2340, 2002, 1, 0, 0, 0, 2340, 2008,
+ 1, 0, 0, 0, 2340, 2014, 1, 0, 0, 0, 2340, 2026, 1, 0, 0, 0, 2340, 2034, 1, 0, 0, 0, 2340,
+ 2045, 1, 0, 0, 0, 2340, 2057, 1, 0, 0, 0, 2340, 2062, 1, 0, 0, 0, 2340, 2074, 1, 0, 0,
+ 0, 2340, 2078, 1, 0, 0, 0, 2340, 2084, 1, 0, 0, 0, 2340, 2090, 1, 0, 0, 0, 2340, 2099,
+ 1, 0, 0, 0, 2340, 2111, 1, 0, 0, 0, 2340, 2116, 1, 0, 0, 0, 2340, 2128, 1, 0, 0, 0, 2340,
+ 2134, 1, 0, 0, 0, 2340, 2141, 1, 0, 0, 0, 2340, 2148, 1, 0, 0, 0, 2340, 2160, 1, 0, 0,
+ 0, 2340, 2163, 1, 0, 0, 0, 2340, 2175, 1, 0, 0, 0, 2340, 2178, 1, 0, 0, 0, 2340, 2181,
+ 1, 0, 0, 0, 2340, 2184, 1, 0, 0, 0, 2340, 2196, 1, 0, 0, 0, 2340, 2204, 1, 0, 0, 0, 2340,
+ 2207, 1, 0, 0, 0, 2340, 2213, 1, 0, 0, 0, 2340, 2225, 1, 0, 0, 0, 2340, 2229, 1, 0, 0,
+ 0, 2340, 2236, 1, 0, 0, 0, 2340, 2242, 1, 0, 0, 0, 2340, 2248, 1, 0, 0, 0, 2340, 2257,
+ 1, 0, 0, 0, 2340, 2269, 1, 0, 0, 0, 2340, 2273, 1, 0, 0, 0, 2340, 2281, 1, 0, 0, 0, 2340,
+ 2289, 1, 0, 0, 0, 2340, 2293, 1, 0, 0, 0, 2340, 2297, 1, 0, 0, 0, 2340, 2304, 1, 0, 0,
+ 0, 2340, 2316, 1, 0, 0, 0, 2340, 2320, 1, 0, 0, 0, 2340, 2324, 1, 0, 0, 0, 2340, 2328,
+ 1, 0, 0, 0, 2340, 2334, 1, 0, 0, 0, 2341, 390, 1, 0, 0, 0, 2342, 2344, 3, 389, 194, 0,
+ 2343, 2345, 7, 4, 0, 0, 2344, 2343, 1, 0, 0, 0, 2344, 2345, 1, 0, 0, 0, 2345, 392, 1,
+ 0, 0, 0, 2346, 2347, 5, 92, 0, 0, 2347, 2348, 5, 66, 0, 0, 2348, 2349, 5, 98, 0, 0, 2349,
+ 2350, 5, 98, 0, 0, 2350, 2697, 5, 107, 0, 0, 2351, 2352, 5, 92, 0, 0, 2352, 2353, 5,
+ 119, 0, 0, 2353, 2697, 5, 112, 0, 0, 2354, 2355, 5, 92, 0, 0, 2355, 2356, 5, 110, 0,
+ 0, 2356, 2357, 5, 97, 0, 0, 2357, 2358, 5, 98, 0, 0, 2358, 2359, 5, 108, 0, 0, 2359,
+ 2697, 5, 97, 0, 0, 2360, 2361, 5, 92, 0, 0, 2361, 2362, 5, 98, 0, 0, 2362, 2363, 5,
+ 105, 0, 0, 2363, 2364, 5, 103, 0, 0, 2364, 2365, 5, 115, 0, 0, 2365, 2366, 5, 116,
+ 0, 0, 2366, 2367, 5, 97, 0, 0, 2367, 2697, 5, 114, 0, 0, 2368, 2369, 5, 92, 0, 0, 2369,
+ 2370, 5, 97, 0, 0, 2370, 2371, 5, 110, 0, 0, 2371, 2372, 5, 103, 0, 0, 2372, 2373,
+ 5, 108, 0, 0, 2373, 2697, 5, 101, 0, 0, 2374, 2375, 5, 92, 0, 0, 2375, 2376, 5, 110,
+ 0, 0, 2376, 2377, 5, 101, 0, 0, 2377, 2378, 5, 120, 0, 0, 2378, 2379, 5, 105, 0, 0,
+ 2379, 2380, 5, 115, 0, 0, 2380, 2381, 5, 116, 0, 0, 2381, 2697, 5, 115, 0, 0, 2382,
+ 2383, 5, 92, 0, 0, 2383, 2384, 5, 100, 0, 0, 2384, 2385, 5, 105, 0, 0, 2385, 2386,
+ 5, 97, 0, 0, 2386, 2387, 5, 103, 0, 0, 2387, 2388, 5, 100, 0, 0, 2388, 2389, 5, 111,
+ 0, 0, 2389, 2390, 5, 119, 0, 0, 2390, 2697, 5, 110, 0, 0, 2391, 2392, 5, 92, 0, 0, 2392,
+ 2393, 5, 109, 0, 0, 2393, 2394, 5, 101, 0, 0, 2394, 2395, 5, 97, 0, 0, 2395, 2396,
+ 5, 115, 0, 0, 2396, 2397, 5, 117, 0, 0, 2397, 2398, 5, 114, 0, 0, 2398, 2399, 5, 101,
+ 0, 0, 2399, 2400, 5, 100, 0, 0, 2400, 2401, 5, 97, 0, 0, 2401, 2402, 5, 110, 0, 0, 2402,
+ 2403, 5, 103, 0, 0, 2403, 2404, 5, 108, 0, 0, 2404, 2697, 5, 101, 0, 0, 2405, 2406,
+ 5, 92, 0, 0, 2406, 2407, 5, 101, 0, 0, 2407, 2408, 5, 116, 0, 0, 2408, 2697, 5, 104,
+ 0, 0, 2409, 2410, 5, 92, 0, 0, 2410, 2411, 5, 101, 0, 0, 2411, 2412, 5, 109, 0, 0, 2412,
+ 2413, 5, 112, 0, 0, 2413, 2414, 5, 116, 0, 0, 2414, 2415, 5, 121, 0, 0, 2415, 2416,
+ 5, 115, 0, 0, 2416, 2417, 5, 101, 0, 0, 2417, 2697, 5, 116, 0, 0, 2418, 2419, 5, 92,
+ 0, 0, 2419, 2420, 5, 100, 0, 0, 2420, 2421, 5, 105, 0, 0, 2421, 2422, 5, 97, 0, 0, 2422,
+ 2423, 5, 103, 0, 0, 2423, 2424, 5, 117, 0, 0, 2424, 2697, 5, 112, 0, 0, 2425, 2426,
+ 5, 92, 0, 0, 2426, 2427, 5, 115, 0, 0, 2427, 2428, 5, 112, 0, 0, 2428, 2429, 5, 104,
+ 0, 0, 2429, 2430, 5, 101, 0, 0, 2430, 2431, 5, 114, 0, 0, 2431, 2432, 5, 105, 0, 0,
+ 2432, 2433, 5, 99, 0, 0, 2433, 2434, 5, 97, 0, 0, 2434, 2435, 5, 108, 0, 0, 2435, 2436,
+ 5, 97, 0, 0, 2436, 2437, 5, 110, 0, 0, 2437, 2438, 5, 103, 0, 0, 2438, 2439, 5, 108,
+ 0, 0, 2439, 2697, 5, 101, 0, 0, 2440, 2441, 5, 92, 0, 0, 2441, 2442, 5, 99, 0, 0, 2442,
+ 2443, 5, 108, 0, 0, 2443, 2444, 5, 117, 0, 0, 2444, 2445, 5, 98, 0, 0, 2445, 2446,
+ 5, 115, 0, 0, 2446, 2447, 5, 117, 0, 0, 2447, 2448, 5, 105, 0, 0, 2448, 2697, 5, 116,
+ 0, 0, 2449, 2450, 5, 92, 0, 0, 2450, 2451, 5, 118, 0, 0, 2451, 2452, 5, 97, 0, 0, 2452,
+ 2453, 5, 114, 0, 0, 2453, 2454, 5, 110, 0, 0, 2454, 2455, 5, 111, 0, 0, 2455, 2456,
+ 5, 116, 0, 0, 2456, 2457, 5, 104, 0, 0, 2457, 2458, 5, 105, 0, 0, 2458, 2459, 5, 110,
+ 0, 0, 2459, 2697, 5, 103, 0, 0, 2460, 2461, 5, 92, 0, 0, 2461, 2462, 5, 68, 0, 0, 2462,
+ 2463, 5, 105, 0, 0, 2463, 2464, 5, 97, 0, 0, 2464, 2465, 5, 109, 0, 0, 2465, 2466,
+ 5, 111, 0, 0, 2466, 2467, 5, 110, 0, 0, 2467, 2697, 5, 100, 0, 0, 2468, 2469, 5, 92,
+ 0, 0, 2469, 2470, 5, 99, 0, 0, 2470, 2471, 5, 111, 0, 0, 2471, 2472, 5, 109, 0, 0, 2472,
+ 2473, 5, 112, 0, 0, 2473, 2474, 5, 108, 0, 0, 2474, 2475, 5, 101, 0, 0, 2475, 2476,
+ 5, 109, 0, 0, 2476, 2477, 5, 101, 0, 0, 2477, 2478, 5, 110, 0, 0, 2478, 2697, 5, 116,
+ 0, 0, 2479, 2480, 5, 92, 0, 0, 2480, 2481, 5, 100, 0, 0, 2481, 2482, 5, 105, 0, 0, 2482,
+ 2483, 5, 97, 0, 0, 2483, 2484, 5, 109, 0, 0, 2484, 2485, 5, 111, 0, 0, 2485, 2486,
+ 5, 110, 0, 0, 2486, 2487, 5, 100, 0, 0, 2487, 2488, 5, 115, 0, 0, 2488, 2489, 5, 117,
+ 0, 0, 2489, 2490, 5, 105, 0, 0, 2490, 2697, 5, 116, 0, 0, 2491, 2492, 5, 92, 0, 0, 2492,
+ 2493, 5, 105, 0, 0, 2493, 2494, 5, 109, 0, 0, 2494, 2495, 5, 97, 0, 0, 2495, 2496,
+ 5, 116, 0, 0, 2496, 2697, 5, 104, 0, 0, 2497, 2498, 5, 92, 0, 0, 2498, 2499, 5, 70,
+ 0, 0, 2499, 2500, 5, 105, 0, 0, 2500, 2501, 5, 110, 0, 0, 2501, 2697, 5, 118, 0, 0,
+ 2502, 2503, 5, 92, 0, 0, 2503, 2504, 5, 116, 0, 0, 2504, 2505, 5, 114, 0, 0, 2505,
+ 2506, 5, 105, 0, 0, 2506, 2507, 5, 97, 0, 0, 2507, 2508, 5, 110, 0, 0, 2508, 2509,
+ 5, 103, 0, 0, 2509, 2510, 5, 108, 0, 0, 2510, 2511, 5, 101, 0, 0, 2511, 2512, 5, 100,
+ 0, 0, 2512, 2513, 5, 111, 0, 0, 2513, 2514, 5, 119, 0, 0, 2514, 2697, 5, 110, 0, 0,
+ 2515, 2516, 5, 92, 0, 0, 2516, 2517, 5, 104, 0, 0, 2517, 2518, 5, 101, 0, 0, 2518,
+ 2519, 5, 97, 0, 0, 2519, 2520, 5, 114, 0, 0, 2520, 2521, 5, 116, 0, 0, 2521, 2522,
+ 5, 115, 0, 0, 2522, 2523, 5, 117, 0, 0, 2523, 2524, 5, 105, 0, 0, 2524, 2697, 5, 116,
+ 0, 0, 2525, 2526, 5, 92, 0, 0, 2526, 2527, 5, 106, 0, 0, 2527, 2528, 5, 109, 0, 0, 2528,
+ 2529, 5, 97, 0, 0, 2529, 2530, 5, 116, 0, 0, 2530, 2697, 5, 104, 0, 0, 2531, 2532,
+ 5, 92, 0, 0, 2532, 2533, 5, 71, 0, 0, 2533, 2534, 5, 97, 0, 0, 2534, 2535, 5, 109, 0,
+ 0, 2535, 2697, 5, 101, 0, 0, 2536, 2537, 5, 92, 0, 0, 2537, 2538, 5, 116, 0, 0, 2538,
+ 2539, 5, 114, 0, 0, 2539, 2540, 5, 105, 0, 0, 2540, 2541, 5, 97, 0, 0, 2541, 2542,
+ 5, 110, 0, 0, 2542, 2543, 5, 103, 0, 0, 2543, 2544, 5, 108, 0, 0, 2544, 2697, 5, 101,
+ 0, 0, 2545, 2546, 5, 92, 0, 0, 2546, 2547, 5, 115, 0, 0, 2547, 2548, 5, 112, 0, 0, 2548,
+ 2549, 5, 97, 0, 0, 2549, 2550, 5, 100, 0, 0, 2550, 2551, 5, 101, 0, 0, 2551, 2552,
+ 5, 115, 0, 0, 2552, 2553, 5, 117, 0, 0, 2553, 2554, 5, 105, 0, 0, 2554, 2697, 5, 116,
+ 0, 0, 2555, 2556, 5, 92, 0, 0, 2556, 2557, 5, 101, 0, 0, 2557, 2558, 5, 108, 0, 0, 2558,
+ 2697, 5, 108, 0, 0, 2559, 2560, 5, 92, 0, 0, 2560, 2561, 5, 104, 0, 0, 2561, 2562,
+ 5, 98, 0, 0, 2562, 2563, 5, 97, 0, 0, 2563, 2697, 5, 114, 0, 0, 2564, 2565, 5, 92, 0,
+ 0, 2565, 2566, 5, 118, 0, 0, 2566, 2567, 5, 97, 0, 0, 2567, 2568, 5, 114, 0, 0, 2568,
+ 2569, 5, 116, 0, 0, 2569, 2570, 5, 114, 0, 0, 2570, 2571, 5, 105, 0, 0, 2571, 2572,
+ 5, 97, 0, 0, 2572, 2573, 5, 110, 0, 0, 2573, 2574, 5, 103, 0, 0, 2574, 2575, 5, 108,
+ 0, 0, 2575, 2697, 5, 101, 0, 0, 2576, 2577, 5, 92, 0, 0, 2577, 2578, 5, 104, 0, 0, 2578,
+ 2579, 5, 115, 0, 0, 2579, 2580, 5, 108, 0, 0, 2580, 2581, 5, 97, 0, 0, 2581, 2582,
+ 5, 115, 0, 0, 2582, 2697, 5, 104, 0, 0, 2583, 2584, 5, 92, 0, 0, 2584, 2585, 5, 98,
+ 0, 0, 2585, 2586, 5, 108, 0, 0, 2586, 2587, 5, 97, 0, 0, 2587, 2588, 5, 99, 0, 0, 2588,
+ 2589, 5, 107, 0, 0, 2589, 2590, 5, 108, 0, 0, 2590, 2591, 5, 111, 0, 0, 2591, 2592,
+ 5, 122, 0, 0, 2592, 2593, 5, 101, 0, 0, 2593, 2594, 5, 110, 0, 0, 2594, 2595, 5, 103,
+ 0, 0, 2595, 2697, 5, 101, 0, 0, 2596, 2597, 5, 92, 0, 0, 2597, 2598, 5, 108, 0, 0, 2598,
+ 2599, 5, 111, 0, 0, 2599, 2600, 5, 122, 0, 0, 2600, 2601, 5, 101, 0, 0, 2601, 2602,
+ 5, 110, 0, 0, 2602, 2603, 5, 103, 0, 0, 2603, 2697, 5, 101, 0, 0, 2604, 2605, 5, 92,
+ 0, 0, 2605, 2606, 5, 98, 0, 0, 2606, 2607, 5, 108, 0, 0, 2607, 2608, 5, 97, 0, 0, 2608,
+ 2609, 5, 99, 0, 0, 2609, 2610, 5, 107, 0, 0, 2610, 2611, 5, 115, 0, 0, 2611, 2612,
+ 5, 113, 0, 0, 2612, 2613, 5, 117, 0, 0, 2613, 2614, 5, 97, 0, 0, 2614, 2615, 5, 114,
+ 0, 0, 2615, 2697, 5, 101, 0, 0, 2616, 2617, 5, 92, 0, 0, 2617, 2618, 5, 109, 0, 0, 2618,
+ 2619, 5, 104, 0, 0, 2619, 2697, 5, 111, 0, 0, 2620, 2621, 5, 92, 0, 0, 2621, 2622,
+ 5, 98, 0, 0, 2622, 2623, 5, 108, 0, 0, 2623, 2624, 5, 97, 0, 0, 2624, 2625, 5, 99, 0,
+ 0, 2625, 2626, 5, 107, 0, 0, 2626, 2627, 5, 116, 0, 0, 2627, 2628, 5, 114, 0, 0, 2628,
+ 2629, 5, 105, 0, 0, 2629, 2630, 5, 97, 0, 0, 2630, 2631, 5, 110, 0, 0, 2631, 2632,
+ 5, 103, 0, 0, 2632, 2633, 5, 108, 0, 0, 2633, 2697, 5, 101, 0, 0, 2634, 2635, 5, 92,
+ 0, 0, 2635, 2636, 5, 115, 0, 0, 2636, 2637, 5, 104, 0, 0, 2637, 2638, 5, 97, 0, 0, 2638,
+ 2639, 5, 114, 0, 0, 2639, 2697, 5, 112, 0, 0, 2640, 2641, 5, 92, 0, 0, 2641, 2642,
+ 5, 112, 0, 0, 2642, 2643, 5, 114, 0, 0, 2643, 2644, 5, 105, 0, 0, 2644, 2645, 5, 109,
+ 0, 0, 2645, 2697, 5, 101, 0, 0, 2646, 2647, 5, 92, 0, 0, 2647, 2648, 5, 73, 0, 0, 2648,
+ 2697, 5, 109, 0, 0, 2649, 2650, 5, 92, 0, 0, 2650, 2651, 5, 102, 0, 0, 2651, 2652,
+ 5, 108, 0, 0, 2652, 2653, 5, 97, 0, 0, 2653, 2697, 5, 116, 0, 0, 2654, 2655, 5, 92,
+ 0, 0, 2655, 2656, 5, 115, 0, 0, 2656, 2657, 5, 113, 0, 0, 2657, 2658, 5, 117, 0, 0,
+ 2658, 2659, 5, 97, 0, 0, 2659, 2660, 5, 114, 0, 0, 2660, 2697, 5, 101, 0, 0, 2661,
+ 2662, 5, 92, 0, 0, 2662, 2663, 5, 98, 0, 0, 2663, 2664, 5, 97, 0, 0, 2664, 2665, 5,
+ 99, 0, 0, 2665, 2666, 5, 107, 0, 0, 2666, 2667, 5, 112, 0, 0, 2667, 2668, 5, 114, 0,
+ 0, 2668, 2669, 5, 105, 0, 0, 2669, 2670, 5, 109, 0, 0, 2670, 2697, 5, 101, 0, 0, 2671,
+ 2672, 5, 92, 0, 0, 2672, 2673, 5, 82, 0, 0, 2673, 2697, 5, 101, 0, 0, 2674, 2675, 5,
+ 92, 0, 0, 2675, 2676, 5, 110, 0, 0, 2676, 2677, 5, 97, 0, 0, 2677, 2678, 5, 116, 0,
+ 0, 2678, 2679, 5, 117, 0, 0, 2679, 2680, 5, 114, 0, 0, 2680, 2681, 5, 97, 0, 0, 2681,
+ 2697, 5, 108, 0, 0, 2682, 2683, 5, 92, 0, 0, 2683, 2684, 5, 115, 0, 0, 2684, 2685,
+ 5, 117, 0, 0, 2685, 2686, 5, 114, 0, 0, 2686, 2697, 5, 100, 0, 0, 2687, 2688, 5, 92,
+ 0, 0, 2688, 2689, 5, 99, 0, 0, 2689, 2690, 5, 105, 0, 0, 2690, 2691, 5, 114, 0, 0, 2691,
+ 2692, 5, 99, 0, 0, 2692, 2693, 5, 108, 0, 0, 2693, 2694, 5, 101, 0, 0, 2694, 2695,
+ 5, 100, 0, 0, 2695, 2697, 5, 83, 0, 0, 2696, 2346, 1, 0, 0, 0, 2696, 2351, 1, 0, 0, 0,
+ 2696, 2354, 1, 0, 0, 0, 2696, 2360, 1, 0, 0, 0, 2696, 2368, 1, 0, 0, 0, 2696, 2374,
+ 1, 0, 0, 0, 2696, 2382, 1, 0, 0, 0, 2696, 2391, 1, 0, 0, 0, 2696, 2405, 1, 0, 0, 0, 2696,
+ 2409, 1, 0, 0, 0, 2696, 2418, 1, 0, 0, 0, 2696, 2425, 1, 0, 0, 0, 2696, 2440, 1, 0, 0,
+ 0, 2696, 2449, 1, 0, 0, 0, 2696, 2460, 1, 0, 0, 0, 2696, 2468, 1, 0, 0, 0, 2696, 2479,
+ 1, 0, 0, 0, 2696, 2491, 1, 0, 0, 0, 2696, 2497, 1, 0, 0, 0, 2696, 2502, 1, 0, 0, 0, 2696,
+ 2515, 1, 0, 0, 0, 2696, 2525, 1, 0, 0, 0, 2696, 2531, 1, 0, 0, 0, 2696, 2536, 1, 0, 0,
+ 0, 2696, 2545, 1, 0, 0, 0, 2696, 2555, 1, 0, 0, 0, 2696, 2559, 1, 0, 0, 0, 2696, 2564,
+ 1, 0, 0, 0, 2696, 2576, 1, 0, 0, 0, 2696, 2583, 1, 0, 0, 0, 2696, 2596, 1, 0, 0, 0, 2696,
+ 2604, 1, 0, 0, 0, 2696, 2616, 1, 0, 0, 0, 2696, 2620, 1, 0, 0, 0, 2696, 2634, 1, 0, 0,
+ 0, 2696, 2640, 1, 0, 0, 0, 2696, 2646, 1, 0, 0, 0, 2696, 2649, 1, 0, 0, 0, 2696, 2654,
+ 1, 0, 0, 0, 2696, 2661, 1, 0, 0, 0, 2696, 2671, 1, 0, 0, 0, 2696, 2674, 1, 0, 0, 0, 2696,
+ 2682, 1, 0, 0, 0, 2696, 2687, 1, 0, 0, 0, 2697, 394, 1, 0, 0, 0, 2698, 2700, 3, 393,
+ 196, 0, 2699, 2701, 7, 4, 0, 0, 2700, 2699, 1, 0, 0, 0, 2700, 2701, 1, 0, 0, 0, 2701,
+ 396, 1, 0, 0, 0, 2702, 2703, 5, 92, 0, 0, 2703, 2704, 5, 112, 0, 0, 2704, 2705, 5, 105,
+ 0, 0, 2705, 398, 1, 0, 0, 0, 2706, 2707, 5, 92, 0, 0, 2707, 2708, 5, 105, 0, 0, 2708,
+ 2709, 5, 110, 0, 0, 2709, 2710, 5, 102, 0, 0, 2710, 2711, 5, 116, 0, 0, 2711, 2712,
+ 5, 121, 0, 0, 2712, 400, 1, 0, 0, 0, 2713, 2714, 5, 92, 0, 0, 2714, 2715, 5, 112, 0,
+ 0, 2715, 2716, 5, 97, 0, 0, 2716, 2717, 5, 114, 0, 0, 2717, 2718, 5, 116, 0, 0, 2718,
+ 2719, 5, 105, 0, 0, 2719, 2720, 5, 97, 0, 0, 2720, 2721, 5, 108, 0, 0, 2721, 402, 1,
+ 0, 0, 0, 2722, 2730, 3, 399, 199, 0, 2723, 2724, 3, 91, 45, 0, 2724, 2725, 3, 399,
+ 199, 0, 2725, 2730, 1, 0, 0, 0, 2726, 2727, 3, 399, 199, 0, 2727, 2728, 3, 385, 192,
+ 0, 2728, 2730, 1, 0, 0, 0, 2729, 2722, 1, 0, 0, 0, 2729, 2723, 1, 0, 0, 0, 2729, 2726,
+ 1, 0, 0, 0, 2730, 404, 1, 0, 0, 0, 2731, 2732, 5, 92, 0, 0, 2732, 2733, 5, 101, 0, 0,
+ 2733, 2734, 5, 109, 0, 0, 2734, 2735, 5, 112, 0, 0, 2735, 2736, 5, 116, 0, 0, 2736,
+ 2737, 5, 121, 0, 0, 2737, 2738, 5, 115, 0, 0, 2738, 2739, 5, 101, 0, 0, 2739, 2740,
+ 5, 116, 0, 0, 2740, 406, 1, 0, 0, 0, 2741, 2746, 3, 397, 198, 0, 2742, 2746, 3, 401,
+ 200, 0, 2743, 2746, 3, 403, 201, 0, 2744, 2746, 3, 405, 202, 0, 2745, 2741, 1, 0,
+ 0, 0, 2745, 2742, 1, 0, 0, 0, 2745, 2743, 1, 0, 0, 0, 2745, 2744, 1, 0, 0, 0, 2746, 408,
+ 1, 0, 0, 0, 2747, 2748, 5, 92, 0, 0, 2748, 2749, 5, 118, 0, 0, 2749, 2750, 5, 97, 0,
+ 0, 2750, 2751, 5, 114, 0, 0, 2751, 2752, 5, 105, 0, 0, 2752, 2753, 5, 97, 0, 0, 2753,
+ 2754, 5, 98, 0, 0, 2754, 2755, 5, 108, 0, 0, 2755, 2756, 5, 101, 0, 0, 2756, 410, 1,
+ 0, 0, 0, 2757, 2762, 3, 391, 195, 0, 2758, 2762, 3, 395, 197, 0, 2759, 2762, 3, 355,
+ 177, 0, 2760, 2762, 3, 357, 178, 0, 2761, 2757, 1, 0, 0, 0, 2761, 2758, 1, 0, 0, 0,
+ 2761, 2759, 1, 0, 0, 0, 2761, 2760, 1, 0, 0, 0, 2762, 2763, 1, 0, 0, 0, 2763, 2761,
+ 1, 0, 0, 0, 2763, 2764, 1, 0, 0, 0, 2764, 2786, 1, 0, 0, 0, 2765, 2784, 3, 333, 166,
+ 0, 2766, 2772, 3, 109, 54, 0, 2767, 2773, 3, 391, 195, 0, 2768, 2773, 3, 395, 197,
+ 0, 2769, 2773, 3, 355, 177, 0, 2770, 2773, 3, 357, 178, 0, 2771, 2773, 3, 341, 170,
+ 0, 2772, 2767, 1, 0, 0, 0, 2772, 2768, 1, 0, 0, 0, 2772, 2769, 1, 0, 0, 0, 2772, 2770,
+ 1, 0, 0, 0, 2772, 2771, 1, 0, 0, 0, 2773, 2774, 1, 0, 0, 0, 2774, 2772, 1, 0, 0, 0, 2774,
+ 2775, 1, 0, 0, 0, 2775, 2776, 1, 0, 0, 0, 2776, 2777, 3, 111, 55, 0, 2777, 2785, 1,
+ 0, 0, 0, 2778, 2783, 3, 391, 195, 0, 2779, 2783, 3, 395, 197, 0, 2780, 2783, 3, 355,
+ 177, 0, 2781, 2783, 3, 357, 178, 0, 2782, 2778, 1, 0, 0, 0, 2782, 2779, 1, 0, 0, 0,
+ 2782, 2780, 1, 0, 0, 0, 2782, 2781, 1, 0, 0, 0, 2783, 2785, 1, 0, 0, 0, 2784, 2766,
+ 1, 0, 0, 0, 2784, 2782, 1, 0, 0, 0, 2785, 2787, 1, 0, 0, 0, 2786, 2765, 1, 0, 0, 0, 2786,
+ 2787, 1, 0, 0, 0, 2787, 412, 1, 0, 0, 0, 2788, 2789, 3, 409, 204, 0, 2789, 2790, 3,
+ 109, 54, 0, 2790, 2791, 3, 411, 205, 0, 2791, 2793, 3, 111, 55, 0, 2792, 2794, 3,
+ 385, 192, 0, 2793, 2792, 1, 0, 0, 0, 2793, 2794, 1, 0, 0, 0, 2794, 414, 1, 0, 0, 0, 44,
+ 0, 791, 812, 1063, 1397, 1450, 1481, 1503, 1527, 1535, 1581, 1652, 1717, 1725,
+ 1727, 1743, 1777, 1815, 1820, 1829, 1835, 1845, 1852, 1854, 1860, 1865, 1881,
+ 1901, 1921, 1945, 2340, 2344, 2696, 2700, 2729, 2745, 2761, 2763, 2772, 2774,
+ 2782, 2784, 2786, 2793, 1, 6, 0, 0
+ ]
+
+
+class PSLexer(Lexer):
+
+ atn = ATNDeserializer().deserialize(serializedATN())
+
+ decisionsToDFA = [DFA(ds, i) for i, ds in enumerate(atn.decisionToState)]
+
+ T__0 = 1
+ T__1 = 2
+ T__2 = 3
+ T__3 = 4
+ T__4 = 5
+ T__5 = 6
+ T__6 = 7
+ T__7 = 8
+ T__8 = 9
+ T__9 = 10
+ T__10 = 11
+ T__11 = 12
+ T__12 = 13
+ T__13 = 14
+ T__14 = 15
+ T__15 = 16
+ T__16 = 17
+ T__17 = 18
+ T__18 = 19
+ T__19 = 20
+ T__20 = 21
+ T__21 = 22
+ T__22 = 23
+ T__23 = 24
+ T__24 = 25
+ T__25 = 26
+ T__26 = 27
+ T__27 = 28
+ T__28 = 29
+ T__29 = 30
+ T__30 = 31
+ T__31 = 32
+ T__32 = 33
+ T__33 = 34
+ T__34 = 35
+ T__35 = 36
+ T__36 = 37
+ T__37 = 38
+ T__38 = 39
+ T__39 = 40
+ T__40 = 41
+ T__41 = 42
+ T__42 = 43
+ T__43 = 44
+ WS = 45
+ DOLLAR_SIGN = 46
+ ADD = 47
+ SUB = 48
+ MUL = 49
+ DIV = 50
+ L_PAREN = 51
+ R_PAREN = 52
+ L_GROUP = 53
+ R_GROUP = 54
+ L_BRACE = 55
+ R_BRACE = 56
+ L_BRACE_VISUAL = 57
+ R_BRACE_VISUAL = 58
+ L_BRACE_CMD = 59
+ R_BRACE_CMD = 60
+ L_BRACKET = 61
+ R_BRACKET = 62
+ L_BRACK = 63
+ R_BRACK = 64
+ BAR = 65
+ L_VERT = 66
+ R_VERT = 67
+ VERT = 68
+ NORM = 69
+ L_FLOOR = 70
+ R_FLOOR = 71
+ LL_CORNER = 72
+ LR_CORNER = 73
+ L_CEIL = 74
+ R_CEIL = 75
+ UL_CORNER = 76
+ UR_CORNER = 77
+ L_LEFT = 78
+ R_RIGHT = 79
+ ML_LEFT = 80
+ MR_RIGHT = 81
+ FUNC_LIM = 82
+ LIM_APPROACH_SYM = 83
+ FUNC_INT = 84
+ FUNC_SUM = 85
+ FUNC_PROD = 86
+ FUNC_LOG = 87
+ FUNC_LN = 88
+ FUNC_EXP = 89
+ FUNC_SIN = 90
+ FUNC_COS = 91
+ FUNC_TAN = 92
+ FUNC_CSC = 93
+ FUNC_SEC = 94
+ FUNC_COT = 95
+ FUNC_ARCSIN = 96
+ FUNC_ARCCOS = 97
+ FUNC_ARCTAN = 98
+ FUNC_ARCCSC = 99
+ FUNC_ARCSEC = 100
+ FUNC_ARCCOT = 101
+ FUNC_SINH = 102
+ FUNC_COSH = 103
+ FUNC_TANH = 104
+ FUNC_ARSINH = 105
+ FUNC_ARCOSH = 106
+ FUNC_ARTANH = 107
+ FUNC_ARCSINH = 108
+ FUNC_ARCCOSH = 109
+ FUNC_ARCTANH = 110
+ FUNC_ARSINH_NAME = 111
+ FUNC_ARCSINH_NAME = 112
+ FUNC_ARCOSH_NAME = 113
+ FUNC_ARCCOSH_NAME = 114
+ FUNC_ARTANH_NAME = 115
+ FUNC_ARCTANH_NAME = 116
+ FUNC_GCD_NAME = 117
+ FUNC_LCM_NAME = 118
+ FUNC_FLOOR_NAME = 119
+ FUNC_CEIL_NAME = 120
+ FUNC_SQRT = 121
+ FUNC_GCD = 122
+ FUNC_LCM = 123
+ FUNC_FLOOR = 124
+ FUNC_CEIL = 125
+ FUNC_MAX = 126
+ FUNC_MIN = 127
+ FUNC_DET = 128
+ FUNC_EYE_NAME = 129
+ FUNC_ZEROS_NAME = 130
+ FUNC_ONES_NAME = 131
+ FUNC_COLS_NAME = 132
+ FUNC_ROWS_NAME = 133
+ FUNC_DIAG_NAME = 134
+ FUNC_NORM_NAME = 135
+ FUNC_RANK_NAME = 136
+ FUNC_TRACE_NAME = 137
+ FUNC_RREF_NAME = 138
+ FUNC_HSTACK_NAME = 139
+ FUNC_VSTACK_NAME = 140
+ FUNC_ORTHOGONALIZE_NAME = 141
+ FUNC_NULLSPACE_NAME = 142
+ FUNC_DIAGONALIZE_NAME = 143
+ FUNC_EIGENVALS_NAME = 144
+ FUNC_EIGENVECTORS_NAME = 145
+ FUNC_SVD_NAME = 146
+ CMD_TIMES = 147
+ CMD_CDOT = 148
+ CMD_DIV = 149
+ CMD_FRAC = 150
+ CMD_BINOM = 151
+ CMD_CHOOSE = 152
+ CMD_MOD = 153
+ CMD_MATHIT = 154
+ CMD_OPERATORNAME = 155
+ MATRIX_TYPE_MATRIX = 156
+ MATRIX_TYPE_PMATRIX = 157
+ MATRIX_TYPE_BMATRIX = 158
+ MATRIX_TYPE_DET = 159
+ MATRIX_TYPES = 160
+ CMD_MATRIX_START = 161
+ CMD_MATRIX_END = 162
+ CMD_DET_START = 163
+ CMD_DET_END = 164
+ MATRIX_DEL_COL = 165
+ MATRIX_DEL_ROW = 166
+ UNDERSCORE = 167
+ CARET = 168
+ COLON = 169
+ SEMICOLON = 170
+ COMMA = 171
+ PERIOD = 172
+ DIFFERENTIAL = 173
+ EXP_E = 174
+ E_NOTATION_E = 175
+ LETTER_NO_E = 176
+ MATRIX_XRIGHTARROW = 177
+ TRANSFORM_EXCHANGE = 178
+ NUMBER = 179
+ E_NOTATION = 180
+ IN = 181
+ ASSIGNMENT = 182
+ EQUAL = 183
+ LT = 184
+ LTE = 185
+ GT = 186
+ GTE = 187
+ UNEQUAL = 188
+ BANG = 189
+ PERCENT_NUMBER = 190
+ GREEK_CMD = 191
+ OTHER_SYMBOL_CMD = 192
+ SYMBOL = 193
+ VARIABLE = 194
+
+ channelNames = [u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN"]
+
+ modeNames = [u"DEFAULT_MODE"]
+
+ literalNames = [u"<INVALID>",
+ u"'\\acute'", u"'\\bar'", u"'\\overline'", u"'\\breve'", u"'\\check'",
+ u"'\\widecheck'", u"'\\dot'", u"'\\ddot'", u"'\\grave'", u"'\\hat'",
+ u"'\\tilde'", u"'\\widetilde'", u"'\\vec'", u"'\\overrightarrow'",
+ u"'\\bm'", u"'\\boldsymbol'", u"'\\text'", u"'\\textit'", u"'\\mathbb'",
+ u"'\\mathbin'", u"'\\mathbf'", u"'\\mathcal'", u"'\\mathclap'",
+ u"'\\mathclose'", u"'\\mathellipsis'", u"'\\mathfrak'", u"'\\mathinner'",
+ u"'\\mathnormal'", u"'\\mathop'", u"'\\mathopen'", u"'\\mathord'",
+ u"'\\mathpunct'", u"'\\mathrel'", u"'\\mathring'", u"'\\mathrlap'",
+ u"'\\mathrm'", u"'\\mathscr'", u"'\\mathsf'", u"'\\mathsterling'",
+ u"'\\mathtt'", u"'^T'", u"'^{T}'", u"'^{\\top}'", u"'''", u"'\\$'",
+ u"'+'", u"'-'", u"'*'", u"'('", u"')'", u"'\\lgroup'", u"'\\rgroup'",
+ u"'{'", u"'}'", u"'\\{'", u"'\\}'", u"'\\lbrace'", u"'\\rbrace'",
+ u"'['", u"']'", u"'\\lbrack'", u"'\\rbrack'", u"'|'", u"'\\lvert'",
+ u"'\\rvert'", u"'\\vert'", u"'\\|'", u"'\\lfloor'", u"'\\rfloor'",
+ u"'\\llcorner'", u"'\\lrcorner'", u"'\\lceil'", u"'\\rceil'",
+ u"'\\ulcorner'", u"'\\urcorner'", u"'\\left'", u"'\\right'",
+ u"'\\mleft'", u"'\\mright'", u"'\\lim'", u"'\\int'", u"'\\sum'",
+ u"'\\prod'", u"'\\log'", u"'\\ln'", u"'\\exp'", u"'\\sin'",
+ u"'\\cos'", u"'\\tan'", u"'\\csc'", u"'\\sec'", u"'\\cot'",
+ u"'\\arcsin'", u"'\\arccos'", u"'\\arctan'", u"'\\arccsc'",
+ u"'\\arcsec'", u"'\\arccot'", u"'\\sinh'", u"'\\cosh'", u"'\\tanh'",
+ u"'\\arsinh'", u"'\\arcosh'", u"'\\artanh'", u"'\\arcsinh'",
+ u"'\\arccosh'", u"'\\arctanh'", u"'arsinh'", u"'arcsinh'", u"'arcosh'",
+ u"'arccosh'", u"'artanh'", u"'arctanh'", u"'gcd'", u"'lcm'",
+ u"'floor'", u"'ceil'", u"'\\sqrt'", u"'\\gcd'", u"'\\lcm'",
+ u"'\\floor'", u"'\\ceil'", u"'\\max'", u"'\\min'", u"'\\det'",
+ u"'eye'", u"'zeros'", u"'ones'", u"'cols'", u"'rows'", u"'diag'",
+ u"'norm'", u"'rank'", u"'rref'", u"'hstack'", u"'vstack'", u"'nullspace'",
+ u"'\\times'", u"'\\cdot'", u"'\\div'", u"'\\frac'", u"'\\choose'",
+ u"'\\mod'", u"'\\mathit'", u"'\\operatorname'", u"'matrix'",
+ u"'pmatrix'", u"'bmatrix'", u"'vmatrix'", u"'&'", u"'\\\\'",
+ u"'_'", u"'^'", u"':'", u"';'", u"','", u"'.'", u"'E'", u"'\\in'",
+ u"'='", u"'<'", u"'>'", u"'!'"]
+
+ symbolicNames = [u"<INVALID>",
+ u"WS", u"DOLLAR_SIGN", u"ADD", u"SUB", u"MUL", u"DIV", u"L_PAREN",
+ u"R_PAREN", u"L_GROUP", u"R_GROUP", u"L_BRACE", u"R_BRACE",
+ u"L_BRACE_VISUAL", u"R_BRACE_VISUAL", u"L_BRACE_CMD", u"R_BRACE_CMD",
+ u"L_BRACKET", u"R_BRACKET", u"L_BRACK", u"R_BRACK", u"BAR",
+ u"L_VERT", u"R_VERT", u"VERT", u"NORM", u"L_FLOOR", u"R_FLOOR",
+ u"LL_CORNER", u"LR_CORNER", u"L_CEIL", u"R_CEIL", u"UL_CORNER",
+ u"UR_CORNER", u"L_LEFT", u"R_RIGHT", u"ML_LEFT", u"MR_RIGHT",
+ u"FUNC_LIM", u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM",
+ u"FUNC_PROD", u"FUNC_LOG", u"FUNC_LN", u"FUNC_EXP", u"FUNC_SIN",
+ u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC", u"FUNC_COT",
+ u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN", u"FUNC_ARCCSC",
+ u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH", u"FUNC_COSH",
+ u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH", u"FUNC_ARTANH",
+ u"FUNC_ARCSINH", u"FUNC_ARCCOSH", u"FUNC_ARCTANH", u"FUNC_ARSINH_NAME",
+ u"FUNC_ARCSINH_NAME", u"FUNC_ARCOSH_NAME", u"FUNC_ARCCOSH_NAME",
+ u"FUNC_ARTANH_NAME", u"FUNC_ARCTANH_NAME", u"FUNC_GCD_NAME",
+ u"FUNC_LCM_NAME", u"FUNC_FLOOR_NAME", u"FUNC_CEIL_NAME", u"FUNC_SQRT",
+ u"FUNC_GCD", u"FUNC_LCM", u"FUNC_FLOOR", u"FUNC_CEIL", u"FUNC_MAX",
+ u"FUNC_MIN", u"FUNC_DET", u"FUNC_EYE_NAME", u"FUNC_ZEROS_NAME",
+ u"FUNC_ONES_NAME", u"FUNC_COLS_NAME", u"FUNC_ROWS_NAME", u"FUNC_DIAG_NAME",
+ u"FUNC_NORM_NAME", u"FUNC_RANK_NAME", u"FUNC_TRACE_NAME", u"FUNC_RREF_NAME",
+ u"FUNC_HSTACK_NAME", u"FUNC_VSTACK_NAME", u"FUNC_ORTHOGONALIZE_NAME",
+ u"FUNC_NULLSPACE_NAME", u"FUNC_DIAGONALIZE_NAME", u"FUNC_EIGENVALS_NAME",
+ u"FUNC_EIGENVECTORS_NAME", u"FUNC_SVD_NAME", u"CMD_TIMES", u"CMD_CDOT",
+ u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM", u"CMD_CHOOSE", u"CMD_MOD",
+ u"CMD_MATHIT", u"CMD_OPERATORNAME", u"MATRIX_TYPE_MATRIX", u"MATRIX_TYPE_PMATRIX",
+ u"MATRIX_TYPE_BMATRIX", u"MATRIX_TYPE_DET", u"MATRIX_TYPES",
+ u"CMD_MATRIX_START", u"CMD_MATRIX_END", u"CMD_DET_START", u"CMD_DET_END",
+ u"MATRIX_DEL_COL", u"MATRIX_DEL_ROW", u"UNDERSCORE", u"CARET",
+ u"COLON", u"SEMICOLON", u"COMMA", u"PERIOD", u"DIFFERENTIAL",
+ u"EXP_E", u"E_NOTATION_E", u"LETTER_NO_E", u"MATRIX_XRIGHTARROW",
+ u"TRANSFORM_EXCHANGE", u"NUMBER", u"E_NOTATION", u"IN", u"ASSIGNMENT",
+ u"EQUAL", u"LT", u"LTE", u"GT", u"GTE", u"UNEQUAL", u"BANG",
+ u"PERCENT_NUMBER", u"GREEK_CMD", u"OTHER_SYMBOL_CMD", u"SYMBOL",
+ u"VARIABLE"]
+
+ ruleNames = [u"T__0", u"T__1", u"T__2", u"T__3", u"T__4", u"T__5",
+ u"T__6", u"T__7", u"T__8", u"T__9", u"T__10", u"T__11",
+ u"T__12", u"T__13", u"T__14", u"T__15", u"T__16", u"T__17",
+ u"T__18", u"T__19", u"T__20", u"T__21", u"T__22", u"T__23",
+ u"T__24", u"T__25", u"T__26", u"T__27", u"T__28", u"T__29",
+ u"T__30", u"T__31", u"T__32", u"T__33", u"T__34", u"T__35",
+ u"T__36", u"T__37", u"T__38", u"T__39", u"T__40", u"T__41",
+ u"T__42", u"T__43", u"WS", u"DOLLAR_SIGN", u"ADD", u"SUB",
+ u"MUL", u"DIV", u"L_PAREN", u"R_PAREN", u"L_GROUP", u"R_GROUP",
+ u"L_BRACE", u"R_BRACE", u"L_BRACE_VISUAL", u"R_BRACE_VISUAL",
+ u"L_BRACE_CMD", u"R_BRACE_CMD", u"L_BRACKET", u"R_BRACKET",
+ u"L_BRACK", u"R_BRACK", u"BAR", u"L_VERT", u"R_VERT",
+ u"VERT", u"NORM", u"L_FLOOR", u"R_FLOOR", u"LL_CORNER",
+ u"LR_CORNER", u"L_CEIL", u"R_CEIL", u"UL_CORNER", u"UR_CORNER",
+ u"L_LEFT", u"R_RIGHT", u"ML_LEFT", u"MR_RIGHT", u"FUNC_LIM",
+ u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM", u"FUNC_PROD",
+ u"FUNC_LOG", u"FUNC_LN", u"FUNC_EXP", u"FUNC_SIN", u"FUNC_COS",
+ u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC", u"FUNC_COT", u"FUNC_ARCSIN",
+ u"FUNC_ARCCOS", u"FUNC_ARCTAN", u"FUNC_ARCCSC", u"FUNC_ARCSEC",
+ u"FUNC_ARCCOT", u"FUNC_SINH", u"FUNC_COSH", u"FUNC_TANH",
+ u"FUNC_ARSINH", u"FUNC_ARCOSH", u"FUNC_ARTANH", u"FUNC_ARCSINH",
+ u"FUNC_ARCCOSH", u"FUNC_ARCTANH", u"FUNC_ARSINH_NAME",
+ u"FUNC_ARCSINH_NAME", u"FUNC_ARCOSH_NAME", u"FUNC_ARCCOSH_NAME",
+ u"FUNC_ARTANH_NAME", u"FUNC_ARCTANH_NAME", u"FUNC_GCD_NAME",
+ u"FUNC_LCM_NAME", u"FUNC_FLOOR_NAME", u"FUNC_CEIL_NAME",
+ u"FUNC_SQRT", u"FUNC_GCD", u"FUNC_LCM", u"FUNC_FLOOR",
+ u"FUNC_CEIL", u"FUNC_MAX", u"FUNC_MIN", u"FUNC_DET", u"FUNC_EYE_NAME",
+ u"FUNC_ZEROS_NAME", u"FUNC_ONES_NAME", u"FUNC_COLS_NAME",
+ u"FUNC_ROWS_NAME", u"FUNC_DIAG_NAME", u"FUNC_NORM_NAME",
+ u"FUNC_RANK_NAME", u"FUNC_TRACE_NAME", u"FUNC_RREF_NAME",
+ u"FUNC_HSTACK_NAME", u"FUNC_VSTACK_NAME", u"FUNC_ORTHOGONALIZE_NAME",
+ u"FUNC_NULLSPACE_NAME", u"FUNC_DIAGONALIZE_NAME", u"FUNC_EIGENVALS_NAME",
+ u"FUNC_EIGENVECTORS_NAME", u"FUNC_SVD_NAME", u"CMD_TIMES",
+ u"CMD_CDOT", u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM", u"CMD_CHOOSE",
+ u"CMD_MOD", u"CMD_MATHIT", u"CMD_OPERATORNAME", u"MATRIX_TYPE_MATRIX",
+ u"MATRIX_TYPE_PMATRIX", u"MATRIX_TYPE_BMATRIX", u"MATRIX_TYPE_DET",
+ u"MATRIX_TYPES", u"CMD_MATRIX_START", u"CMD_MATRIX_END",
+ u"CMD_DET_START", u"CMD_DET_END", u"MATRIX_DEL_COL", u"MATRIX_DEL_ROW",
+ u"UNDERSCORE", u"CARET", u"COLON", u"SEMICOLON", u"COMMA",
+ u"PERIOD", u"WS_CHAR", u"DIFFERENTIAL", u"EXP_E", u"E_NOTATION_E",
+ u"LETTER_NO_E", u"LETTER", u"DIGIT", u"MATRIX_XRIGHTARROW",
+ u"TRANSFORM_EXCHANGE", u"NUMBER", u"E_NOTATION", u"IN",
+ u"ASSIGNMENT", u"EQUAL", u"LT", u"LTE", u"GT", u"GTE",
+ u"UNEQUAL", u"BANG", u"PERCENT_SIGN", u"PERCENT_NUMBER",
+ u"GREEK_LETTER", u"GREEK_CMD", u"OTHER_SYMBOL", u"OTHER_SYMBOL_CMD",
+ u"PI", u"INFTY_CMD", u"PARTIAL_CMD", u"INFTY", u"EMPTYSET",
+ u"SYMBOL", u"VARIABLE_CMD", u"VARIABLE_SYMBOL", u"VARIABLE"]
+
+ grammarFileName = u"PS.g4"
+
+ def __init__(self, input=None, output=sys.stdout):
+ super(PSLexer, self).__init__(input, output=output)
+ self.checkVersion("4.11.1")
+ self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache())
+ self._actions = None
+ self._predicates = None
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.tokens b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.tokens
new file mode 100755
index 0000000..d71163f
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSLexer.tokens
@@ -0,0 +1,357 @@
+T__0=1
+T__1=2
+T__2=3
+T__3=4
+T__4=5
+T__5=6
+T__6=7
+T__7=8
+T__8=9
+T__9=10
+T__10=11
+T__11=12
+T__12=13
+T__13=14
+T__14=15
+T__15=16
+T__16=17
+T__17=18
+T__18=19
+T__19=20
+T__20=21
+T__21=22
+T__22=23
+T__23=24
+T__24=25
+T__25=26
+T__26=27
+T__27=28
+T__28=29
+T__29=30
+T__30=31
+T__31=32
+T__32=33
+T__33=34
+T__34=35
+T__35=36
+T__36=37
+T__37=38
+T__38=39
+T__39=40
+T__40=41
+T__41=42
+T__42=43
+T__43=44
+WS=45
+DOLLAR_SIGN=46
+ADD=47
+SUB=48
+MUL=49
+DIV=50
+L_PAREN=51
+R_PAREN=52
+L_GROUP=53
+R_GROUP=54
+L_BRACE=55
+R_BRACE=56
+L_BRACE_VISUAL=57
+R_BRACE_VISUAL=58
+L_BRACE_CMD=59
+R_BRACE_CMD=60
+L_BRACKET=61
+R_BRACKET=62
+L_BRACK=63
+R_BRACK=64
+BAR=65
+L_VERT=66
+R_VERT=67
+VERT=68
+NORM=69
+L_FLOOR=70
+R_FLOOR=71
+LL_CORNER=72
+LR_CORNER=73
+L_CEIL=74
+R_CEIL=75
+UL_CORNER=76
+UR_CORNER=77
+L_LEFT=78
+R_RIGHT=79
+ML_LEFT=80
+MR_RIGHT=81
+FUNC_LIM=82
+LIM_APPROACH_SYM=83
+FUNC_INT=84
+FUNC_SUM=85
+FUNC_PROD=86
+FUNC_LOG=87
+FUNC_LN=88
+FUNC_EXP=89
+FUNC_SIN=90
+FUNC_COS=91
+FUNC_TAN=92
+FUNC_CSC=93
+FUNC_SEC=94
+FUNC_COT=95
+FUNC_ARCSIN=96
+FUNC_ARCCOS=97
+FUNC_ARCTAN=98
+FUNC_ARCCSC=99
+FUNC_ARCSEC=100
+FUNC_ARCCOT=101
+FUNC_SINH=102
+FUNC_COSH=103
+FUNC_TANH=104
+FUNC_ARSINH=105
+FUNC_ARCOSH=106
+FUNC_ARTANH=107
+FUNC_ARCSINH=108
+FUNC_ARCCOSH=109
+FUNC_ARCTANH=110
+FUNC_ARSINH_NAME=111
+FUNC_ARCSINH_NAME=112
+FUNC_ARCOSH_NAME=113
+FUNC_ARCCOSH_NAME=114
+FUNC_ARTANH_NAME=115
+FUNC_ARCTANH_NAME=116
+FUNC_GCD_NAME=117
+FUNC_LCM_NAME=118
+FUNC_FLOOR_NAME=119
+FUNC_CEIL_NAME=120
+FUNC_SQRT=121
+FUNC_GCD=122
+FUNC_LCM=123
+FUNC_FLOOR=124
+FUNC_CEIL=125
+FUNC_MAX=126
+FUNC_MIN=127
+FUNC_DET=128
+FUNC_EYE_NAME=129
+FUNC_ZEROS_NAME=130
+FUNC_ONES_NAME=131
+FUNC_COLS_NAME=132
+FUNC_ROWS_NAME=133
+FUNC_DIAG_NAME=134
+FUNC_NORM_NAME=135
+FUNC_RANK_NAME=136
+FUNC_TRACE_NAME=137
+FUNC_RREF_NAME=138
+FUNC_HSTACK_NAME=139
+FUNC_VSTACK_NAME=140
+FUNC_ORTHOGONALIZE_NAME=141
+FUNC_NULLSPACE_NAME=142
+FUNC_DIAGONALIZE_NAME=143
+FUNC_EIGENVALS_NAME=144
+FUNC_EIGENVECTORS_NAME=145
+FUNC_SVD_NAME=146
+CMD_TIMES=147
+CMD_CDOT=148
+CMD_DIV=149
+CMD_FRAC=150
+CMD_BINOM=151
+CMD_CHOOSE=152
+CMD_MOD=153
+CMD_MATHIT=154
+CMD_OPERATORNAME=155
+MATRIX_TYPE_MATRIX=156
+MATRIX_TYPE_PMATRIX=157
+MATRIX_TYPE_BMATRIX=158
+MATRIX_TYPE_DET=159
+MATRIX_TYPES=160
+CMD_MATRIX_START=161
+CMD_MATRIX_END=162
+CMD_DET_START=163
+CMD_DET_END=164
+MATRIX_DEL_COL=165
+MATRIX_DEL_ROW=166
+UNDERSCORE=167
+CARET=168
+COLON=169
+SEMICOLON=170
+COMMA=171
+PERIOD=172
+DIFFERENTIAL=173
+EXP_E=174
+E_NOTATION_E=175
+LETTER_NO_E=176
+MATRIX_XRIGHTARROW=177
+TRANSFORM_EXCHANGE=178
+NUMBER=179
+E_NOTATION=180
+IN=181
+ASSIGNMENT=182
+EQUAL=183
+LT=184
+LTE=185
+GT=186
+GTE=187
+UNEQUAL=188
+BANG=189
+PERCENT_NUMBER=190
+GREEK_CMD=191
+OTHER_SYMBOL_CMD=192
+SYMBOL=193
+VARIABLE=194
+'\\acute'=1
+'\\bar'=2
+'\\overline'=3
+'\\breve'=4
+'\\check'=5
+'\\widecheck'=6
+'\\dot'=7
+'\\ddot'=8
+'\\grave'=9
+'\\hat'=10
+'\\tilde'=11
+'\\widetilde'=12
+'\\vec'=13
+'\\overrightarrow'=14
+'\\bm'=15
+'\\boldsymbol'=16
+'\\text'=17
+'\\textit'=18
+'\\mathbb'=19
+'\\mathbin'=20
+'\\mathbf'=21
+'\\mathcal'=22
+'\\mathclap'=23
+'\\mathclose'=24
+'\\mathellipsis'=25
+'\\mathfrak'=26
+'\\mathinner'=27
+'\\mathnormal'=28
+'\\mathop'=29
+'\\mathopen'=30
+'\\mathord'=31
+'\\mathpunct'=32
+'\\mathrel'=33
+'\\mathring'=34
+'\\mathrlap'=35
+'\\mathrm'=36
+'\\mathscr'=37
+'\\mathsf'=38
+'\\mathsterling'=39
+'\\mathtt'=40
+'^T'=41
+'^{T}'=42
+'^{\\top}'=43
+'\''=44
+'\\$'=46
+'+'=47
+'-'=48
+'*'=49
+'('=51
+')'=52
+'\\lgroup'=53
+'\\rgroup'=54
+'{'=55
+'}'=56
+'\\{'=57
+'\\}'=58
+'\\lbrace'=59
+'\\rbrace'=60
+'['=61
+']'=62
+'\\lbrack'=63
+'\\rbrack'=64
+'|'=65
+'\\lvert'=66
+'\\rvert'=67
+'\\vert'=68
+'\\|'=69
+'\\lfloor'=70
+'\\rfloor'=71
+'\\llcorner'=72
+'\\lrcorner'=73
+'\\lceil'=74
+'\\rceil'=75
+'\\ulcorner'=76
+'\\urcorner'=77
+'\\left'=78
+'\\right'=79
+'\\mleft'=80
+'\\mright'=81
+'\\lim'=82
+'\\int'=84
+'\\sum'=85
+'\\prod'=86
+'\\log'=87
+'\\ln'=88
+'\\exp'=89
+'\\sin'=90
+'\\cos'=91
+'\\tan'=92
+'\\csc'=93
+'\\sec'=94
+'\\cot'=95
+'\\arcsin'=96
+'\\arccos'=97
+'\\arctan'=98
+'\\arccsc'=99
+'\\arcsec'=100
+'\\arccot'=101
+'\\sinh'=102
+'\\cosh'=103
+'\\tanh'=104
+'\\arsinh'=105
+'\\arcosh'=106
+'\\artanh'=107
+'\\arcsinh'=108
+'\\arccosh'=109
+'\\arctanh'=110
+'arsinh'=111
+'arcsinh'=112
+'arcosh'=113
+'arccosh'=114
+'artanh'=115
+'arctanh'=116
+'gcd'=117
+'lcm'=118
+'floor'=119
+'ceil'=120
+'\\sqrt'=121
+'\\gcd'=122
+'\\lcm'=123
+'\\floor'=124
+'\\ceil'=125
+'\\max'=126
+'\\min'=127
+'\\det'=128
+'eye'=129
+'zeros'=130
+'ones'=131
+'cols'=132
+'rows'=133
+'diag'=134
+'norm'=135
+'rank'=136
+'rref'=138
+'hstack'=139
+'vstack'=140
+'nullspace'=142
+'\\times'=147
+'\\cdot'=148
+'\\div'=149
+'\\frac'=150
+'\\choose'=152
+'\\mod'=153
+'\\mathit'=154
+'\\operatorname'=155
+'matrix'=156
+'pmatrix'=157
+'bmatrix'=158
+'vmatrix'=159
+'&'=165
+'\\\\'=166
+'_'=167
+'^'=168
+':'=169
+';'=170
+','=171
+'.'=172
+'E'=175
+'\\in'=181
+'='=182
+'<'=184
+'>'=186
+'!'=189
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSListener.py b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSListener.py
new file mode 100755
index 0000000..0f7632c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSListener.py
@@ -0,0 +1,573 @@
+# Generated from PS.g4 by ANTLR 4.11.1
+from antlr4 import *
+
+# This class defines a complete listener for a parse tree produced by PSParser.
+
+
+class PSListener(ParseTreeListener):
+
+ # Enter a parse tree produced by PSParser#accent_symbol.
+ def enterAccent_symbol(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#accent_symbol.
+ def exitAccent_symbol(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#math.
+
+ def enterMath(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#math.
+ def exitMath(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#transpose.
+
+ def enterTranspose(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#transpose.
+ def exitTranspose(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#transform_atom.
+
+ def enterTransform_atom(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#transform_atom.
+ def exitTransform_atom(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#transform_scale.
+
+ def enterTransform_scale(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#transform_scale.
+ def exitTransform_scale(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#transform_swap.
+
+ def enterTransform_swap(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#transform_swap.
+ def exitTransform_swap(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#transform_assignment.
+
+ def enterTransform_assignment(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#transform_assignment.
+ def exitTransform_assignment(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#elementary_transform.
+
+ def enterElementary_transform(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#elementary_transform.
+ def exitElementary_transform(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#elementary_transforms.
+
+ def enterElementary_transforms(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#elementary_transforms.
+ def exitElementary_transforms(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#matrix.
+
+ def enterMatrix(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#matrix.
+ def exitMatrix(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#det.
+
+ def enterDet(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#det.
+ def exitDet(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#matrix_row.
+
+ def enterMatrix_row(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#matrix_row.
+ def exitMatrix_row(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#relation.
+
+ def enterRelation(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#relation.
+ def exitRelation(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#relation_list.
+
+ def enterRelation_list(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#relation_list.
+ def exitRelation_list(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#relation_list_content.
+
+ def enterRelation_list_content(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#relation_list_content.
+ def exitRelation_list_content(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#equality.
+
+ def enterEquality(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#equality.
+ def exitEquality(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#expr.
+
+ def enterExpr(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#expr.
+ def exitExpr(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#additive.
+
+ def enterAdditive(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#additive.
+ def exitAdditive(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#mp.
+
+ def enterMp(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#mp.
+ def exitMp(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#mp_nofunc.
+
+ def enterMp_nofunc(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#mp_nofunc.
+ def exitMp_nofunc(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#unary.
+
+ def enterUnary(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#unary.
+ def exitUnary(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#unary_nofunc.
+
+ def enterUnary_nofunc(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#unary_nofunc.
+ def exitUnary_nofunc(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#postfix.
+
+ def enterPostfix(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#postfix.
+ def exitPostfix(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#postfix_nofunc.
+
+ def enterPostfix_nofunc(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#postfix_nofunc.
+ def exitPostfix_nofunc(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#postfix_op.
+
+ def enterPostfix_op(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#postfix_op.
+ def exitPostfix_op(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#eval_at.
+
+ def enterEval_at(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#eval_at.
+ def exitEval_at(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#eval_at_sub.
+
+ def enterEval_at_sub(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#eval_at_sub.
+ def exitEval_at_sub(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#eval_at_sup.
+
+ def enterEval_at_sup(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#eval_at_sup.
+ def exitEval_at_sup(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#exp.
+
+ def enterExp(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#exp.
+ def exitExp(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#exp_nofunc.
+
+ def enterExp_nofunc(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#exp_nofunc.
+ def exitExp_nofunc(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#comp.
+
+ def enterComp(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#comp.
+ def exitComp(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#comp_nofunc.
+
+ def enterComp_nofunc(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#comp_nofunc.
+ def exitComp_nofunc(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#group.
+
+ def enterGroup(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#group.
+ def exitGroup(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#norm_group.
+
+ def enterNorm_group(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#norm_group.
+ def exitNorm_group(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#abs_group.
+
+ def enterAbs_group(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#abs_group.
+ def exitAbs_group(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#floor_group.
+
+ def enterFloor_group(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#floor_group.
+ def exitFloor_group(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#ceil_group.
+
+ def enterCeil_group(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#ceil_group.
+ def exitCeil_group(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#accent.
+
+ def enterAccent(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#accent.
+ def exitAccent(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#atom_expr_no_supexpr.
+
+ def enterAtom_expr_no_supexpr(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#atom_expr_no_supexpr.
+ def exitAtom_expr_no_supexpr(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#atom_expr.
+
+ def enterAtom_expr(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#atom_expr.
+ def exitAtom_expr(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#atom.
+
+ def enterAtom(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#atom.
+ def exitAtom(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#mathit.
+
+ def enterMathit(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#mathit.
+ def exitMathit(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#mathit_text.
+
+ def enterMathit_text(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#mathit_text.
+ def exitMathit_text(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#frac.
+
+ def enterFrac(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#frac.
+ def exitFrac(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#binom.
+
+ def enterBinom(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#binom.
+ def exitBinom(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_normal_functions_single_arg.
+
+ def enterFunc_normal_functions_single_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_normal_functions_single_arg.
+ def exitFunc_normal_functions_single_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_normal_functions_multi_arg.
+
+ def enterFunc_normal_functions_multi_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_normal_functions_multi_arg.
+ def exitFunc_normal_functions_multi_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_operator_names_single_arg.
+
+ def enterFunc_operator_names_single_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_operator_names_single_arg.
+ def exitFunc_operator_names_single_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_operator_names_multi_arg.
+
+ def enterFunc_operator_names_multi_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_operator_names_multi_arg.
+ def exitFunc_operator_names_multi_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_normal_single_arg.
+
+ def enterFunc_normal_single_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_normal_single_arg.
+ def exitFunc_normal_single_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_normal_multi_arg.
+
+ def enterFunc_normal_multi_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_normal_multi_arg.
+ def exitFunc_normal_multi_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func.
+
+ def enterFunc(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func.
+ def exitFunc(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#args.
+
+ def enterArgs(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#args.
+ def exitArgs(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_common_args.
+
+ def enterFunc_common_args(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_common_args.
+ def exitFunc_common_args(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#limit_sub.
+
+ def enterLimit_sub(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#limit_sub.
+ def exitLimit_sub(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_single_arg.
+
+ def enterFunc_single_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_single_arg.
+ def exitFunc_single_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_single_arg_noparens.
+
+ def enterFunc_single_arg_noparens(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_single_arg_noparens.
+ def exitFunc_single_arg_noparens(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_multi_arg.
+
+ def enterFunc_multi_arg(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_multi_arg.
+ def exitFunc_multi_arg(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#func_multi_arg_noparens.
+
+ def enterFunc_multi_arg_noparens(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#func_multi_arg_noparens.
+ def exitFunc_multi_arg_noparens(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#subexpr.
+
+ def enterSubexpr(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#subexpr.
+ def exitSubexpr(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#supexpr.
+
+ def enterSupexpr(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#supexpr.
+ def exitSupexpr(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#subeq.
+
+ def enterSubeq(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#subeq.
+ def exitSubeq(self, ctx):
+ pass
+
+ # Enter a parse tree produced by PSParser#supeq.
+
+ def enterSupeq(self, ctx):
+ pass
+
+ # Exit a parse tree produced by PSParser#supeq.
+ def exitSupeq(self, ctx):
+ pass
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSParser.py b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSParser.py
new file mode 100755
index 0000000..b651b50
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/PSParser.py
@@ -0,0 +1,6486 @@
+# Generated from PS.g4 by ANTLR 4.11.1
+# encoding: utf-8
+from __future__ import print_function
+from antlr4 import *
+from io import StringIO
+import sys
+
+
+def serializedATN():
+ return [
+ 4, 1, 194, 1046, 2, 0, 7, 0, 2, 1, 7, 1, 2, 2, 7, 2, 2, 3, 7, 3, 2, 4, 7, 4, 2, 5, 7, 5, 2, 6,
+ 7, 6, 2, 7, 7, 7, 2, 8, 7, 8, 2, 9, 7, 9, 2, 10, 7, 10, 2, 11, 7, 11, 2, 12, 7, 12, 2, 13, 7,
+ 13, 2, 14, 7, 14, 2, 15, 7, 15, 2, 16, 7, 16, 2, 17, 7, 17, 2, 18, 7, 18, 2, 19, 7, 19, 2,
+ 20, 7, 20, 2, 21, 7, 21, 2, 22, 7, 22, 2, 23, 7, 23, 2, 24, 7, 24, 2, 25, 7, 25, 2, 26, 7,
+ 26, 2, 27, 7, 27, 2, 28, 7, 28, 2, 29, 7, 29, 2, 30, 7, 30, 2, 31, 7, 31, 2, 32, 7, 32, 2,
+ 33, 7, 33, 2, 34, 7, 34, 2, 35, 7, 35, 2, 36, 7, 36, 2, 37, 7, 37, 2, 38, 7, 38, 2, 39, 7,
+ 39, 2, 40, 7, 40, 2, 41, 7, 41, 2, 42, 7, 42, 2, 43, 7, 43, 2, 44, 7, 44, 2, 45, 7, 45, 2,
+ 46, 7, 46, 2, 47, 7, 47, 2, 48, 7, 48, 2, 49, 7, 49, 2, 50, 7, 50, 2, 51, 7, 51, 2, 52, 7,
+ 52, 2, 53, 7, 53, 2, 54, 7, 54, 2, 55, 7, 55, 2, 56, 7, 56, 2, 57, 7, 57, 2, 58, 7, 58, 2,
+ 59, 7, 59, 2, 60, 7, 60, 2, 61, 7, 61, 2, 62, 7, 62, 1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 131, 8,
+ 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 3, 3, 141, 8, 3, 1, 4, 1, 4, 1, 4, 1, 4, 3,
+ 4, 147, 8, 4, 1, 4, 1, 4, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 6, 1, 6, 1, 7, 1, 7, 1, 7, 3, 7, 161,
+ 8, 7, 1, 8, 1, 8, 1, 8, 5, 8, 166, 8, 8, 10, 8, 12, 8, 169, 9, 8, 1, 9, 1, 9, 1, 9, 1, 9, 5,
+ 9, 175, 8, 9, 10, 9, 12, 9, 178, 9, 9, 1, 9, 3, 9, 181, 8, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9,
+ 1, 9, 3, 9, 189, 8, 9, 1, 9, 1, 9, 1, 9, 1, 9, 3, 9, 195, 8, 9, 1, 10, 1, 10, 1, 10, 1, 10,
+ 5, 10, 201, 8, 10, 10, 10, 12, 10, 204, 9, 10, 1, 10, 3, 10, 207, 8, 10, 1, 10, 1, 10,
+ 1, 11, 1, 11, 1, 11, 5, 11, 214, 8, 11, 10, 11, 12, 11, 217, 9, 11, 1, 12, 1, 12, 1, 12,
+ 1, 12, 1, 12, 1, 12, 5, 12, 225, 8, 12, 10, 12, 12, 12, 228, 9, 12, 1, 13, 1, 13, 1, 13,
+ 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13,
+ 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13,
+ 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 1, 13, 3, 13, 267, 8, 13, 1, 14, 1, 14,
+ 1, 14, 1, 14, 1, 14, 5, 14, 274, 8, 14, 10, 14, 12, 14, 277, 9, 14, 1, 14, 1, 14, 1, 14,
+ 1, 14, 1, 14, 5, 14, 284, 8, 14, 10, 14, 12, 14, 287, 9, 14, 3, 14, 289, 8, 14, 1, 15,
+ 1, 15, 1, 15, 1, 15, 1, 16, 1, 16, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 1, 17, 5, 17, 303,
+ 8, 17, 10, 17, 12, 17, 306, 9, 17, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 1, 18, 5, 18, 314,
+ 8, 18, 10, 18, 12, 18, 317, 9, 18, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 5, 19, 325,
+ 8, 19, 10, 19, 12, 19, 328, 9, 19, 1, 20, 1, 20, 1, 20, 4, 20, 333, 8, 20, 11, 20, 12,
+ 20, 334, 3, 20, 337, 8, 20, 1, 21, 1, 21, 1, 21, 1, 21, 5, 21, 343, 8, 21, 10, 21, 12,
+ 21, 346, 9, 21, 3, 21, 348, 8, 21, 1, 22, 1, 22, 5, 22, 352, 8, 22, 10, 22, 12, 22, 355,
+ 9, 22, 1, 23, 1, 23, 5, 23, 359, 8, 23, 10, 23, 12, 23, 362, 9, 23, 1, 24, 1, 24, 1, 24,
+ 3, 24, 367, 8, 24, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 1, 25, 3, 25, 375, 8, 25, 1, 26, 1,
+ 26, 1, 26, 1, 26, 3, 26, 381, 8, 26, 1, 26, 1, 26, 1, 27, 1, 27, 1, 27, 1, 27, 3, 27, 389,
+ 8, 27, 1, 27, 1, 27, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28, 1, 28,
+ 3, 28, 403, 8, 28, 1, 28, 3, 28, 406, 8, 28, 5, 28, 408, 8, 28, 10, 28, 12, 28, 411, 9,
+ 28, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 1, 29, 3, 29, 423, 8,
+ 29, 1, 29, 3, 29, 426, 8, 29, 5, 29, 428, 8, 29, 10, 29, 12, 29, 431, 9, 29, 1, 30, 1,
+ 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 1, 30, 3, 30, 444, 8, 30, 1,
+ 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 1, 31, 3, 31, 456, 8, 31, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1,
+ 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 1, 32, 3, 32, 570, 8, 32, 1, 33, 1, 33, 1,
+ 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1, 33, 1,
+ 33, 3, 33, 588, 8, 33, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1,
+ 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1,
+ 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1,
+ 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 1, 34, 3,
+ 34, 638, 8, 34, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1,
+ 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1,
+ 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 1, 35, 3, 35, 672, 8, 35, 1, 36, 1,
+ 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1,
+ 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1, 36, 1,
+ 36, 1, 36, 1, 36, 1, 36, 1, 36, 3, 36, 706, 8, 36, 1, 37, 1, 37, 1, 37, 1, 37, 1, 37, 1,
+ 38, 1, 38, 1, 38, 1, 38, 3, 38, 717, 8, 38, 1, 38, 3, 38, 720, 8, 38, 1, 39, 1, 39, 1, 39,
+ 1, 39, 3, 39, 726, 8, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 1, 39, 3, 39,
+ 736, 8, 39, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 1, 40, 3, 40, 746, 8, 40, 1,
+ 41, 1, 41, 1, 41, 1, 41, 1, 41, 1, 42, 4, 42, 754, 8, 42, 11, 42, 12, 42, 755, 1, 43, 1,
+ 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 43, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1,
+ 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 1, 44, 3, 44, 780, 8, 44, 1, 45, 1, 45, 1,
+ 46, 1, 46, 1, 47, 1, 47, 1, 48, 1, 48, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 1, 49, 3, 49, 796,
+ 8, 49, 1, 50, 1, 50, 1, 50, 1, 50, 1, 50, 1, 50, 3, 50, 804, 8, 50, 1, 51, 1, 51, 3, 51,
+ 808, 8, 51, 1, 51, 3, 51, 811, 8, 51, 1, 51, 3, 51, 814, 8, 51, 1, 51, 3, 51, 817, 8, 51,
+ 3, 51, 819, 8, 51, 1, 51, 3, 51, 822, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 827, 8, 51, 1,
+ 51, 1, 51, 1, 51, 3, 51, 832, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 837, 8, 51, 1, 51, 1, 51,
+ 1, 51, 3, 51, 842, 8, 51, 1, 51, 1, 51, 3, 51, 846, 8, 51, 1, 51, 3, 51, 849, 8, 51, 1,
+ 51, 3, 51, 852, 8, 51, 1, 51, 3, 51, 855, 8, 51, 3, 51, 857, 8, 51, 1, 51, 3, 51, 860,
+ 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 865, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 870, 8, 51, 1,
+ 51, 1, 51, 1, 51, 3, 51, 875, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 880, 8, 51, 1, 51, 1, 51,
+ 3, 51, 884, 8, 51, 1, 51, 3, 51, 887, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 893, 8,
+ 51, 1, 51, 1, 51, 3, 51, 897, 8, 51, 1, 51, 1, 51, 3, 51, 901, 8, 51, 1, 51, 1, 51, 1, 51,
+ 1, 51, 3, 51, 907, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51,
+ 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51,
+ 1, 51, 3, 51, 932, 8, 51, 1, 51, 3, 51, 935, 8, 51, 1, 51, 1, 51, 1, 51, 3, 51, 940, 8,
+ 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 947, 8, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1,
+ 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 960, 8, 51, 1, 51, 1, 51, 1, 51, 1,
+ 51, 1, 51, 1, 51, 1, 51, 1, 51, 3, 51, 970, 8, 51, 3, 51, 972, 8, 51, 1, 52, 1, 52, 1, 52,
+ 1, 52, 1, 52, 3, 52, 979, 8, 52, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53, 1, 53,
+ 3, 53, 989, 8, 53, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 1, 54, 3, 54,
+ 1000, 8, 54, 1, 54, 1, 54, 1, 55, 1, 55, 1, 56, 1, 56, 1, 57, 1, 57, 1, 57, 1, 57, 1, 57,
+ 3, 57, 1013, 8, 57, 1, 58, 1, 58, 1, 59, 1, 59, 1, 59, 1, 59, 1, 59, 3, 59, 1022, 8, 59,
+ 1, 59, 1, 59, 3, 59, 1026, 8, 59, 1, 60, 1, 60, 1, 60, 1, 60, 1, 60, 1, 60, 3, 60, 1034,
+ 8, 60, 1, 61, 1, 61, 1, 61, 1, 61, 1, 61, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 1, 62, 0, 6,
+ 24, 34, 36, 38, 56, 58, 63, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
+ 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74,
+ 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112,
+ 114, 116, 118, 120, 122, 124, 0, 15, 2, 0, 1, 40, 154, 154, 1, 0, 41, 44, 1, 0, 181,
+ 188, 1, 0, 182, 183, 1, 0, 47, 48, 4, 0, 49, 50, 147, 149, 153, 153, 169, 169, 1, 0,
+ 174, 176, 3, 0, 87, 110, 124, 125, 128, 128, 2, 0, 122, 123, 126, 127, 6, 0, 111, 116,
+ 119, 120, 129, 129, 132, 133, 135, 138, 142, 146, 4, 0, 117, 118, 130, 131, 134,
+ 134, 139, 141, 2, 0, 51, 51, 61, 61, 2, 0, 52, 52, 62, 62, 1, 0, 85, 86, 2, 0, 176, 176,
+ 191, 192, 1164, 0, 126, 1, 0, 0, 0, 2, 130, 1, 0, 0, 0, 4, 132, 1, 0, 0, 0, 6, 134, 1, 0,
+ 0, 0, 8, 146, 1, 0, 0, 0, 10, 150, 1, 0, 0, 0, 12, 154, 1, 0, 0, 0, 14, 160, 1, 0, 0, 0, 16,
+ 162, 1, 0, 0, 0, 18, 170, 1, 0, 0, 0, 20, 196, 1, 0, 0, 0, 22, 210, 1, 0, 0, 0, 24, 218,
+ 1, 0, 0, 0, 26, 266, 1, 0, 0, 0, 28, 288, 1, 0, 0, 0, 30, 290, 1, 0, 0, 0, 32, 294, 1, 0,
+ 0, 0, 34, 296, 1, 0, 0, 0, 36, 307, 1, 0, 0, 0, 38, 318, 1, 0, 0, 0, 40, 336, 1, 0, 0, 0,
+ 42, 347, 1, 0, 0, 0, 44, 349, 1, 0, 0, 0, 46, 356, 1, 0, 0, 0, 48, 366, 1, 0, 0, 0, 50, 368,
+ 1, 0, 0, 0, 52, 376, 1, 0, 0, 0, 54, 384, 1, 0, 0, 0, 56, 392, 1, 0, 0, 0, 58, 412, 1, 0,
+ 0, 0, 60, 443, 1, 0, 0, 0, 62, 455, 1, 0, 0, 0, 64, 569, 1, 0, 0, 0, 66, 587, 1, 0, 0, 0,
+ 68, 637, 1, 0, 0, 0, 70, 671, 1, 0, 0, 0, 72, 705, 1, 0, 0, 0, 74, 707, 1, 0, 0, 0, 76, 716,
+ 1, 0, 0, 0, 78, 725, 1, 0, 0, 0, 80, 745, 1, 0, 0, 0, 82, 747, 1, 0, 0, 0, 84, 753, 1, 0,
+ 0, 0, 86, 757, 1, 0, 0, 0, 88, 779, 1, 0, 0, 0, 90, 781, 1, 0, 0, 0, 92, 783, 1, 0, 0, 0,
+ 94, 785, 1, 0, 0, 0, 96, 787, 1, 0, 0, 0, 98, 795, 1, 0, 0, 0, 100, 803, 1, 0, 0, 0, 102,
+ 971, 1, 0, 0, 0, 104, 978, 1, 0, 0, 0, 106, 988, 1, 0, 0, 0, 108, 990, 1, 0, 0, 0, 110,
+ 1003, 1, 0, 0, 0, 112, 1005, 1, 0, 0, 0, 114, 1012, 1, 0, 0, 0, 116, 1014, 1, 0, 0, 0,
+ 118, 1016, 1, 0, 0, 0, 120, 1027, 1, 0, 0, 0, 122, 1035, 1, 0, 0, 0, 124, 1040, 1, 0,
+ 0, 0, 126, 127, 7, 0, 0, 0, 127, 1, 1, 0, 0, 0, 128, 131, 3, 24, 12, 0, 129, 131, 3, 26,
+ 13, 0, 130, 128, 1, 0, 0, 0, 130, 129, 1, 0, 0, 0, 131, 3, 1, 0, 0, 0, 132, 133, 7, 1, 0,
+ 0, 133, 5, 1, 0, 0, 0, 134, 135, 5, 176, 0, 0, 135, 140, 5, 167, 0, 0, 136, 141, 5, 179,
+ 0, 0, 137, 138, 5, 55, 0, 0, 138, 139, 5, 179, 0, 0, 139, 141, 5, 56, 0, 0, 140, 136,
+ 1, 0, 0, 0, 140, 137, 1, 0, 0, 0, 141, 7, 1, 0, 0, 0, 142, 147, 3, 32, 16, 0, 143, 147,
+ 3, 64, 32, 0, 144, 147, 5, 47, 0, 0, 145, 147, 5, 48, 0, 0, 146, 142, 1, 0, 0, 0, 146,
+ 143, 1, 0, 0, 0, 146, 144, 1, 0, 0, 0, 146, 145, 1, 0, 0, 0, 147, 148, 1, 0, 0, 0, 148,
+ 149, 3, 6, 3, 0, 149, 9, 1, 0, 0, 0, 150, 151, 3, 6, 3, 0, 151, 152, 5, 178, 0, 0, 152,
+ 153, 3, 6, 3, 0, 153, 11, 1, 0, 0, 0, 154, 155, 3, 6, 3, 0, 155, 156, 3, 8, 4, 0, 156, 13,
+ 1, 0, 0, 0, 157, 161, 3, 12, 6, 0, 158, 161, 3, 8, 4, 0, 159, 161, 3, 10, 5, 0, 160, 157,
+ 1, 0, 0, 0, 160, 158, 1, 0, 0, 0, 160, 159, 1, 0, 0, 0, 161, 15, 1, 0, 0, 0, 162, 167, 3,
+ 14, 7, 0, 163, 164, 5, 171, 0, 0, 164, 166, 3, 14, 7, 0, 165, 163, 1, 0, 0, 0, 166, 169,
+ 1, 0, 0, 0, 167, 165, 1, 0, 0, 0, 167, 168, 1, 0, 0, 0, 168, 17, 1, 0, 0, 0, 169, 167, 1,
+ 0, 0, 0, 170, 171, 5, 161, 0, 0, 171, 176, 3, 22, 11, 0, 172, 173, 5, 166, 0, 0, 173,
+ 175, 3, 22, 11, 0, 174, 172, 1, 0, 0, 0, 175, 178, 1, 0, 0, 0, 176, 174, 1, 0, 0, 0, 176,
+ 177, 1, 0, 0, 0, 177, 180, 1, 0, 0, 0, 178, 176, 1, 0, 0, 0, 179, 181, 5, 166, 0, 0, 180,
+ 179, 1, 0, 0, 0, 180, 181, 1, 0, 0, 0, 181, 182, 1, 0, 0, 0, 182, 194, 5, 162, 0, 0, 183,
+ 188, 5, 177, 0, 0, 184, 185, 5, 61, 0, 0, 185, 186, 3, 16, 8, 0, 186, 187, 5, 62, 0, 0,
+ 187, 189, 1, 0, 0, 0, 188, 184, 1, 0, 0, 0, 188, 189, 1, 0, 0, 0, 189, 190, 1, 0, 0, 0,
+ 190, 191, 5, 55, 0, 0, 191, 192, 3, 16, 8, 0, 192, 193, 5, 56, 0, 0, 193, 195, 1, 0, 0,
+ 0, 194, 183, 1, 0, 0, 0, 194, 195, 1, 0, 0, 0, 195, 19, 1, 0, 0, 0, 196, 197, 5, 163, 0,
+ 0, 197, 202, 3, 22, 11, 0, 198, 199, 5, 166, 0, 0, 199, 201, 3, 22, 11, 0, 200, 198,
+ 1, 0, 0, 0, 201, 204, 1, 0, 0, 0, 202, 200, 1, 0, 0, 0, 202, 203, 1, 0, 0, 0, 203, 206,
+ 1, 0, 0, 0, 204, 202, 1, 0, 0, 0, 205, 207, 5, 166, 0, 0, 206, 205, 1, 0, 0, 0, 206, 207,
+ 1, 0, 0, 0, 207, 208, 1, 0, 0, 0, 208, 209, 5, 164, 0, 0, 209, 21, 1, 0, 0, 0, 210, 215,
+ 3, 32, 16, 0, 211, 212, 5, 165, 0, 0, 212, 214, 3, 32, 16, 0, 213, 211, 1, 0, 0, 0, 214,
+ 217, 1, 0, 0, 0, 215, 213, 1, 0, 0, 0, 215, 216, 1, 0, 0, 0, 216, 23, 1, 0, 0, 0, 217, 215,
+ 1, 0, 0, 0, 218, 219, 6, 12, -1, 0, 219, 220, 3, 32, 16, 0, 220, 226, 1, 0, 0, 0, 221,
+ 222, 10, 2, 0, 0, 222, 223, 7, 2, 0, 0, 223, 225, 3, 24, 12, 3, 224, 221, 1, 0, 0, 0, 225,
+ 228, 1, 0, 0, 0, 226, 224, 1, 0, 0, 0, 226, 227, 1, 0, 0, 0, 227, 25, 1, 0, 0, 0, 228, 226,
+ 1, 0, 0, 0, 229, 267, 3, 28, 14, 0, 230, 231, 5, 61, 0, 0, 231, 232, 3, 28, 14, 0, 232,
+ 233, 5, 62, 0, 0, 233, 267, 1, 0, 0, 0, 234, 235, 5, 55, 0, 0, 235, 236, 3, 28, 14, 0,
+ 236, 237, 5, 56, 0, 0, 237, 267, 1, 0, 0, 0, 238, 239, 5, 57, 0, 0, 239, 240, 3, 28, 14,
+ 0, 240, 241, 5, 58, 0, 0, 241, 267, 1, 0, 0, 0, 242, 243, 5, 78, 0, 0, 243, 244, 5, 61,
+ 0, 0, 244, 245, 3, 28, 14, 0, 245, 246, 5, 79, 0, 0, 246, 247, 5, 62, 0, 0, 247, 267,
+ 1, 0, 0, 0, 248, 249, 5, 78, 0, 0, 249, 250, 5, 57, 0, 0, 250, 251, 3, 28, 14, 0, 251,
+ 252, 5, 79, 0, 0, 252, 253, 5, 58, 0, 0, 253, 267, 1, 0, 0, 0, 254, 255, 5, 80, 0, 0, 255,
+ 256, 5, 61, 0, 0, 256, 257, 3, 28, 14, 0, 257, 258, 5, 81, 0, 0, 258, 259, 5, 62, 0, 0,
+ 259, 267, 1, 0, 0, 0, 260, 261, 5, 80, 0, 0, 261, 262, 5, 57, 0, 0, 262, 263, 3, 28, 14,
+ 0, 263, 264, 5, 81, 0, 0, 264, 265, 5, 58, 0, 0, 265, 267, 1, 0, 0, 0, 266, 229, 1, 0,
+ 0, 0, 266, 230, 1, 0, 0, 0, 266, 234, 1, 0, 0, 0, 266, 238, 1, 0, 0, 0, 266, 242, 1, 0,
+ 0, 0, 266, 248, 1, 0, 0, 0, 266, 254, 1, 0, 0, 0, 266, 260, 1, 0, 0, 0, 267, 27, 1, 0, 0,
+ 0, 268, 269, 3, 24, 12, 0, 269, 270, 5, 171, 0, 0, 270, 275, 3, 24, 12, 0, 271, 272,
+ 5, 171, 0, 0, 272, 274, 3, 24, 12, 0, 273, 271, 1, 0, 0, 0, 274, 277, 1, 0, 0, 0, 275,
+ 273, 1, 0, 0, 0, 275, 276, 1, 0, 0, 0, 276, 289, 1, 0, 0, 0, 277, 275, 1, 0, 0, 0, 278,
+ 279, 3, 24, 12, 0, 279, 280, 5, 170, 0, 0, 280, 285, 3, 24, 12, 0, 281, 282, 5, 170,
+ 0, 0, 282, 284, 3, 24, 12, 0, 283, 281, 1, 0, 0, 0, 284, 287, 1, 0, 0, 0, 285, 283, 1,
+ 0, 0, 0, 285, 286, 1, 0, 0, 0, 286, 289, 1, 0, 0, 0, 287, 285, 1, 0, 0, 0, 288, 268, 1,
+ 0, 0, 0, 288, 278, 1, 0, 0, 0, 289, 29, 1, 0, 0, 0, 290, 291, 3, 32, 16, 0, 291, 292, 7,
+ 3, 0, 0, 292, 293, 3, 32, 16, 0, 293, 31, 1, 0, 0, 0, 294, 295, 3, 34, 17, 0, 295, 33,
+ 1, 0, 0, 0, 296, 297, 6, 17, -1, 0, 297, 298, 3, 36, 18, 0, 298, 304, 1, 0, 0, 0, 299,
+ 300, 10, 2, 0, 0, 300, 301, 7, 4, 0, 0, 301, 303, 3, 34, 17, 3, 302, 299, 1, 0, 0, 0, 303,
+ 306, 1, 0, 0, 0, 304, 302, 1, 0, 0, 0, 304, 305, 1, 0, 0, 0, 305, 35, 1, 0, 0, 0, 306, 304,
+ 1, 0, 0, 0, 307, 308, 6, 18, -1, 0, 308, 309, 3, 40, 20, 0, 309, 315, 1, 0, 0, 0, 310,
+ 311, 10, 2, 0, 0, 311, 312, 7, 5, 0, 0, 312, 314, 3, 36, 18, 3, 313, 310, 1, 0, 0, 0, 314,
+ 317, 1, 0, 0, 0, 315, 313, 1, 0, 0, 0, 315, 316, 1, 0, 0, 0, 316, 37, 1, 0, 0, 0, 317, 315,
+ 1, 0, 0, 0, 318, 319, 6, 19, -1, 0, 319, 320, 3, 42, 21, 0, 320, 326, 1, 0, 0, 0, 321,
+ 322, 10, 2, 0, 0, 322, 323, 7, 5, 0, 0, 323, 325, 3, 38, 19, 3, 324, 321, 1, 0, 0, 0, 325,
+ 328, 1, 0, 0, 0, 326, 324, 1, 0, 0, 0, 326, 327, 1, 0, 0, 0, 327, 39, 1, 0, 0, 0, 328, 326,
+ 1, 0, 0, 0, 329, 330, 7, 4, 0, 0, 330, 337, 3, 40, 20, 0, 331, 333, 3, 44, 22, 0, 332,
+ 331, 1, 0, 0, 0, 333, 334, 1, 0, 0, 0, 334, 332, 1, 0, 0, 0, 334, 335, 1, 0, 0, 0, 335,
+ 337, 1, 0, 0, 0, 336, 329, 1, 0, 0, 0, 336, 332, 1, 0, 0, 0, 337, 41, 1, 0, 0, 0, 338, 339,
+ 7, 4, 0, 0, 339, 348, 3, 42, 21, 0, 340, 344, 3, 44, 22, 0, 341, 343, 3, 46, 23, 0, 342,
+ 341, 1, 0, 0, 0, 343, 346, 1, 0, 0, 0, 344, 342, 1, 0, 0, 0, 344, 345, 1, 0, 0, 0, 345,
+ 348, 1, 0, 0, 0, 346, 344, 1, 0, 0, 0, 347, 338, 1, 0, 0, 0, 347, 340, 1, 0, 0, 0, 348,
+ 43, 1, 0, 0, 0, 349, 353, 3, 56, 28, 0, 350, 352, 3, 48, 24, 0, 351, 350, 1, 0, 0, 0, 352,
+ 355, 1, 0, 0, 0, 353, 351, 1, 0, 0, 0, 353, 354, 1, 0, 0, 0, 354, 45, 1, 0, 0, 0, 355, 353,
+ 1, 0, 0, 0, 356, 360, 3, 58, 29, 0, 357, 359, 3, 48, 24, 0, 358, 357, 1, 0, 0, 0, 359,
+ 362, 1, 0, 0, 0, 360, 358, 1, 0, 0, 0, 360, 361, 1, 0, 0, 0, 361, 47, 1, 0, 0, 0, 362, 360,
+ 1, 0, 0, 0, 363, 367, 5, 189, 0, 0, 364, 367, 3, 50, 25, 0, 365, 367, 3, 4, 2, 0, 366,
+ 363, 1, 0, 0, 0, 366, 364, 1, 0, 0, 0, 366, 365, 1, 0, 0, 0, 367, 49, 1, 0, 0, 0, 368, 374,
+ 5, 65, 0, 0, 369, 375, 3, 54, 27, 0, 370, 375, 3, 52, 26, 0, 371, 372, 3, 54, 27, 0, 372,
+ 373, 3, 52, 26, 0, 373, 375, 1, 0, 0, 0, 374, 369, 1, 0, 0, 0, 374, 370, 1, 0, 0, 0, 374,
+ 371, 1, 0, 0, 0, 375, 51, 1, 0, 0, 0, 376, 377, 5, 167, 0, 0, 377, 380, 5, 55, 0, 0, 378,
+ 381, 3, 32, 16, 0, 379, 381, 3, 30, 15, 0, 380, 378, 1, 0, 0, 0, 380, 379, 1, 0, 0, 0,
+ 381, 382, 1, 0, 0, 0, 382, 383, 5, 56, 0, 0, 383, 53, 1, 0, 0, 0, 384, 385, 5, 168, 0,
+ 0, 385, 388, 5, 55, 0, 0, 386, 389, 3, 32, 16, 0, 387, 389, 3, 30, 15, 0, 388, 386, 1,
+ 0, 0, 0, 388, 387, 1, 0, 0, 0, 389, 390, 1, 0, 0, 0, 390, 391, 5, 56, 0, 0, 391, 55, 1,
+ 0, 0, 0, 392, 393, 6, 28, -1, 0, 393, 394, 3, 60, 30, 0, 394, 409, 1, 0, 0, 0, 395, 396,
+ 10, 2, 0, 0, 396, 402, 5, 168, 0, 0, 397, 403, 3, 80, 40, 0, 398, 399, 5, 55, 0, 0, 399,
+ 400, 3, 32, 16, 0, 400, 401, 5, 56, 0, 0, 401, 403, 1, 0, 0, 0, 402, 397, 1, 0, 0, 0, 402,
+ 398, 1, 0, 0, 0, 403, 405, 1, 0, 0, 0, 404, 406, 3, 118, 59, 0, 405, 404, 1, 0, 0, 0, 405,
+ 406, 1, 0, 0, 0, 406, 408, 1, 0, 0, 0, 407, 395, 1, 0, 0, 0, 408, 411, 1, 0, 0, 0, 409,
+ 407, 1, 0, 0, 0, 409, 410, 1, 0, 0, 0, 410, 57, 1, 0, 0, 0, 411, 409, 1, 0, 0, 0, 412, 413,
+ 6, 29, -1, 0, 413, 414, 3, 62, 31, 0, 414, 429, 1, 0, 0, 0, 415, 416, 10, 2, 0, 0, 416,
+ 422, 5, 168, 0, 0, 417, 423, 3, 80, 40, 0, 418, 419, 5, 55, 0, 0, 419, 420, 3, 32, 16,
+ 0, 420, 421, 5, 56, 0, 0, 421, 423, 1, 0, 0, 0, 422, 417, 1, 0, 0, 0, 422, 418, 1, 0, 0,
+ 0, 423, 425, 1, 0, 0, 0, 424, 426, 3, 118, 59, 0, 425, 424, 1, 0, 0, 0, 425, 426, 1, 0,
+ 0, 0, 426, 428, 1, 0, 0, 0, 427, 415, 1, 0, 0, 0, 428, 431, 1, 0, 0, 0, 429, 427, 1, 0,
+ 0, 0, 429, 430, 1, 0, 0, 0, 430, 59, 1, 0, 0, 0, 431, 429, 1, 0, 0, 0, 432, 444, 3, 64,
+ 32, 0, 433, 444, 3, 66, 33, 0, 434, 444, 3, 68, 34, 0, 435, 444, 3, 70, 35, 0, 436, 444,
+ 3, 72, 36, 0, 437, 444, 3, 102, 51, 0, 438, 444, 3, 80, 40, 0, 439, 444, 3, 86, 43, 0,
+ 440, 444, 3, 88, 44, 0, 441, 444, 3, 18, 9, 0, 442, 444, 3, 20, 10, 0, 443, 432, 1, 0,
+ 0, 0, 443, 433, 1, 0, 0, 0, 443, 434, 1, 0, 0, 0, 443, 435, 1, 0, 0, 0, 443, 436, 1, 0,
+ 0, 0, 443, 437, 1, 0, 0, 0, 443, 438, 1, 0, 0, 0, 443, 439, 1, 0, 0, 0, 443, 440, 1, 0,
+ 0, 0, 443, 441, 1, 0, 0, 0, 443, 442, 1, 0, 0, 0, 444, 61, 1, 0, 0, 0, 445, 456, 3, 64,
+ 32, 0, 446, 456, 3, 66, 33, 0, 447, 456, 3, 68, 34, 0, 448, 456, 3, 70, 35, 0, 449, 456,
+ 3, 72, 36, 0, 450, 456, 3, 80, 40, 0, 451, 456, 3, 86, 43, 0, 452, 456, 3, 88, 44, 0,
+ 453, 456, 3, 18, 9, 0, 454, 456, 3, 20, 10, 0, 455, 445, 1, 0, 0, 0, 455, 446, 1, 0, 0,
+ 0, 455, 447, 1, 0, 0, 0, 455, 448, 1, 0, 0, 0, 455, 449, 1, 0, 0, 0, 455, 450, 1, 0, 0,
+ 0, 455, 451, 1, 0, 0, 0, 455, 452, 1, 0, 0, 0, 455, 453, 1, 0, 0, 0, 455, 454, 1, 0, 0,
+ 0, 456, 63, 1, 0, 0, 0, 457, 458, 5, 51, 0, 0, 458, 459, 3, 32, 16, 0, 459, 460, 5, 52,
+ 0, 0, 460, 570, 1, 0, 0, 0, 461, 462, 5, 53, 0, 0, 462, 463, 3, 32, 16, 0, 463, 464, 5,
+ 54, 0, 0, 464, 570, 1, 0, 0, 0, 465, 466, 5, 55, 0, 0, 466, 467, 3, 32, 16, 0, 467, 468,
+ 5, 56, 0, 0, 468, 570, 1, 0, 0, 0, 469, 470, 5, 57, 0, 0, 470, 471, 3, 32, 16, 0, 471,
+ 472, 5, 58, 0, 0, 472, 570, 1, 0, 0, 0, 473, 474, 5, 59, 0, 0, 474, 475, 3, 32, 16, 0,
+ 475, 476, 5, 60, 0, 0, 476, 570, 1, 0, 0, 0, 477, 478, 5, 61, 0, 0, 478, 479, 3, 32, 16,
+ 0, 479, 480, 5, 62, 0, 0, 480, 570, 1, 0, 0, 0, 481, 482, 5, 63, 0, 0, 482, 483, 3, 32,
+ 16, 0, 483, 484, 5, 64, 0, 0, 484, 570, 1, 0, 0, 0, 485, 486, 5, 78, 0, 0, 486, 487, 5,
+ 51, 0, 0, 487, 488, 3, 32, 16, 0, 488, 489, 5, 79, 0, 0, 489, 490, 5, 52, 0, 0, 490, 570,
+ 1, 0, 0, 0, 491, 492, 5, 78, 0, 0, 492, 493, 5, 53, 0, 0, 493, 494, 3, 32, 16, 0, 494,
+ 495, 5, 79, 0, 0, 495, 496, 5, 54, 0, 0, 496, 570, 1, 0, 0, 0, 497, 498, 5, 78, 0, 0, 498,
+ 499, 5, 55, 0, 0, 499, 500, 3, 32, 16, 0, 500, 501, 5, 79, 0, 0, 501, 502, 5, 56, 0, 0,
+ 502, 570, 1, 0, 0, 0, 503, 504, 5, 78, 0, 0, 504, 505, 5, 57, 0, 0, 505, 506, 3, 32, 16,
+ 0, 506, 507, 5, 79, 0, 0, 507, 508, 5, 58, 0, 0, 508, 570, 1, 0, 0, 0, 509, 510, 5, 78,
+ 0, 0, 510, 511, 5, 59, 0, 0, 511, 512, 3, 32, 16, 0, 512, 513, 5, 79, 0, 0, 513, 514,
+ 5, 60, 0, 0, 514, 570, 1, 0, 0, 0, 515, 516, 5, 78, 0, 0, 516, 517, 5, 61, 0, 0, 517, 518,
+ 3, 32, 16, 0, 518, 519, 5, 79, 0, 0, 519, 520, 5, 62, 0, 0, 520, 570, 1, 0, 0, 0, 521,
+ 522, 5, 78, 0, 0, 522, 523, 5, 63, 0, 0, 523, 524, 3, 32, 16, 0, 524, 525, 5, 79, 0, 0,
+ 525, 526, 5, 64, 0, 0, 526, 570, 1, 0, 0, 0, 527, 528, 5, 80, 0, 0, 528, 529, 5, 51, 0,
+ 0, 529, 530, 3, 32, 16, 0, 530, 531, 5, 81, 0, 0, 531, 532, 5, 52, 0, 0, 532, 570, 1,
+ 0, 0, 0, 533, 534, 5, 80, 0, 0, 534, 535, 5, 53, 0, 0, 535, 536, 3, 32, 16, 0, 536, 537,
+ 5, 81, 0, 0, 537, 538, 5, 54, 0, 0, 538, 570, 1, 0, 0, 0, 539, 540, 5, 80, 0, 0, 540, 541,
+ 5, 55, 0, 0, 541, 542, 3, 32, 16, 0, 542, 543, 5, 81, 0, 0, 543, 544, 5, 56, 0, 0, 544,
+ 570, 1, 0, 0, 0, 545, 546, 5, 80, 0, 0, 546, 547, 5, 57, 0, 0, 547, 548, 3, 32, 16, 0,
+ 548, 549, 5, 81, 0, 0, 549, 550, 5, 58, 0, 0, 550, 570, 1, 0, 0, 0, 551, 552, 5, 80, 0,
+ 0, 552, 553, 5, 59, 0, 0, 553, 554, 3, 32, 16, 0, 554, 555, 5, 81, 0, 0, 555, 556, 5,
+ 60, 0, 0, 556, 570, 1, 0, 0, 0, 557, 558, 5, 80, 0, 0, 558, 559, 5, 61, 0, 0, 559, 560,
+ 3, 32, 16, 0, 560, 561, 5, 81, 0, 0, 561, 562, 5, 62, 0, 0, 562, 570, 1, 0, 0, 0, 563,
+ 564, 5, 80, 0, 0, 564, 565, 5, 63, 0, 0, 565, 566, 3, 32, 16, 0, 566, 567, 5, 81, 0, 0,
+ 567, 568, 5, 64, 0, 0, 568, 570, 1, 0, 0, 0, 569, 457, 1, 0, 0, 0, 569, 461, 1, 0, 0, 0,
+ 569, 465, 1, 0, 0, 0, 569, 469, 1, 0, 0, 0, 569, 473, 1, 0, 0, 0, 569, 477, 1, 0, 0, 0,
+ 569, 481, 1, 0, 0, 0, 569, 485, 1, 0, 0, 0, 569, 491, 1, 0, 0, 0, 569, 497, 1, 0, 0, 0,
+ 569, 503, 1, 0, 0, 0, 569, 509, 1, 0, 0, 0, 569, 515, 1, 0, 0, 0, 569, 521, 1, 0, 0, 0,
+ 569, 527, 1, 0, 0, 0, 569, 533, 1, 0, 0, 0, 569, 539, 1, 0, 0, 0, 569, 545, 1, 0, 0, 0,
+ 569, 551, 1, 0, 0, 0, 569, 557, 1, 0, 0, 0, 569, 563, 1, 0, 0, 0, 570, 65, 1, 0, 0, 0, 571,
+ 572, 5, 69, 0, 0, 572, 573, 3, 32, 16, 0, 573, 574, 5, 69, 0, 0, 574, 588, 1, 0, 0, 0,
+ 575, 576, 5, 78, 0, 0, 576, 577, 5, 69, 0, 0, 577, 578, 3, 32, 16, 0, 578, 579, 5, 79,
+ 0, 0, 579, 580, 5, 69, 0, 0, 580, 588, 1, 0, 0, 0, 581, 582, 5, 80, 0, 0, 582, 583, 5,
+ 69, 0, 0, 583, 584, 3, 32, 16, 0, 584, 585, 5, 81, 0, 0, 585, 586, 5, 69, 0, 0, 586, 588,
+ 1, 0, 0, 0, 587, 571, 1, 0, 0, 0, 587, 575, 1, 0, 0, 0, 587, 581, 1, 0, 0, 0, 588, 67, 1,
+ 0, 0, 0, 589, 590, 5, 65, 0, 0, 590, 591, 3, 32, 16, 0, 591, 592, 5, 65, 0, 0, 592, 638,
+ 1, 0, 0, 0, 593, 594, 5, 66, 0, 0, 594, 595, 3, 32, 16, 0, 595, 596, 5, 67, 0, 0, 596,
+ 638, 1, 0, 0, 0, 597, 598, 5, 68, 0, 0, 598, 599, 3, 32, 16, 0, 599, 600, 5, 68, 0, 0,
+ 600, 638, 1, 0, 0, 0, 601, 602, 5, 78, 0, 0, 602, 603, 5, 65, 0, 0, 603, 604, 3, 32, 16,
+ 0, 604, 605, 5, 79, 0, 0, 605, 606, 5, 65, 0, 0, 606, 638, 1, 0, 0, 0, 607, 608, 5, 78,
+ 0, 0, 608, 609, 5, 66, 0, 0, 609, 610, 3, 32, 16, 0, 610, 611, 5, 79, 0, 0, 611, 612,
+ 5, 67, 0, 0, 612, 638, 1, 0, 0, 0, 613, 614, 5, 78, 0, 0, 614, 615, 5, 68, 0, 0, 615, 616,
+ 3, 32, 16, 0, 616, 617, 5, 79, 0, 0, 617, 618, 5, 68, 0, 0, 618, 638, 1, 0, 0, 0, 619,
+ 620, 5, 80, 0, 0, 620, 621, 5, 65, 0, 0, 621, 622, 3, 32, 16, 0, 622, 623, 5, 81, 0, 0,
+ 623, 624, 5, 65, 0, 0, 624, 638, 1, 0, 0, 0, 625, 626, 5, 80, 0, 0, 626, 627, 5, 66, 0,
+ 0, 627, 628, 3, 32, 16, 0, 628, 629, 5, 81, 0, 0, 629, 630, 5, 67, 0, 0, 630, 638, 1,
+ 0, 0, 0, 631, 632, 5, 80, 0, 0, 632, 633, 5, 68, 0, 0, 633, 634, 3, 32, 16, 0, 634, 635,
+ 5, 81, 0, 0, 635, 636, 5, 68, 0, 0, 636, 638, 1, 0, 0, 0, 637, 589, 1, 0, 0, 0, 637, 593,
+ 1, 0, 0, 0, 637, 597, 1, 0, 0, 0, 637, 601, 1, 0, 0, 0, 637, 607, 1, 0, 0, 0, 637, 613,
+ 1, 0, 0, 0, 637, 619, 1, 0, 0, 0, 637, 625, 1, 0, 0, 0, 637, 631, 1, 0, 0, 0, 638, 69, 1,
+ 0, 0, 0, 639, 640, 5, 70, 0, 0, 640, 641, 3, 32, 16, 0, 641, 642, 5, 71, 0, 0, 642, 672,
+ 1, 0, 0, 0, 643, 644, 5, 72, 0, 0, 644, 645, 3, 32, 16, 0, 645, 646, 5, 73, 0, 0, 646,
+ 672, 1, 0, 0, 0, 647, 648, 5, 78, 0, 0, 648, 649, 5, 70, 0, 0, 649, 650, 3, 32, 16, 0,
+ 650, 651, 5, 79, 0, 0, 651, 652, 5, 71, 0, 0, 652, 672, 1, 0, 0, 0, 653, 654, 5, 78, 0,
+ 0, 654, 655, 5, 72, 0, 0, 655, 656, 3, 32, 16, 0, 656, 657, 5, 79, 0, 0, 657, 658, 5,
+ 73, 0, 0, 658, 672, 1, 0, 0, 0, 659, 660, 5, 80, 0, 0, 660, 661, 5, 70, 0, 0, 661, 662,
+ 3, 32, 16, 0, 662, 663, 5, 81, 0, 0, 663, 664, 5, 71, 0, 0, 664, 672, 1, 0, 0, 0, 665,
+ 666, 5, 80, 0, 0, 666, 667, 5, 72, 0, 0, 667, 668, 3, 32, 16, 0, 668, 669, 5, 81, 0, 0,
+ 669, 670, 5, 73, 0, 0, 670, 672, 1, 0, 0, 0, 671, 639, 1, 0, 0, 0, 671, 643, 1, 0, 0, 0,
+ 671, 647, 1, 0, 0, 0, 671, 653, 1, 0, 0, 0, 671, 659, 1, 0, 0, 0, 671, 665, 1, 0, 0, 0,
+ 672, 71, 1, 0, 0, 0, 673, 674, 5, 74, 0, 0, 674, 675, 3, 32, 16, 0, 675, 676, 5, 75, 0,
+ 0, 676, 706, 1, 0, 0, 0, 677, 678, 5, 76, 0, 0, 678, 679, 3, 32, 16, 0, 679, 680, 5, 77,
+ 0, 0, 680, 706, 1, 0, 0, 0, 681, 682, 5, 78, 0, 0, 682, 683, 5, 74, 0, 0, 683, 684, 3,
+ 32, 16, 0, 684, 685, 5, 79, 0, 0, 685, 686, 5, 75, 0, 0, 686, 706, 1, 0, 0, 0, 687, 688,
+ 5, 78, 0, 0, 688, 689, 5, 76, 0, 0, 689, 690, 3, 32, 16, 0, 690, 691, 5, 79, 0, 0, 691,
+ 692, 5, 77, 0, 0, 692, 706, 1, 0, 0, 0, 693, 694, 5, 80, 0, 0, 694, 695, 5, 74, 0, 0, 695,
+ 696, 3, 32, 16, 0, 696, 697, 5, 81, 0, 0, 697, 698, 5, 75, 0, 0, 698, 706, 1, 0, 0, 0,
+ 699, 700, 5, 80, 0, 0, 700, 701, 5, 76, 0, 0, 701, 702, 3, 32, 16, 0, 702, 703, 5, 81,
+ 0, 0, 703, 704, 5, 77, 0, 0, 704, 706, 1, 0, 0, 0, 705, 673, 1, 0, 0, 0, 705, 677, 1, 0,
+ 0, 0, 705, 681, 1, 0, 0, 0, 705, 687, 1, 0, 0, 0, 705, 693, 1, 0, 0, 0, 705, 699, 1, 0,
+ 0, 0, 706, 73, 1, 0, 0, 0, 707, 708, 3, 0, 0, 0, 708, 709, 5, 55, 0, 0, 709, 710, 3, 32,
+ 16, 0, 710, 711, 5, 56, 0, 0, 711, 75, 1, 0, 0, 0, 712, 717, 5, 176, 0, 0, 713, 717, 5,
+ 191, 0, 0, 714, 717, 5, 192, 0, 0, 715, 717, 3, 74, 37, 0, 716, 712, 1, 0, 0, 0, 716,
+ 713, 1, 0, 0, 0, 716, 714, 1, 0, 0, 0, 716, 715, 1, 0, 0, 0, 717, 719, 1, 0, 0, 0, 718,
+ 720, 3, 118, 59, 0, 719, 718, 1, 0, 0, 0, 719, 720, 1, 0, 0, 0, 720, 77, 1, 0, 0, 0, 721,
+ 726, 5, 176, 0, 0, 722, 726, 5, 191, 0, 0, 723, 726, 5, 192, 0, 0, 724, 726, 3, 74, 37,
+ 0, 725, 721, 1, 0, 0, 0, 725, 722, 1, 0, 0, 0, 725, 723, 1, 0, 0, 0, 725, 724, 1, 0, 0,
+ 0, 726, 735, 1, 0, 0, 0, 727, 728, 3, 120, 60, 0, 728, 729, 3, 118, 59, 0, 729, 736,
+ 1, 0, 0, 0, 730, 731, 3, 118, 59, 0, 731, 732, 3, 120, 60, 0, 732, 736, 1, 0, 0, 0, 733,
+ 736, 3, 118, 59, 0, 734, 736, 3, 120, 60, 0, 735, 727, 1, 0, 0, 0, 735, 730, 1, 0, 0,
+ 0, 735, 733, 1, 0, 0, 0, 735, 734, 1, 0, 0, 0, 735, 736, 1, 0, 0, 0, 736, 79, 1, 0, 0, 0,
+ 737, 746, 3, 78, 39, 0, 738, 746, 5, 193, 0, 0, 739, 746, 5, 179, 0, 0, 740, 746, 5,
+ 190, 0, 0, 741, 746, 5, 180, 0, 0, 742, 746, 5, 173, 0, 0, 743, 746, 3, 82, 41, 0, 744,
+ 746, 5, 194, 0, 0, 745, 737, 1, 0, 0, 0, 745, 738, 1, 0, 0, 0, 745, 739, 1, 0, 0, 0, 745,
+ 740, 1, 0, 0, 0, 745, 741, 1, 0, 0, 0, 745, 742, 1, 0, 0, 0, 745, 743, 1, 0, 0, 0, 745,
+ 744, 1, 0, 0, 0, 746, 81, 1, 0, 0, 0, 747, 748, 5, 154, 0, 0, 748, 749, 5, 55, 0, 0, 749,
+ 750, 3, 84, 42, 0, 750, 751, 5, 56, 0, 0, 751, 83, 1, 0, 0, 0, 752, 754, 7, 6, 0, 0, 753,
+ 752, 1, 0, 0, 0, 754, 755, 1, 0, 0, 0, 755, 753, 1, 0, 0, 0, 755, 756, 1, 0, 0, 0, 756,
+ 85, 1, 0, 0, 0, 757, 758, 5, 150, 0, 0, 758, 759, 5, 55, 0, 0, 759, 760, 3, 32, 16, 0,
+ 760, 761, 5, 56, 0, 0, 761, 762, 5, 55, 0, 0, 762, 763, 3, 32, 16, 0, 763, 764, 5, 56,
+ 0, 0, 764, 87, 1, 0, 0, 0, 765, 766, 5, 55, 0, 0, 766, 767, 3, 32, 16, 0, 767, 768, 5,
+ 152, 0, 0, 768, 769, 3, 32, 16, 0, 769, 770, 5, 56, 0, 0, 770, 780, 1, 0, 0, 0, 771, 772,
+ 5, 151, 0, 0, 772, 773, 5, 55, 0, 0, 773, 774, 3, 32, 16, 0, 774, 775, 5, 56, 0, 0, 775,
+ 776, 5, 55, 0, 0, 776, 777, 3, 32, 16, 0, 777, 778, 5, 56, 0, 0, 778, 780, 1, 0, 0, 0,
+ 779, 765, 1, 0, 0, 0, 779, 771, 1, 0, 0, 0, 780, 89, 1, 0, 0, 0, 781, 782, 7, 7, 0, 0, 782,
+ 91, 1, 0, 0, 0, 783, 784, 7, 8, 0, 0, 784, 93, 1, 0, 0, 0, 785, 786, 7, 9, 0, 0, 786, 95,
+ 1, 0, 0, 0, 787, 788, 7, 10, 0, 0, 788, 97, 1, 0, 0, 0, 789, 796, 3, 90, 45, 0, 790, 791,
+ 5, 155, 0, 0, 791, 792, 5, 55, 0, 0, 792, 793, 3, 94, 47, 0, 793, 794, 5, 56, 0, 0, 794,
+ 796, 1, 0, 0, 0, 795, 789, 1, 0, 0, 0, 795, 790, 1, 0, 0, 0, 796, 99, 1, 0, 0, 0, 797, 804,
+ 3, 92, 46, 0, 798, 799, 5, 155, 0, 0, 799, 800, 5, 55, 0, 0, 800, 801, 3, 96, 48, 0, 801,
+ 802, 5, 56, 0, 0, 802, 804, 1, 0, 0, 0, 803, 797, 1, 0, 0, 0, 803, 798, 1, 0, 0, 0, 804,
+ 101, 1, 0, 0, 0, 805, 818, 3, 98, 49, 0, 806, 808, 3, 118, 59, 0, 807, 806, 1, 0, 0, 0,
+ 807, 808, 1, 0, 0, 0, 808, 810, 1, 0, 0, 0, 809, 811, 3, 120, 60, 0, 810, 809, 1, 0, 0,
+ 0, 810, 811, 1, 0, 0, 0, 811, 819, 1, 0, 0, 0, 812, 814, 3, 120, 60, 0, 813, 812, 1, 0,
+ 0, 0, 813, 814, 1, 0, 0, 0, 814, 816, 1, 0, 0, 0, 815, 817, 3, 118, 59, 0, 816, 815, 1,
+ 0, 0, 0, 816, 817, 1, 0, 0, 0, 817, 819, 1, 0, 0, 0, 818, 807, 1, 0, 0, 0, 818, 813, 1,
+ 0, 0, 0, 819, 841, 1, 0, 0, 0, 820, 822, 5, 78, 0, 0, 821, 820, 1, 0, 0, 0, 821, 822, 1,
+ 0, 0, 0, 822, 823, 1, 0, 0, 0, 823, 824, 5, 51, 0, 0, 824, 826, 3, 110, 55, 0, 825, 827,
+ 5, 79, 0, 0, 826, 825, 1, 0, 0, 0, 826, 827, 1, 0, 0, 0, 827, 828, 1, 0, 0, 0, 828, 829,
+ 5, 52, 0, 0, 829, 842, 1, 0, 0, 0, 830, 832, 5, 80, 0, 0, 831, 830, 1, 0, 0, 0, 831, 832,
+ 1, 0, 0, 0, 832, 833, 1, 0, 0, 0, 833, 834, 5, 51, 0, 0, 834, 836, 3, 110, 55, 0, 835,
+ 837, 5, 81, 0, 0, 836, 835, 1, 0, 0, 0, 836, 837, 1, 0, 0, 0, 837, 838, 1, 0, 0, 0, 838,
+ 839, 5, 52, 0, 0, 839, 842, 1, 0, 0, 0, 840, 842, 3, 112, 56, 0, 841, 821, 1, 0, 0, 0,
+ 841, 831, 1, 0, 0, 0, 841, 840, 1, 0, 0, 0, 842, 972, 1, 0, 0, 0, 843, 856, 3, 100, 50,
+ 0, 844, 846, 3, 118, 59, 0, 845, 844, 1, 0, 0, 0, 845, 846, 1, 0, 0, 0, 846, 848, 1, 0,
+ 0, 0, 847, 849, 3, 120, 60, 0, 848, 847, 1, 0, 0, 0, 848, 849, 1, 0, 0, 0, 849, 857, 1,
+ 0, 0, 0, 850, 852, 3, 120, 60, 0, 851, 850, 1, 0, 0, 0, 851, 852, 1, 0, 0, 0, 852, 854,
+ 1, 0, 0, 0, 853, 855, 3, 118, 59, 0, 854, 853, 1, 0, 0, 0, 854, 855, 1, 0, 0, 0, 855, 857,
+ 1, 0, 0, 0, 856, 845, 1, 0, 0, 0, 856, 851, 1, 0, 0, 0, 857, 879, 1, 0, 0, 0, 858, 860,
+ 5, 78, 0, 0, 859, 858, 1, 0, 0, 0, 859, 860, 1, 0, 0, 0, 860, 861, 1, 0, 0, 0, 861, 862,
+ 5, 51, 0, 0, 862, 864, 3, 114, 57, 0, 863, 865, 5, 79, 0, 0, 864, 863, 1, 0, 0, 0, 864,
+ 865, 1, 0, 0, 0, 865, 866, 1, 0, 0, 0, 866, 867, 5, 52, 0, 0, 867, 880, 1, 0, 0, 0, 868,
+ 870, 5, 80, 0, 0, 869, 868, 1, 0, 0, 0, 869, 870, 1, 0, 0, 0, 870, 871, 1, 0, 0, 0, 871,
+ 872, 5, 51, 0, 0, 872, 874, 3, 114, 57, 0, 873, 875, 5, 81, 0, 0, 874, 873, 1, 0, 0, 0,
+ 874, 875, 1, 0, 0, 0, 875, 876, 1, 0, 0, 0, 876, 877, 5, 52, 0, 0, 877, 880, 1, 0, 0, 0,
+ 878, 880, 3, 116, 58, 0, 879, 859, 1, 0, 0, 0, 879, 869, 1, 0, 0, 0, 879, 878, 1, 0, 0,
+ 0, 880, 972, 1, 0, 0, 0, 881, 883, 3, 76, 38, 0, 882, 884, 3, 120, 60, 0, 883, 882, 1,
+ 0, 0, 0, 883, 884, 1, 0, 0, 0, 884, 886, 1, 0, 0, 0, 885, 887, 5, 78, 0, 0, 886, 885, 1,
+ 0, 0, 0, 886, 887, 1, 0, 0, 0, 887, 888, 1, 0, 0, 0, 888, 889, 7, 11, 0, 0, 889, 890, 3,
+ 106, 53, 0, 890, 892, 7, 12, 0, 0, 891, 893, 5, 79, 0, 0, 892, 891, 1, 0, 0, 0, 892, 893,
+ 1, 0, 0, 0, 893, 972, 1, 0, 0, 0, 894, 896, 3, 76, 38, 0, 895, 897, 3, 120, 60, 0, 896,
+ 895, 1, 0, 0, 0, 896, 897, 1, 0, 0, 0, 897, 898, 1, 0, 0, 0, 898, 900, 5, 55, 0, 0, 899,
+ 901, 5, 78, 0, 0, 900, 899, 1, 0, 0, 0, 900, 901, 1, 0, 0, 0, 901, 902, 1, 0, 0, 0, 902,
+ 903, 7, 11, 0, 0, 903, 904, 3, 106, 53, 0, 904, 906, 7, 12, 0, 0, 905, 907, 5, 79, 0,
+ 0, 906, 905, 1, 0, 0, 0, 906, 907, 1, 0, 0, 0, 907, 908, 1, 0, 0, 0, 908, 909, 5, 56, 0,
+ 0, 909, 972, 1, 0, 0, 0, 910, 931, 5, 84, 0, 0, 911, 912, 3, 118, 59, 0, 912, 913, 3,
+ 120, 60, 0, 913, 932, 1, 0, 0, 0, 914, 915, 3, 120, 60, 0, 915, 916, 3, 118, 59, 0, 916,
+ 932, 1, 0, 0, 0, 917, 918, 5, 167, 0, 0, 918, 919, 5, 55, 0, 0, 919, 920, 5, 56, 0, 0,
+ 920, 921, 1, 0, 0, 0, 921, 922, 5, 168, 0, 0, 922, 923, 5, 55, 0, 0, 923, 932, 5, 56,
+ 0, 0, 924, 925, 5, 168, 0, 0, 925, 926, 5, 55, 0, 0, 926, 927, 5, 56, 0, 0, 927, 928,
+ 1, 0, 0, 0, 928, 929, 5, 167, 0, 0, 929, 930, 5, 55, 0, 0, 930, 932, 5, 56, 0, 0, 931,
+ 911, 1, 0, 0, 0, 931, 914, 1, 0, 0, 0, 931, 917, 1, 0, 0, 0, 931, 924, 1, 0, 0, 0, 931,
+ 932, 1, 0, 0, 0, 932, 939, 1, 0, 0, 0, 933, 935, 3, 34, 17, 0, 934, 933, 1, 0, 0, 0, 934,
+ 935, 1, 0, 0, 0, 935, 936, 1, 0, 0, 0, 936, 940, 5, 173, 0, 0, 937, 940, 3, 86, 43, 0,
+ 938, 940, 3, 34, 17, 0, 939, 934, 1, 0, 0, 0, 939, 937, 1, 0, 0, 0, 939, 938, 1, 0, 0,
+ 0, 940, 972, 1, 0, 0, 0, 941, 946, 5, 121, 0, 0, 942, 943, 5, 61, 0, 0, 943, 944, 3, 32,
+ 16, 0, 944, 945, 5, 62, 0, 0, 945, 947, 1, 0, 0, 0, 946, 942, 1, 0, 0, 0, 946, 947, 1,
+ 0, 0, 0, 947, 948, 1, 0, 0, 0, 948, 949, 5, 55, 0, 0, 949, 950, 3, 32, 16, 0, 950, 951,
+ 5, 56, 0, 0, 951, 972, 1, 0, 0, 0, 952, 959, 7, 13, 0, 0, 953, 954, 3, 122, 61, 0, 954,
+ 955, 3, 120, 60, 0, 955, 960, 1, 0, 0, 0, 956, 957, 3, 120, 60, 0, 957, 958, 3, 122,
+ 61, 0, 958, 960, 1, 0, 0, 0, 959, 953, 1, 0, 0, 0, 959, 956, 1, 0, 0, 0, 960, 961, 1, 0,
+ 0, 0, 961, 962, 3, 36, 18, 0, 962, 972, 1, 0, 0, 0, 963, 964, 5, 82, 0, 0, 964, 965, 3,
+ 108, 54, 0, 965, 966, 3, 36, 18, 0, 966, 972, 1, 0, 0, 0, 967, 969, 5, 174, 0, 0, 968,
+ 970, 3, 120, 60, 0, 969, 968, 1, 0, 0, 0, 969, 970, 1, 0, 0, 0, 970, 972, 1, 0, 0, 0, 971,
+ 805, 1, 0, 0, 0, 971, 843, 1, 0, 0, 0, 971, 881, 1, 0, 0, 0, 971, 894, 1, 0, 0, 0, 971,
+ 910, 1, 0, 0, 0, 971, 941, 1, 0, 0, 0, 971, 952, 1, 0, 0, 0, 971, 963, 1, 0, 0, 0, 971,
+ 967, 1, 0, 0, 0, 972, 103, 1, 0, 0, 0, 973, 974, 3, 32, 16, 0, 974, 975, 5, 171, 0, 0,
+ 975, 976, 3, 104, 52, 0, 976, 979, 1, 0, 0, 0, 977, 979, 3, 32, 16, 0, 978, 973, 1, 0,
+ 0, 0, 978, 977, 1, 0, 0, 0, 979, 105, 1, 0, 0, 0, 980, 989, 3, 80, 40, 0, 981, 982, 3,
+ 32, 16, 0, 982, 983, 5, 171, 0, 0, 983, 989, 1, 0, 0, 0, 984, 985, 3, 32, 16, 0, 985,
+ 986, 5, 171, 0, 0, 986, 987, 3, 104, 52, 0, 987, 989, 1, 0, 0, 0, 988, 980, 1, 0, 0, 0,
+ 988, 981, 1, 0, 0, 0, 988, 984, 1, 0, 0, 0, 989, 107, 1, 0, 0, 0, 990, 991, 5, 167, 0,
+ 0, 991, 992, 5, 55, 0, 0, 992, 993, 7, 14, 0, 0, 993, 994, 5, 83, 0, 0, 994, 999, 3, 32,
+ 16, 0, 995, 996, 5, 168, 0, 0, 996, 997, 5, 55, 0, 0, 997, 998, 7, 4, 0, 0, 998, 1000,
+ 5, 56, 0, 0, 999, 995, 1, 0, 0, 0, 999, 1000, 1, 0, 0, 0, 1000, 1001, 1, 0, 0, 0, 1001,
+ 1002, 5, 56, 0, 0, 1002, 109, 1, 0, 0, 0, 1003, 1004, 3, 32, 16, 0, 1004, 111, 1, 0,
+ 0, 0, 1005, 1006, 3, 38, 19, 0, 1006, 113, 1, 0, 0, 0, 1007, 1013, 3, 32, 16, 0, 1008,
+ 1009, 3, 32, 16, 0, 1009, 1010, 5, 171, 0, 0, 1010, 1011, 3, 114, 57, 0, 1011, 1013,
+ 1, 0, 0, 0, 1012, 1007, 1, 0, 0, 0, 1012, 1008, 1, 0, 0, 0, 1013, 115, 1, 0, 0, 0, 1014,
+ 1015, 3, 38, 19, 0, 1015, 117, 1, 0, 0, 0, 1016, 1025, 5, 167, 0, 0, 1017, 1026, 3,
+ 80, 40, 0, 1018, 1021, 5, 55, 0, 0, 1019, 1022, 3, 32, 16, 0, 1020, 1022, 3, 104, 52,
+ 0, 1021, 1019, 1, 0, 0, 0, 1021, 1020, 1, 0, 0, 0, 1022, 1023, 1, 0, 0, 0, 1023, 1024,
+ 5, 56, 0, 0, 1024, 1026, 1, 0, 0, 0, 1025, 1017, 1, 0, 0, 0, 1025, 1018, 1, 0, 0, 0, 1026,
+ 119, 1, 0, 0, 0, 1027, 1033, 5, 168, 0, 0, 1028, 1034, 3, 80, 40, 0, 1029, 1030, 5,
+ 55, 0, 0, 1030, 1031, 3, 32, 16, 0, 1031, 1032, 5, 56, 0, 0, 1032, 1034, 1, 0, 0, 0,
+ 1033, 1028, 1, 0, 0, 0, 1033, 1029, 1, 0, 0, 0, 1034, 121, 1, 0, 0, 0, 1035, 1036, 5,
+ 167, 0, 0, 1036, 1037, 5, 55, 0, 0, 1037, 1038, 3, 30, 15, 0, 1038, 1039, 5, 56, 0,
+ 0, 1039, 123, 1, 0, 0, 0, 1040, 1041, 5, 167, 0, 0, 1041, 1042, 5, 55, 0, 0, 1042, 1043,
+ 3, 30, 15, 0, 1043, 1044, 5, 56, 0, 0, 1044, 125, 1, 0, 0, 0, 92, 130, 140, 146, 160,
+ 167, 176, 180, 188, 194, 202, 206, 215, 226, 266, 275, 285, 288, 304, 315, 326,
+ 334, 336, 344, 347, 353, 360, 366, 374, 380, 388, 402, 405, 409, 422, 425, 429,
+ 443, 455, 569, 587, 637, 671, 705, 716, 719, 725, 735, 745, 755, 779, 795, 803,
+ 807, 810, 813, 816, 818, 821, 826, 831, 836, 841, 845, 848, 851, 854, 856, 859,
+ 864, 869, 874, 879, 883, 886, 892, 896, 900, 906, 931, 934, 939, 946, 959, 969,
+ 971, 978, 988, 999, 1012, 1021, 1025, 1033
+ ]
+
+
+class PSParser (Parser):
+
+ grammarFileName = "PS.g4"
+
+ atn = ATNDeserializer().deserialize(serializedATN())
+
+ decisionsToDFA = [DFA(ds, i) for i, ds in enumerate(atn.decisionToState)]
+
+ sharedContextCache = PredictionContextCache()
+
+ literalNames = [u"<INVALID>", u"'\\acute'", u"'\\bar'", u"'\\overline'",
+ u"'\\breve'", u"'\\check'", u"'\\widecheck'", u"'\\dot'",
+ u"'\\ddot'", u"'\\grave'", u"'\\hat'", u"'\\tilde'",
+ u"'\\widetilde'", u"'\\vec'", u"'\\overrightarrow'",
+ u"'\\bm'", u"'\\boldsymbol'", u"'\\text'", u"'\\textit'",
+ u"'\\mathbb'", u"'\\mathbin'", u"'\\mathbf'", u"'\\mathcal'",
+ u"'\\mathclap'", u"'\\mathclose'", u"'\\mathellipsis'",
+ u"'\\mathfrak'", u"'\\mathinner'", u"'\\mathnormal'",
+ u"'\\mathop'", u"'\\mathopen'", u"'\\mathord'", u"'\\mathpunct'",
+ u"'\\mathrel'", u"'\\mathring'", u"'\\mathrlap'", u"'\\mathrm'",
+ u"'\\mathscr'", u"'\\mathsf'", u"'\\mathsterling'",
+ u"'\\mathtt'", u"'^T'", u"'^{T}'", u"'^{\\top}'", u"'''",
+ u"<INVALID>", u"'\\$'", u"'+'", u"'-'", u"'*'", u"<INVALID>",
+ u"'('", u"')'", u"'\\lgroup'", u"'\\rgroup'", u"'{'",
+ u"'}'", u"'\\{'", u"'\\}'", u"'\\lbrace'", u"'\\rbrace'",
+ u"'['", u"']'", u"'\\lbrack'", u"'\\rbrack'", u"'|'",
+ u"'\\lvert'", u"'\\rvert'", u"'\\vert'", u"'\\|'",
+ u"'\\lfloor'", u"'\\rfloor'", u"'\\llcorner'", u"'\\lrcorner'",
+ u"'\\lceil'", u"'\\rceil'", u"'\\ulcorner'", u"'\\urcorner'",
+ u"'\\left'", u"'\\right'", u"'\\mleft'", u"'\\mright'",
+ u"'\\lim'", u"<INVALID>", u"'\\int'", u"'\\sum'", u"'\\prod'",
+ u"'\\log'", u"'\\ln'", u"'\\exp'", u"'\\sin'", u"'\\cos'",
+ u"'\\tan'", u"'\\csc'", u"'\\sec'", u"'\\cot'", u"'\\arcsin'",
+ u"'\\arccos'", u"'\\arctan'", u"'\\arccsc'", u"'\\arcsec'",
+ u"'\\arccot'", u"'\\sinh'", u"'\\cosh'", u"'\\tanh'",
+ u"'\\arsinh'", u"'\\arcosh'", u"'\\artanh'", u"'\\arcsinh'",
+ u"'\\arccosh'", u"'\\arctanh'", u"'arsinh'", u"'arcsinh'",
+ u"'arcosh'", u"'arccosh'", u"'artanh'", u"'arctanh'",
+ u"'gcd'", u"'lcm'", u"'floor'", u"'ceil'", u"'\\sqrt'",
+ u"'\\gcd'", u"'\\lcm'", u"'\\floor'", u"'\\ceil'",
+ u"'\\max'", u"'\\min'", u"'\\det'", u"'eye'", u"'zeros'",
+ u"'ones'", u"'cols'", u"'rows'", u"'diag'", u"'norm'",
+ u"'rank'", u"<INVALID>", u"'rref'", u"'hstack'", u"'vstack'",
+ u"<INVALID>", u"'nullspace'", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"'\\times'", u"'\\cdot'",
+ u"'\\div'", u"'\\frac'", u"<INVALID>", u"'\\choose'",
+ u"'\\mod'", u"'\\mathit'", u"'\\operatorname'", u"'matrix'",
+ u"'pmatrix'", u"'bmatrix'", u"'vmatrix'", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"'&'", u"'\\\\'", u"'_'", u"'^'", u"':'", u"';'",
+ u"','", u"'.'", u"<INVALID>", u"<INVALID>", u"'E'",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"'\\in'", u"'='", u"<INVALID>", u"'<'",
+ u"<INVALID>", u"'>'", u"<INVALID>", u"<INVALID>", u"'!'"]
+
+ symbolicNames = [u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"<INVALID>", u"<INVALID>", u"<INVALID>",
+ u"<INVALID>", u"WS", u"DOLLAR_SIGN", u"ADD", u"SUB",
+ u"MUL", u"DIV", u"L_PAREN", u"R_PAREN", u"L_GROUP",
+ u"R_GROUP", u"L_BRACE", u"R_BRACE", u"L_BRACE_VISUAL",
+ u"R_BRACE_VISUAL", u"L_BRACE_CMD", u"R_BRACE_CMD",
+ u"L_BRACKET", u"R_BRACKET", u"L_BRACK", u"R_BRACK",
+ u"BAR", u"L_VERT", u"R_VERT", u"VERT", u"NORM", u"L_FLOOR",
+ u"R_FLOOR", u"LL_CORNER", u"LR_CORNER", u"L_CEIL",
+ u"R_CEIL", u"UL_CORNER", u"UR_CORNER", u"L_LEFT",
+ u"R_RIGHT", u"ML_LEFT", u"MR_RIGHT", u"FUNC_LIM",
+ u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM", u"FUNC_PROD",
+ u"FUNC_LOG", u"FUNC_LN", u"FUNC_EXP", u"FUNC_SIN",
+ u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC",
+ u"FUNC_COT", u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN",
+ u"FUNC_ARCCSC", u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH",
+ u"FUNC_COSH", u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH",
+ u"FUNC_ARTANH", u"FUNC_ARCSINH", u"FUNC_ARCCOSH",
+ u"FUNC_ARCTANH", u"FUNC_ARSINH_NAME", u"FUNC_ARCSINH_NAME",
+ u"FUNC_ARCOSH_NAME", u"FUNC_ARCCOSH_NAME", u"FUNC_ARTANH_NAME",
+ u"FUNC_ARCTANH_NAME", u"FUNC_GCD_NAME", u"FUNC_LCM_NAME",
+ u"FUNC_FLOOR_NAME", u"FUNC_CEIL_NAME", u"FUNC_SQRT",
+ u"FUNC_GCD", u"FUNC_LCM", u"FUNC_FLOOR", u"FUNC_CEIL",
+ u"FUNC_MAX", u"FUNC_MIN", u"FUNC_DET", u"FUNC_EYE_NAME",
+ u"FUNC_ZEROS_NAME", u"FUNC_ONES_NAME", u"FUNC_COLS_NAME",
+ u"FUNC_ROWS_NAME", u"FUNC_DIAG_NAME", u"FUNC_NORM_NAME",
+ u"FUNC_RANK_NAME", u"FUNC_TRACE_NAME", u"FUNC_RREF_NAME",
+ u"FUNC_HSTACK_NAME", u"FUNC_VSTACK_NAME", u"FUNC_ORTHOGONALIZE_NAME",
+ u"FUNC_NULLSPACE_NAME", u"FUNC_DIAGONALIZE_NAME",
+ u"FUNC_EIGENVALS_NAME", u"FUNC_EIGENVECTORS_NAME",
+ u"FUNC_SVD_NAME", u"CMD_TIMES", u"CMD_CDOT", u"CMD_DIV",
+ u"CMD_FRAC", u"CMD_BINOM", u"CMD_CHOOSE", u"CMD_MOD",
+ u"CMD_MATHIT", u"CMD_OPERATORNAME", u"MATRIX_TYPE_MATRIX",
+ u"MATRIX_TYPE_PMATRIX", u"MATRIX_TYPE_BMATRIX", u"MATRIX_TYPE_DET",
+ u"MATRIX_TYPES", u"CMD_MATRIX_START", u"CMD_MATRIX_END",
+ u"CMD_DET_START", u"CMD_DET_END", u"MATRIX_DEL_COL",
+ u"MATRIX_DEL_ROW", u"UNDERSCORE", u"CARET", u"COLON",
+ u"SEMICOLON", u"COMMA", u"PERIOD", u"DIFFERENTIAL",
+ u"EXP_E", u"E_NOTATION_E", u"LETTER_NO_E", u"MATRIX_XRIGHTARROW",
+ u"TRANSFORM_EXCHANGE", u"NUMBER", u"E_NOTATION", u"IN",
+ u"ASSIGNMENT", u"EQUAL", u"LT", u"LTE", u"GT", u"GTE",
+ u"UNEQUAL", u"BANG", u"PERCENT_NUMBER", u"GREEK_CMD",
+ u"OTHER_SYMBOL_CMD", u"SYMBOL", u"VARIABLE"]
+
+ RULE_accent_symbol = 0
+ RULE_math = 1
+ RULE_transpose = 2
+ RULE_transform_atom = 3
+ RULE_transform_scale = 4
+ RULE_transform_swap = 5
+ RULE_transform_assignment = 6
+ RULE_elementary_transform = 7
+ RULE_elementary_transforms = 8
+ RULE_matrix = 9
+ RULE_det = 10
+ RULE_matrix_row = 11
+ RULE_relation = 12
+ RULE_relation_list = 13
+ RULE_relation_list_content = 14
+ RULE_equality = 15
+ RULE_expr = 16
+ RULE_additive = 17
+ RULE_mp = 18
+ RULE_mp_nofunc = 19
+ RULE_unary = 20
+ RULE_unary_nofunc = 21
+ RULE_postfix = 22
+ RULE_postfix_nofunc = 23
+ RULE_postfix_op = 24
+ RULE_eval_at = 25
+ RULE_eval_at_sub = 26
+ RULE_eval_at_sup = 27
+ RULE_exp = 28
+ RULE_exp_nofunc = 29
+ RULE_comp = 30
+ RULE_comp_nofunc = 31
+ RULE_group = 32
+ RULE_norm_group = 33
+ RULE_abs_group = 34
+ RULE_floor_group = 35
+ RULE_ceil_group = 36
+ RULE_accent = 37
+ RULE_atom_expr_no_supexpr = 38
+ RULE_atom_expr = 39
+ RULE_atom = 40
+ RULE_mathit = 41
+ RULE_mathit_text = 42
+ RULE_frac = 43
+ RULE_binom = 44
+ RULE_func_normal_functions_single_arg = 45
+ RULE_func_normal_functions_multi_arg = 46
+ RULE_func_operator_names_single_arg = 47
+ RULE_func_operator_names_multi_arg = 48
+ RULE_func_normal_single_arg = 49
+ RULE_func_normal_multi_arg = 50
+ RULE_func = 51
+ RULE_args = 52
+ RULE_func_common_args = 53
+ RULE_limit_sub = 54
+ RULE_func_single_arg = 55
+ RULE_func_single_arg_noparens = 56
+ RULE_func_multi_arg = 57
+ RULE_func_multi_arg_noparens = 58
+ RULE_subexpr = 59
+ RULE_supexpr = 60
+ RULE_subeq = 61
+ RULE_supeq = 62
+
+ ruleNames = [u"accent_symbol", u"math", u"transpose", u"transform_atom",
+ u"transform_scale", u"transform_swap", u"transform_assignment",
+ u"elementary_transform", u"elementary_transforms", u"matrix",
+ u"det", u"matrix_row", u"relation", u"relation_list",
+ u"relation_list_content", u"equality", u"expr", u"additive",
+ u"mp", u"mp_nofunc", u"unary", u"unary_nofunc", u"postfix",
+ u"postfix_nofunc", u"postfix_op", u"eval_at", u"eval_at_sub",
+ u"eval_at_sup", u"exp", u"exp_nofunc", u"comp", u"comp_nofunc",
+ u"group", u"norm_group", u"abs_group", u"floor_group",
+ u"ceil_group", u"accent", u"atom_expr_no_supexpr", u"atom_expr",
+ u"atom", u"mathit", u"mathit_text", u"frac", u"binom",
+ u"func_normal_functions_single_arg", u"func_normal_functions_multi_arg",
+ u"func_operator_names_single_arg", u"func_operator_names_multi_arg",
+ u"func_normal_single_arg", u"func_normal_multi_arg",
+ u"func", u"args", u"func_common_args", u"limit_sub",
+ u"func_single_arg", u"func_single_arg_noparens", u"func_multi_arg",
+ u"func_multi_arg_noparens", u"subexpr", u"supexpr", u"subeq",
+ u"supeq"]
+
+ EOF = Token.EOF
+ T__0 = 1
+ T__1 = 2
+ T__2 = 3
+ T__3 = 4
+ T__4 = 5
+ T__5 = 6
+ T__6 = 7
+ T__7 = 8
+ T__8 = 9
+ T__9 = 10
+ T__10 = 11
+ T__11 = 12
+ T__12 = 13
+ T__13 = 14
+ T__14 = 15
+ T__15 = 16
+ T__16 = 17
+ T__17 = 18
+ T__18 = 19
+ T__19 = 20
+ T__20 = 21
+ T__21 = 22
+ T__22 = 23
+ T__23 = 24
+ T__24 = 25
+ T__25 = 26
+ T__26 = 27
+ T__27 = 28
+ T__28 = 29
+ T__29 = 30
+ T__30 = 31
+ T__31 = 32
+ T__32 = 33
+ T__33 = 34
+ T__34 = 35
+ T__35 = 36
+ T__36 = 37
+ T__37 = 38
+ T__38 = 39
+ T__39 = 40
+ T__40 = 41
+ T__41 = 42
+ T__42 = 43
+ T__43 = 44
+ WS = 45
+ DOLLAR_SIGN = 46
+ ADD = 47
+ SUB = 48
+ MUL = 49
+ DIV = 50
+ L_PAREN = 51
+ R_PAREN = 52
+ L_GROUP = 53
+ R_GROUP = 54
+ L_BRACE = 55
+ R_BRACE = 56
+ L_BRACE_VISUAL = 57
+ R_BRACE_VISUAL = 58
+ L_BRACE_CMD = 59
+ R_BRACE_CMD = 60
+ L_BRACKET = 61
+ R_BRACKET = 62
+ L_BRACK = 63
+ R_BRACK = 64
+ BAR = 65
+ L_VERT = 66
+ R_VERT = 67
+ VERT = 68
+ NORM = 69
+ L_FLOOR = 70
+ R_FLOOR = 71
+ LL_CORNER = 72
+ LR_CORNER = 73
+ L_CEIL = 74
+ R_CEIL = 75
+ UL_CORNER = 76
+ UR_CORNER = 77
+ L_LEFT = 78
+ R_RIGHT = 79
+ ML_LEFT = 80
+ MR_RIGHT = 81
+ FUNC_LIM = 82
+ LIM_APPROACH_SYM = 83
+ FUNC_INT = 84
+ FUNC_SUM = 85
+ FUNC_PROD = 86
+ FUNC_LOG = 87
+ FUNC_LN = 88
+ FUNC_EXP = 89
+ FUNC_SIN = 90
+ FUNC_COS = 91
+ FUNC_TAN = 92
+ FUNC_CSC = 93
+ FUNC_SEC = 94
+ FUNC_COT = 95
+ FUNC_ARCSIN = 96
+ FUNC_ARCCOS = 97
+ FUNC_ARCTAN = 98
+ FUNC_ARCCSC = 99
+ FUNC_ARCSEC = 100
+ FUNC_ARCCOT = 101
+ FUNC_SINH = 102
+ FUNC_COSH = 103
+ FUNC_TANH = 104
+ FUNC_ARSINH = 105
+ FUNC_ARCOSH = 106
+ FUNC_ARTANH = 107
+ FUNC_ARCSINH = 108
+ FUNC_ARCCOSH = 109
+ FUNC_ARCTANH = 110
+ FUNC_ARSINH_NAME = 111
+ FUNC_ARCSINH_NAME = 112
+ FUNC_ARCOSH_NAME = 113
+ FUNC_ARCCOSH_NAME = 114
+ FUNC_ARTANH_NAME = 115
+ FUNC_ARCTANH_NAME = 116
+ FUNC_GCD_NAME = 117
+ FUNC_LCM_NAME = 118
+ FUNC_FLOOR_NAME = 119
+ FUNC_CEIL_NAME = 120
+ FUNC_SQRT = 121
+ FUNC_GCD = 122
+ FUNC_LCM = 123
+ FUNC_FLOOR = 124
+ FUNC_CEIL = 125
+ FUNC_MAX = 126
+ FUNC_MIN = 127
+ FUNC_DET = 128
+ FUNC_EYE_NAME = 129
+ FUNC_ZEROS_NAME = 130
+ FUNC_ONES_NAME = 131
+ FUNC_COLS_NAME = 132
+ FUNC_ROWS_NAME = 133
+ FUNC_DIAG_NAME = 134
+ FUNC_NORM_NAME = 135
+ FUNC_RANK_NAME = 136
+ FUNC_TRACE_NAME = 137
+ FUNC_RREF_NAME = 138
+ FUNC_HSTACK_NAME = 139
+ FUNC_VSTACK_NAME = 140
+ FUNC_ORTHOGONALIZE_NAME = 141
+ FUNC_NULLSPACE_NAME = 142
+ FUNC_DIAGONALIZE_NAME = 143
+ FUNC_EIGENVALS_NAME = 144
+ FUNC_EIGENVECTORS_NAME = 145
+ FUNC_SVD_NAME = 146
+ CMD_TIMES = 147
+ CMD_CDOT = 148
+ CMD_DIV = 149
+ CMD_FRAC = 150
+ CMD_BINOM = 151
+ CMD_CHOOSE = 152
+ CMD_MOD = 153
+ CMD_MATHIT = 154
+ CMD_OPERATORNAME = 155
+ MATRIX_TYPE_MATRIX = 156
+ MATRIX_TYPE_PMATRIX = 157
+ MATRIX_TYPE_BMATRIX = 158
+ MATRIX_TYPE_DET = 159
+ MATRIX_TYPES = 160
+ CMD_MATRIX_START = 161
+ CMD_MATRIX_END = 162
+ CMD_DET_START = 163
+ CMD_DET_END = 164
+ MATRIX_DEL_COL = 165
+ MATRIX_DEL_ROW = 166
+ UNDERSCORE = 167
+ CARET = 168
+ COLON = 169
+ SEMICOLON = 170
+ COMMA = 171
+ PERIOD = 172
+ DIFFERENTIAL = 173
+ EXP_E = 174
+ E_NOTATION_E = 175
+ LETTER_NO_E = 176
+ MATRIX_XRIGHTARROW = 177
+ TRANSFORM_EXCHANGE = 178
+ NUMBER = 179
+ E_NOTATION = 180
+ IN = 181
+ ASSIGNMENT = 182
+ EQUAL = 183
+ LT = 184
+ LTE = 185
+ GT = 186
+ GTE = 187
+ UNEQUAL = 188
+ BANG = 189
+ PERCENT_NUMBER = 190
+ GREEK_CMD = 191
+ OTHER_SYMBOL_CMD = 192
+ SYMBOL = 193
+ VARIABLE = 194
+
+ def __init__(self, input, output=sys.stdout):
+ super(PSParser, self).__init__(input, output=output)
+ self.checkVersion("4.11.1")
+ self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache)
+ self._predicates = None
+
+ class Accent_symbolContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Accent_symbolContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def CMD_MATHIT(self):
+ return self.getToken(PSParser.CMD_MATHIT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_accent_symbol
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAccent_symbol"):
+ listener.enterAccent_symbol(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAccent_symbol"):
+ listener.exitAccent_symbol(self)
+
+ def accent_symbol(self):
+
+ localctx = PSParser.Accent_symbolContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 0, self.RULE_accent_symbol)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 126
+ _la = self._input.LA(1)
+ if not(((_la) & ~0x3f) == 0 and ((1 << _la) & 2199023255550) != 0 or _la == 154):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class MathContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.MathContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def relation(self):
+ return self.getTypedRuleContext(PSParser.RelationContext, 0)
+
+ def relation_list(self):
+ return self.getTypedRuleContext(PSParser.Relation_listContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_math
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMath"):
+ listener.enterMath(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMath"):
+ listener.exitMath(self)
+
+ def math(self):
+
+ localctx = PSParser.MathContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 2, self.RULE_math)
+ try:
+ self.state = 130
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 0, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 128
+ self.relation(0)
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 129
+ self.relation_list()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class TransposeContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.TransposeContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def getRuleIndex(self):
+ return PSParser.RULE_transpose
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterTranspose"):
+ listener.enterTranspose(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitTranspose"):
+ listener.exitTranspose(self)
+
+ def transpose(self):
+
+ localctx = PSParser.TransposeContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 4, self.RULE_transpose)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 132
+ _la = self._input.LA(1)
+ if not(((_la) & ~0x3f) == 0 and ((1 << _la) & 32985348833280) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Transform_atomContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Transform_atomContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def LETTER_NO_E(self):
+ return self.getToken(PSParser.LETTER_NO_E, 0)
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def NUMBER(self):
+ return self.getToken(PSParser.NUMBER, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_transform_atom
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterTransform_atom"):
+ listener.enterTransform_atom(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitTransform_atom"):
+ listener.exitTransform_atom(self)
+
+ def transform_atom(self):
+
+ localctx = PSParser.Transform_atomContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 6, self.RULE_transform_atom)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 134
+ self.match(PSParser.LETTER_NO_E)
+ self.state = 135
+ self.match(PSParser.UNDERSCORE)
+ self.state = 140
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [179]:
+ self.state = 136
+ self.match(PSParser.NUMBER)
+ pass
+ elif token in [55]:
+ self.state = 137
+ self.match(PSParser.L_BRACE)
+ self.state = 138
+ self.match(PSParser.NUMBER)
+ self.state = 139
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Transform_scaleContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Transform_scaleContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def transform_atom(self):
+ return self.getTypedRuleContext(PSParser.Transform_atomContext, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def group(self):
+ return self.getTypedRuleContext(PSParser.GroupContext, 0)
+
+ def ADD(self):
+ return self.getToken(PSParser.ADD, 0)
+
+ def SUB(self):
+ return self.getToken(PSParser.SUB, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_transform_scale
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterTransform_scale"):
+ listener.enterTransform_scale(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitTransform_scale"):
+ listener.exitTransform_scale(self)
+
+ def transform_scale(self):
+
+ localctx = PSParser.Transform_scaleContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 8, self.RULE_transform_scale)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 146
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 2, self._ctx)
+ if la_ == 1:
+ self.state = 142
+ self.expr()
+ pass
+
+ elif la_ == 2:
+ self.state = 143
+ self.group()
+ pass
+
+ elif la_ == 3:
+ self.state = 144
+ self.match(PSParser.ADD)
+ pass
+
+ elif la_ == 4:
+ self.state = 145
+ self.match(PSParser.SUB)
+ pass
+
+ self.state = 148
+ self.transform_atom()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Transform_swapContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Transform_swapContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def transform_atom(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Transform_atomContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Transform_atomContext, i)
+
+ def TRANSFORM_EXCHANGE(self):
+ return self.getToken(PSParser.TRANSFORM_EXCHANGE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_transform_swap
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterTransform_swap"):
+ listener.enterTransform_swap(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitTransform_swap"):
+ listener.exitTransform_swap(self)
+
+ def transform_swap(self):
+
+ localctx = PSParser.Transform_swapContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 10, self.RULE_transform_swap)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 150
+ self.transform_atom()
+ self.state = 151
+ self.match(PSParser.TRANSFORM_EXCHANGE)
+ self.state = 152
+ self.transform_atom()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Transform_assignmentContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Transform_assignmentContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def transform_atom(self):
+ return self.getTypedRuleContext(PSParser.Transform_atomContext, 0)
+
+ def transform_scale(self):
+ return self.getTypedRuleContext(PSParser.Transform_scaleContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_transform_assignment
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterTransform_assignment"):
+ listener.enterTransform_assignment(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitTransform_assignment"):
+ listener.exitTransform_assignment(self)
+
+ def transform_assignment(self):
+
+ localctx = PSParser.Transform_assignmentContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 12, self.RULE_transform_assignment)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 154
+ self.transform_atom()
+ self.state = 155
+ self.transform_scale()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Elementary_transformContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Elementary_transformContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def transform_assignment(self):
+ return self.getTypedRuleContext(PSParser.Transform_assignmentContext, 0)
+
+ def transform_scale(self):
+ return self.getTypedRuleContext(PSParser.Transform_scaleContext, 0)
+
+ def transform_swap(self):
+ return self.getTypedRuleContext(PSParser.Transform_swapContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_elementary_transform
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterElementary_transform"):
+ listener.enterElementary_transform(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitElementary_transform"):
+ listener.exitElementary_transform(self)
+
+ def elementary_transform(self):
+
+ localctx = PSParser.Elementary_transformContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 14, self.RULE_elementary_transform)
+ try:
+ self.state = 160
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 3, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 157
+ self.transform_assignment()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 158
+ self.transform_scale()
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 159
+ self.transform_swap()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Elementary_transformsContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Elementary_transformsContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def elementary_transform(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Elementary_transformContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Elementary_transformContext, i)
+
+ def COMMA(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.COMMA)
+ else:
+ return self.getToken(PSParser.COMMA, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_elementary_transforms
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterElementary_transforms"):
+ listener.enterElementary_transforms(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitElementary_transforms"):
+ listener.exitElementary_transforms(self)
+
+ def elementary_transforms(self):
+
+ localctx = PSParser.Elementary_transformsContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 16, self.RULE_elementary_transforms)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 162
+ self.elementary_transform()
+ self.state = 167
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ while _la == 171:
+ self.state = 163
+ self.match(PSParser.COMMA)
+ self.state = 164
+ self.elementary_transform()
+ self.state = 169
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class MatrixContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.MatrixContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def CMD_MATRIX_START(self):
+ return self.getToken(PSParser.CMD_MATRIX_START, 0)
+
+ def matrix_row(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Matrix_rowContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Matrix_rowContext, i)
+
+ def CMD_MATRIX_END(self):
+ return self.getToken(PSParser.CMD_MATRIX_END, 0)
+
+ def MATRIX_DEL_ROW(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.MATRIX_DEL_ROW)
+ else:
+ return self.getToken(PSParser.MATRIX_DEL_ROW, i)
+
+ def MATRIX_XRIGHTARROW(self):
+ return self.getToken(PSParser.MATRIX_XRIGHTARROW, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def elementary_transforms(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Elementary_transformsContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Elementary_transformsContext, i)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def L_BRACKET(self):
+ return self.getToken(PSParser.L_BRACKET, 0)
+
+ def R_BRACKET(self):
+ return self.getToken(PSParser.R_BRACKET, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_matrix
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMatrix"):
+ listener.enterMatrix(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMatrix"):
+ listener.exitMatrix(self)
+
+ def matrix(self):
+
+ localctx = PSParser.MatrixContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 18, self.RULE_matrix)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 170
+ self.match(PSParser.CMD_MATRIX_START)
+ self.state = 171
+ self.matrix_row()
+ self.state = 176
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 5, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ self.state = 172
+ self.match(PSParser.MATRIX_DEL_ROW)
+ self.state = 173
+ self.matrix_row()
+ self.state = 178
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 5, self._ctx)
+
+ self.state = 180
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 166:
+ self.state = 179
+ self.match(PSParser.MATRIX_DEL_ROW)
+
+ self.state = 182
+ self.match(PSParser.CMD_MATRIX_END)
+ self.state = 194
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 8, self._ctx)
+ if la_ == 1:
+ self.state = 183
+ self.match(PSParser.MATRIX_XRIGHTARROW)
+ self.state = 188
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 61:
+ self.state = 184
+ self.match(PSParser.L_BRACKET)
+ self.state = 185
+ self.elementary_transforms()
+ self.state = 186
+ self.match(PSParser.R_BRACKET)
+
+ self.state = 190
+ self.match(PSParser.L_BRACE)
+ self.state = 191
+ self.elementary_transforms()
+ self.state = 192
+ self.match(PSParser.R_BRACE)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class DetContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.DetContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def CMD_DET_START(self):
+ return self.getToken(PSParser.CMD_DET_START, 0)
+
+ def matrix_row(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Matrix_rowContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Matrix_rowContext, i)
+
+ def CMD_DET_END(self):
+ return self.getToken(PSParser.CMD_DET_END, 0)
+
+ def MATRIX_DEL_ROW(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.MATRIX_DEL_ROW)
+ else:
+ return self.getToken(PSParser.MATRIX_DEL_ROW, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_det
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterDet"):
+ listener.enterDet(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitDet"):
+ listener.exitDet(self)
+
+ def det(self):
+
+ localctx = PSParser.DetContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 20, self.RULE_det)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 196
+ self.match(PSParser.CMD_DET_START)
+ self.state = 197
+ self.matrix_row()
+ self.state = 202
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 9, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ self.state = 198
+ self.match(PSParser.MATRIX_DEL_ROW)
+ self.state = 199
+ self.matrix_row()
+ self.state = 204
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 9, self._ctx)
+
+ self.state = 206
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 166:
+ self.state = 205
+ self.match(PSParser.MATRIX_DEL_ROW)
+
+ self.state = 208
+ self.match(PSParser.CMD_DET_END)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Matrix_rowContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Matrix_rowContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def expr(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.ExprContext)
+ else:
+ return self.getTypedRuleContext(PSParser.ExprContext, i)
+
+ def MATRIX_DEL_COL(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.MATRIX_DEL_COL)
+ else:
+ return self.getToken(PSParser.MATRIX_DEL_COL, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_matrix_row
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMatrix_row"):
+ listener.enterMatrix_row(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMatrix_row"):
+ listener.exitMatrix_row(self)
+
+ def matrix_row(self):
+
+ localctx = PSParser.Matrix_rowContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 22, self.RULE_matrix_row)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 210
+ self.expr()
+ self.state = 215
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ while _la == 165:
+ self.state = 211
+ self.match(PSParser.MATRIX_DEL_COL)
+ self.state = 212
+ self.expr()
+ self.state = 217
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class RelationContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.RelationContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def relation(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.RelationContext)
+ else:
+ return self.getTypedRuleContext(PSParser.RelationContext, i)
+
+ def IN(self):
+ return self.getToken(PSParser.IN, 0)
+
+ def ASSIGNMENT(self):
+ return self.getToken(PSParser.ASSIGNMENT, 0)
+
+ def EQUAL(self):
+ return self.getToken(PSParser.EQUAL, 0)
+
+ def LT(self):
+ return self.getToken(PSParser.LT, 0)
+
+ def LTE(self):
+ return self.getToken(PSParser.LTE, 0)
+
+ def GT(self):
+ return self.getToken(PSParser.GT, 0)
+
+ def GTE(self):
+ return self.getToken(PSParser.GTE, 0)
+
+ def UNEQUAL(self):
+ return self.getToken(PSParser.UNEQUAL, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_relation
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterRelation"):
+ listener.enterRelation(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitRelation"):
+ listener.exitRelation(self)
+
+ def relation(self, _p=0):
+ _parentctx = self._ctx
+ _parentState = self.state
+ localctx = PSParser.RelationContext(self, self._ctx, _parentState)
+ _prevctx = localctx
+ _startState = 24
+ self.enterRecursionRule(localctx, 24, self.RULE_relation, _p)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 219
+ self.expr()
+ self._ctx.stop = self._input.LT(-1)
+ self.state = 226
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 12, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ if self._parseListeners is not None:
+ self.triggerExitRuleEvent()
+ _prevctx = localctx
+ localctx = PSParser.RelationContext(self, _parentctx, _parentState)
+ self.pushNewRecursionContext(localctx, _startState, self.RULE_relation)
+ self.state = 221
+ if not self.precpred(self._ctx, 2):
+ from antlr4.error.Errors import FailedPredicateException
+ raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
+ self.state = 222
+ _la = self._input.LA(1)
+ if not((((_la - 181)) & ~0x3f) == 0 and ((1 << (_la - 181)) & 255) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 223
+ self.relation(3)
+ self.state = 228
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 12, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.unrollRecursionContexts(_parentctx)
+ return localctx
+
+ class Relation_listContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Relation_listContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def relation_list_content(self):
+ return self.getTypedRuleContext(PSParser.Relation_list_contentContext, 0)
+
+ def L_BRACKET(self):
+ return self.getToken(PSParser.L_BRACKET, 0)
+
+ def R_BRACKET(self):
+ return self.getToken(PSParser.R_BRACKET, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def L_BRACE_VISUAL(self):
+ return self.getToken(PSParser.L_BRACE_VISUAL, 0)
+
+ def R_BRACE_VISUAL(self):
+ return self.getToken(PSParser.R_BRACE_VISUAL, 0)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_relation_list
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterRelation_list"):
+ listener.enterRelation_list(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitRelation_list"):
+ listener.exitRelation_list(self)
+
+ def relation_list(self):
+
+ localctx = PSParser.Relation_listContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 26, self.RULE_relation_list)
+ try:
+ self.state = 266
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 13, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 229
+ self.relation_list_content()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 230
+ self.match(PSParser.L_BRACKET)
+ self.state = 231
+ self.relation_list_content()
+ self.state = 232
+ self.match(PSParser.R_BRACKET)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 234
+ self.match(PSParser.L_BRACE)
+ self.state = 235
+ self.relation_list_content()
+ self.state = 236
+ self.match(PSParser.R_BRACE)
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 238
+ self.match(PSParser.L_BRACE_VISUAL)
+ self.state = 239
+ self.relation_list_content()
+ self.state = 240
+ self.match(PSParser.R_BRACE_VISUAL)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 242
+ self.match(PSParser.L_LEFT)
+ self.state = 243
+ self.match(PSParser.L_BRACKET)
+ self.state = 244
+ self.relation_list_content()
+ self.state = 245
+ self.match(PSParser.R_RIGHT)
+ self.state = 246
+ self.match(PSParser.R_BRACKET)
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 248
+ self.match(PSParser.L_LEFT)
+ self.state = 249
+ self.match(PSParser.L_BRACE_VISUAL)
+ self.state = 250
+ self.relation_list_content()
+ self.state = 251
+ self.match(PSParser.R_RIGHT)
+ self.state = 252
+ self.match(PSParser.R_BRACE_VISUAL)
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 254
+ self.match(PSParser.ML_LEFT)
+ self.state = 255
+ self.match(PSParser.L_BRACKET)
+ self.state = 256
+ self.relation_list_content()
+ self.state = 257
+ self.match(PSParser.MR_RIGHT)
+ self.state = 258
+ self.match(PSParser.R_BRACKET)
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 260
+ self.match(PSParser.ML_LEFT)
+ self.state = 261
+ self.match(PSParser.L_BRACE_VISUAL)
+ self.state = 262
+ self.relation_list_content()
+ self.state = 263
+ self.match(PSParser.MR_RIGHT)
+ self.state = 264
+ self.match(PSParser.R_BRACE_VISUAL)
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Relation_list_contentContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Relation_list_contentContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def relation(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.RelationContext)
+ else:
+ return self.getTypedRuleContext(PSParser.RelationContext, i)
+
+ def COMMA(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.COMMA)
+ else:
+ return self.getToken(PSParser.COMMA, i)
+
+ def SEMICOLON(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.SEMICOLON)
+ else:
+ return self.getToken(PSParser.SEMICOLON, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_relation_list_content
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterRelation_list_content"):
+ listener.enterRelation_list_content(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitRelation_list_content"):
+ listener.exitRelation_list_content(self)
+
+ def relation_list_content(self):
+
+ localctx = PSParser.Relation_list_contentContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 28, self.RULE_relation_list_content)
+ self._la = 0 # Token type
+ try:
+ self.state = 288
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 16, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 268
+ self.relation(0)
+ self.state = 269
+ self.match(PSParser.COMMA)
+ self.state = 270
+ self.relation(0)
+ self.state = 275
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ while _la == 171:
+ self.state = 271
+ self.match(PSParser.COMMA)
+ self.state = 272
+ self.relation(0)
+ self.state = 277
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 278
+ self.relation(0)
+ self.state = 279
+ self.match(PSParser.SEMICOLON)
+ self.state = 280
+ self.relation(0)
+ self.state = 285
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ while _la == 170:
+ self.state = 281
+ self.match(PSParser.SEMICOLON)
+ self.state = 282
+ self.relation(0)
+ self.state = 287
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class EqualityContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.EqualityContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def expr(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.ExprContext)
+ else:
+ return self.getTypedRuleContext(PSParser.ExprContext, i)
+
+ def EQUAL(self):
+ return self.getToken(PSParser.EQUAL, 0)
+
+ def ASSIGNMENT(self):
+ return self.getToken(PSParser.ASSIGNMENT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_equality
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterEquality"):
+ listener.enterEquality(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitEquality"):
+ listener.exitEquality(self)
+
+ def equality(self):
+
+ localctx = PSParser.EqualityContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 30, self.RULE_equality)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 290
+ self.expr()
+ self.state = 291
+ _la = self._input.LA(1)
+ if not(_la == 182 or _la == 183):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 292
+ self.expr()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class ExprContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.ExprContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def additive(self):
+ return self.getTypedRuleContext(PSParser.AdditiveContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_expr
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterExpr"):
+ listener.enterExpr(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitExpr"):
+ listener.exitExpr(self)
+
+ def expr(self):
+
+ localctx = PSParser.ExprContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 32, self.RULE_expr)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 294
+ self.additive(0)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class AdditiveContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.AdditiveContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def mp(self):
+ return self.getTypedRuleContext(PSParser.MpContext, 0)
+
+ def additive(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.AdditiveContext)
+ else:
+ return self.getTypedRuleContext(PSParser.AdditiveContext, i)
+
+ def ADD(self):
+ return self.getToken(PSParser.ADD, 0)
+
+ def SUB(self):
+ return self.getToken(PSParser.SUB, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_additive
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAdditive"):
+ listener.enterAdditive(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAdditive"):
+ listener.exitAdditive(self)
+
+ def additive(self, _p=0):
+ _parentctx = self._ctx
+ _parentState = self.state
+ localctx = PSParser.AdditiveContext(self, self._ctx, _parentState)
+ _prevctx = localctx
+ _startState = 34
+ self.enterRecursionRule(localctx, 34, self.RULE_additive, _p)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 297
+ self.mp(0)
+ self._ctx.stop = self._input.LT(-1)
+ self.state = 304
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 17, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ if self._parseListeners is not None:
+ self.triggerExitRuleEvent()
+ _prevctx = localctx
+ localctx = PSParser.AdditiveContext(self, _parentctx, _parentState)
+ self.pushNewRecursionContext(localctx, _startState, self.RULE_additive)
+ self.state = 299
+ if not self.precpred(self._ctx, 2):
+ from antlr4.error.Errors import FailedPredicateException
+ raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
+ self.state = 300
+ _la = self._input.LA(1)
+ if not(_la == 47 or _la == 48):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 301
+ self.additive(3)
+ self.state = 306
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 17, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.unrollRecursionContexts(_parentctx)
+ return localctx
+
+ class MpContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.MpContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def unary(self):
+ return self.getTypedRuleContext(PSParser.UnaryContext, 0)
+
+ def mp(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.MpContext)
+ else:
+ return self.getTypedRuleContext(PSParser.MpContext, i)
+
+ def MUL(self):
+ return self.getToken(PSParser.MUL, 0)
+
+ def CMD_TIMES(self):
+ return self.getToken(PSParser.CMD_TIMES, 0)
+
+ def CMD_CDOT(self):
+ return self.getToken(PSParser.CMD_CDOT, 0)
+
+ def DIV(self):
+ return self.getToken(PSParser.DIV, 0)
+
+ def CMD_DIV(self):
+ return self.getToken(PSParser.CMD_DIV, 0)
+
+ def COLON(self):
+ return self.getToken(PSParser.COLON, 0)
+
+ def CMD_MOD(self):
+ return self.getToken(PSParser.CMD_MOD, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_mp
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMp"):
+ listener.enterMp(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMp"):
+ listener.exitMp(self)
+
+ def mp(self, _p=0):
+ _parentctx = self._ctx
+ _parentState = self.state
+ localctx = PSParser.MpContext(self, self._ctx, _parentState)
+ _prevctx = localctx
+ _startState = 36
+ self.enterRecursionRule(localctx, 36, self.RULE_mp, _p)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 308
+ self.unary()
+ self._ctx.stop = self._input.LT(-1)
+ self.state = 315
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 18, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ if self._parseListeners is not None:
+ self.triggerExitRuleEvent()
+ _prevctx = localctx
+ localctx = PSParser.MpContext(self, _parentctx, _parentState)
+ self.pushNewRecursionContext(localctx, _startState, self.RULE_mp)
+ self.state = 310
+ if not self.precpred(self._ctx, 2):
+ from antlr4.error.Errors import FailedPredicateException
+ raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
+ self.state = 311
+ _la = self._input.LA(1)
+ if not(_la == 49 or _la == 50 or (((_la - 147)) & ~0x3f) == 0 and ((1 << (_la - 147)) & 4194375) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 312
+ self.mp(3)
+ self.state = 317
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 18, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.unrollRecursionContexts(_parentctx)
+ return localctx
+
+ class Mp_nofuncContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Mp_nofuncContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def unary_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Unary_nofuncContext, 0)
+
+ def mp_nofunc(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Mp_nofuncContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Mp_nofuncContext, i)
+
+ def MUL(self):
+ return self.getToken(PSParser.MUL, 0)
+
+ def CMD_TIMES(self):
+ return self.getToken(PSParser.CMD_TIMES, 0)
+
+ def CMD_CDOT(self):
+ return self.getToken(PSParser.CMD_CDOT, 0)
+
+ def DIV(self):
+ return self.getToken(PSParser.DIV, 0)
+
+ def CMD_DIV(self):
+ return self.getToken(PSParser.CMD_DIV, 0)
+
+ def COLON(self):
+ return self.getToken(PSParser.COLON, 0)
+
+ def CMD_MOD(self):
+ return self.getToken(PSParser.CMD_MOD, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_mp_nofunc
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMp_nofunc"):
+ listener.enterMp_nofunc(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMp_nofunc"):
+ listener.exitMp_nofunc(self)
+
+ def mp_nofunc(self, _p=0):
+ _parentctx = self._ctx
+ _parentState = self.state
+ localctx = PSParser.Mp_nofuncContext(self, self._ctx, _parentState)
+ _prevctx = localctx
+ _startState = 38
+ self.enterRecursionRule(localctx, 38, self.RULE_mp_nofunc, _p)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 319
+ self.unary_nofunc()
+ self._ctx.stop = self._input.LT(-1)
+ self.state = 326
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 19, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ if self._parseListeners is not None:
+ self.triggerExitRuleEvent()
+ _prevctx = localctx
+ localctx = PSParser.Mp_nofuncContext(self, _parentctx, _parentState)
+ self.pushNewRecursionContext(localctx, _startState, self.RULE_mp_nofunc)
+ self.state = 321
+ if not self.precpred(self._ctx, 2):
+ from antlr4.error.Errors import FailedPredicateException
+ raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
+ self.state = 322
+ _la = self._input.LA(1)
+ if not(_la == 49 or _la == 50 or (((_la - 147)) & ~0x3f) == 0 and ((1 << (_la - 147)) & 4194375) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 323
+ self.mp_nofunc(3)
+ self.state = 328
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 19, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.unrollRecursionContexts(_parentctx)
+ return localctx
+
+ class UnaryContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.UnaryContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def unary(self):
+ return self.getTypedRuleContext(PSParser.UnaryContext, 0)
+
+ def ADD(self):
+ return self.getToken(PSParser.ADD, 0)
+
+ def SUB(self):
+ return self.getToken(PSParser.SUB, 0)
+
+ def postfix(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.PostfixContext)
+ else:
+ return self.getTypedRuleContext(PSParser.PostfixContext, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_unary
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterUnary"):
+ listener.enterUnary(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitUnary"):
+ listener.exitUnary(self)
+
+ def unary(self):
+
+ localctx = PSParser.UnaryContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 40, self.RULE_unary)
+ self._la = 0 # Token type
+ try:
+ self.state = 336
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [47, 48]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 329
+ _la = self._input.LA(1)
+ if not(_la == 47 or _la == 48):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 330
+ self.unary()
+ pass
+ elif token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 51, 53, 55, 57, 59, 61, 63, 65, 66, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 123, 124, 125, 126, 127, 128, 150, 151, 154, 155, 161, 163, 173, 174, 176, 179, 180, 190, 191, 192, 193, 194]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 332
+ self._errHandler.sync(self)
+ _alt = 1
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ self.state = 331
+ self.postfix()
+
+ else:
+ raise NoViableAltException(self)
+ self.state = 334
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 20, self._ctx)
+
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Unary_nofuncContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Unary_nofuncContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def unary_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Unary_nofuncContext, 0)
+
+ def ADD(self):
+ return self.getToken(PSParser.ADD, 0)
+
+ def SUB(self):
+ return self.getToken(PSParser.SUB, 0)
+
+ def postfix(self):
+ return self.getTypedRuleContext(PSParser.PostfixContext, 0)
+
+ def postfix_nofunc(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Postfix_nofuncContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Postfix_nofuncContext, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_unary_nofunc
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterUnary_nofunc"):
+ listener.enterUnary_nofunc(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitUnary_nofunc"):
+ listener.exitUnary_nofunc(self)
+
+ def unary_nofunc(self):
+
+ localctx = PSParser.Unary_nofuncContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 42, self.RULE_unary_nofunc)
+ self._la = 0 # Token type
+ try:
+ self.state = 347
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [47, 48]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 338
+ _la = self._input.LA(1)
+ if not(_la == 47 or _la == 48):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 339
+ self.unary_nofunc()
+ pass
+ elif token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 51, 53, 55, 57, 59, 61, 63, 65, 66, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 123, 124, 125, 126, 127, 128, 150, 151, 154, 155, 161, 163, 173, 174, 176, 179, 180, 190, 191, 192, 193, 194]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 340
+ self.postfix()
+ self.state = 344
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 22, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ self.state = 341
+ self.postfix_nofunc()
+ self.state = 346
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 22, self._ctx)
+
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class PostfixContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.PostfixContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def exp(self):
+ return self.getTypedRuleContext(PSParser.ExpContext, 0)
+
+ def postfix_op(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Postfix_opContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Postfix_opContext, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_postfix
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterPostfix"):
+ listener.enterPostfix(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitPostfix"):
+ listener.exitPostfix(self)
+
+ def postfix(self):
+
+ localctx = PSParser.PostfixContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 44, self.RULE_postfix)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 349
+ self.exp(0)
+ self.state = 353
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 24, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ self.state = 350
+ self.postfix_op()
+ self.state = 355
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 24, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Postfix_nofuncContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Postfix_nofuncContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def exp_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Exp_nofuncContext, 0)
+
+ def postfix_op(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.Postfix_opContext)
+ else:
+ return self.getTypedRuleContext(PSParser.Postfix_opContext, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_postfix_nofunc
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterPostfix_nofunc"):
+ listener.enterPostfix_nofunc(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitPostfix_nofunc"):
+ listener.exitPostfix_nofunc(self)
+
+ def postfix_nofunc(self):
+
+ localctx = PSParser.Postfix_nofuncContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 46, self.RULE_postfix_nofunc)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 356
+ self.exp_nofunc(0)
+ self.state = 360
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 25, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ self.state = 357
+ self.postfix_op()
+ self.state = 362
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 25, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Postfix_opContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Postfix_opContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def BANG(self):
+ return self.getToken(PSParser.BANG, 0)
+
+ def eval_at(self):
+ return self.getTypedRuleContext(PSParser.Eval_atContext, 0)
+
+ def transpose(self):
+ return self.getTypedRuleContext(PSParser.TransposeContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_postfix_op
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterPostfix_op"):
+ listener.enterPostfix_op(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitPostfix_op"):
+ listener.exitPostfix_op(self)
+
+ def postfix_op(self):
+
+ localctx = PSParser.Postfix_opContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 48, self.RULE_postfix_op)
+ try:
+ self.state = 366
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [189]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 363
+ self.match(PSParser.BANG)
+ pass
+ elif token in [65]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 364
+ self.eval_at()
+ pass
+ elif token in [41, 42, 43, 44]:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 365
+ self.transpose()
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Eval_atContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Eval_atContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def BAR(self):
+ return self.getToken(PSParser.BAR, 0)
+
+ def eval_at_sup(self):
+ return self.getTypedRuleContext(PSParser.Eval_at_supContext, 0)
+
+ def eval_at_sub(self):
+ return self.getTypedRuleContext(PSParser.Eval_at_subContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_eval_at
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterEval_at"):
+ listener.enterEval_at(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitEval_at"):
+ listener.exitEval_at(self)
+
+ def eval_at(self):
+
+ localctx = PSParser.Eval_atContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 50, self.RULE_eval_at)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 368
+ self.match(PSParser.BAR)
+ self.state = 374
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 27, self._ctx)
+ if la_ == 1:
+ self.state = 369
+ self.eval_at_sup()
+ pass
+
+ elif la_ == 2:
+ self.state = 370
+ self.eval_at_sub()
+ pass
+
+ elif la_ == 3:
+ self.state = 371
+ self.eval_at_sup()
+ self.state = 372
+ self.eval_at_sub()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Eval_at_subContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Eval_at_subContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def equality(self):
+ return self.getTypedRuleContext(PSParser.EqualityContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_eval_at_sub
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterEval_at_sub"):
+ listener.enterEval_at_sub(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitEval_at_sub"):
+ listener.exitEval_at_sub(self)
+
+ def eval_at_sub(self):
+
+ localctx = PSParser.Eval_at_subContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 52, self.RULE_eval_at_sub)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 376
+ self.match(PSParser.UNDERSCORE)
+ self.state = 377
+ self.match(PSParser.L_BRACE)
+ self.state = 380
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 28, self._ctx)
+ if la_ == 1:
+ self.state = 378
+ self.expr()
+ pass
+
+ elif la_ == 2:
+ self.state = 379
+ self.equality()
+ pass
+
+ self.state = 382
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Eval_at_supContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Eval_at_supContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def CARET(self):
+ return self.getToken(PSParser.CARET, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def equality(self):
+ return self.getTypedRuleContext(PSParser.EqualityContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_eval_at_sup
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterEval_at_sup"):
+ listener.enterEval_at_sup(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitEval_at_sup"):
+ listener.exitEval_at_sup(self)
+
+ def eval_at_sup(self):
+
+ localctx = PSParser.Eval_at_supContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 54, self.RULE_eval_at_sup)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 384
+ self.match(PSParser.CARET)
+ self.state = 385
+ self.match(PSParser.L_BRACE)
+ self.state = 388
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 29, self._ctx)
+ if la_ == 1:
+ self.state = 386
+ self.expr()
+ pass
+
+ elif la_ == 2:
+ self.state = 387
+ self.equality()
+ pass
+
+ self.state = 390
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class ExpContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.ExpContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def comp(self):
+ return self.getTypedRuleContext(PSParser.CompContext, 0)
+
+ def exp(self):
+ return self.getTypedRuleContext(PSParser.ExpContext, 0)
+
+ def CARET(self):
+ return self.getToken(PSParser.CARET, 0)
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def subexpr(self):
+ return self.getTypedRuleContext(PSParser.SubexprContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_exp
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterExp"):
+ listener.enterExp(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitExp"):
+ listener.exitExp(self)
+
+ def exp(self, _p=0):
+ _parentctx = self._ctx
+ _parentState = self.state
+ localctx = PSParser.ExpContext(self, self._ctx, _parentState)
+ _prevctx = localctx
+ _startState = 56
+ self.enterRecursionRule(localctx, 56, self.RULE_exp, _p)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 393
+ self.comp()
+ self._ctx.stop = self._input.LT(-1)
+ self.state = 409
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 32, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ if self._parseListeners is not None:
+ self.triggerExitRuleEvent()
+ _prevctx = localctx
+ localctx = PSParser.ExpContext(self, _parentctx, _parentState)
+ self.pushNewRecursionContext(localctx, _startState, self.RULE_exp)
+ self.state = 395
+ if not self.precpred(self._ctx, 2):
+ from antlr4.error.Errors import FailedPredicateException
+ raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
+ self.state = 396
+ self.match(PSParser.CARET)
+ self.state = 402
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 154, 173, 176, 179, 180, 190, 191, 192, 193, 194]:
+ self.state = 397
+ self.atom()
+ pass
+ elif token in [55]:
+ self.state = 398
+ self.match(PSParser.L_BRACE)
+ self.state = 399
+ self.expr()
+ self.state = 400
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ self.state = 405
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 31, self._ctx)
+ if la_ == 1:
+ self.state = 404
+ self.subexpr()
+
+ self.state = 411
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 32, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.unrollRecursionContexts(_parentctx)
+ return localctx
+
+ class Exp_nofuncContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Exp_nofuncContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def comp_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Comp_nofuncContext, 0)
+
+ def exp_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Exp_nofuncContext, 0)
+
+ def CARET(self):
+ return self.getToken(PSParser.CARET, 0)
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def subexpr(self):
+ return self.getTypedRuleContext(PSParser.SubexprContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_exp_nofunc
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterExp_nofunc"):
+ listener.enterExp_nofunc(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitExp_nofunc"):
+ listener.exitExp_nofunc(self)
+
+ def exp_nofunc(self, _p=0):
+ _parentctx = self._ctx
+ _parentState = self.state
+ localctx = PSParser.Exp_nofuncContext(self, self._ctx, _parentState)
+ _prevctx = localctx
+ _startState = 58
+ self.enterRecursionRule(localctx, 58, self.RULE_exp_nofunc, _p)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 413
+ self.comp_nofunc()
+ self._ctx.stop = self._input.LT(-1)
+ self.state = 429
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 35, self._ctx)
+ while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER:
+ if _alt == 1:
+ if self._parseListeners is not None:
+ self.triggerExitRuleEvent()
+ _prevctx = localctx
+ localctx = PSParser.Exp_nofuncContext(self, _parentctx, _parentState)
+ self.pushNewRecursionContext(localctx, _startState, self.RULE_exp_nofunc)
+ self.state = 415
+ if not self.precpred(self._ctx, 2):
+ from antlr4.error.Errors import FailedPredicateException
+ raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
+ self.state = 416
+ self.match(PSParser.CARET)
+ self.state = 422
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 154, 173, 176, 179, 180, 190, 191, 192, 193, 194]:
+ self.state = 417
+ self.atom()
+ pass
+ elif token in [55]:
+ self.state = 418
+ self.match(PSParser.L_BRACE)
+ self.state = 419
+ self.expr()
+ self.state = 420
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ self.state = 425
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 34, self._ctx)
+ if la_ == 1:
+ self.state = 424
+ self.subexpr()
+
+ self.state = 431
+ self._errHandler.sync(self)
+ _alt = self._interp.adaptivePredict(self._input, 35, self._ctx)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.unrollRecursionContexts(_parentctx)
+ return localctx
+
+ class CompContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.CompContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def group(self):
+ return self.getTypedRuleContext(PSParser.GroupContext, 0)
+
+ def norm_group(self):
+ return self.getTypedRuleContext(PSParser.Norm_groupContext, 0)
+
+ def abs_group(self):
+ return self.getTypedRuleContext(PSParser.Abs_groupContext, 0)
+
+ def floor_group(self):
+ return self.getTypedRuleContext(PSParser.Floor_groupContext, 0)
+
+ def ceil_group(self):
+ return self.getTypedRuleContext(PSParser.Ceil_groupContext, 0)
+
+ def func(self):
+ return self.getTypedRuleContext(PSParser.FuncContext, 0)
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def frac(self):
+ return self.getTypedRuleContext(PSParser.FracContext, 0)
+
+ def binom(self):
+ return self.getTypedRuleContext(PSParser.BinomContext, 0)
+
+ def matrix(self):
+ return self.getTypedRuleContext(PSParser.MatrixContext, 0)
+
+ def det(self):
+ return self.getTypedRuleContext(PSParser.DetContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_comp
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterComp"):
+ listener.enterComp(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitComp"):
+ listener.exitComp(self)
+
+ def comp(self):
+
+ localctx = PSParser.CompContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 60, self.RULE_comp)
+ try:
+ self.state = 443
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 36, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 432
+ self.group()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 433
+ self.norm_group()
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 434
+ self.abs_group()
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 435
+ self.floor_group()
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 436
+ self.ceil_group()
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 437
+ self.func()
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 438
+ self.atom()
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 439
+ self.frac()
+ pass
+
+ elif la_ == 9:
+ self.enterOuterAlt(localctx, 9)
+ self.state = 440
+ self.binom()
+ pass
+
+ elif la_ == 10:
+ self.enterOuterAlt(localctx, 10)
+ self.state = 441
+ self.matrix()
+ pass
+
+ elif la_ == 11:
+ self.enterOuterAlt(localctx, 11)
+ self.state = 442
+ self.det()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Comp_nofuncContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Comp_nofuncContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def group(self):
+ return self.getTypedRuleContext(PSParser.GroupContext, 0)
+
+ def norm_group(self):
+ return self.getTypedRuleContext(PSParser.Norm_groupContext, 0)
+
+ def abs_group(self):
+ return self.getTypedRuleContext(PSParser.Abs_groupContext, 0)
+
+ def floor_group(self):
+ return self.getTypedRuleContext(PSParser.Floor_groupContext, 0)
+
+ def ceil_group(self):
+ return self.getTypedRuleContext(PSParser.Ceil_groupContext, 0)
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def frac(self):
+ return self.getTypedRuleContext(PSParser.FracContext, 0)
+
+ def binom(self):
+ return self.getTypedRuleContext(PSParser.BinomContext, 0)
+
+ def matrix(self):
+ return self.getTypedRuleContext(PSParser.MatrixContext, 0)
+
+ def det(self):
+ return self.getTypedRuleContext(PSParser.DetContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_comp_nofunc
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterComp_nofunc"):
+ listener.enterComp_nofunc(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitComp_nofunc"):
+ listener.exitComp_nofunc(self)
+
+ def comp_nofunc(self):
+
+ localctx = PSParser.Comp_nofuncContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 62, self.RULE_comp_nofunc)
+ try:
+ self.state = 455
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 37, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 445
+ self.group()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 446
+ self.norm_group()
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 447
+ self.abs_group()
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 448
+ self.floor_group()
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 449
+ self.ceil_group()
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 450
+ self.atom()
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 451
+ self.frac()
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 452
+ self.binom()
+ pass
+
+ elif la_ == 9:
+ self.enterOuterAlt(localctx, 9)
+ self.state = 453
+ self.matrix()
+ pass
+
+ elif la_ == 10:
+ self.enterOuterAlt(localctx, 10)
+ self.state = 454
+ self.det()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class GroupContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.GroupContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def L_PAREN(self):
+ return self.getToken(PSParser.L_PAREN, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_PAREN(self):
+ return self.getToken(PSParser.R_PAREN, 0)
+
+ def L_GROUP(self):
+ return self.getToken(PSParser.L_GROUP, 0)
+
+ def R_GROUP(self):
+ return self.getToken(PSParser.R_GROUP, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def L_BRACE_VISUAL(self):
+ return self.getToken(PSParser.L_BRACE_VISUAL, 0)
+
+ def R_BRACE_VISUAL(self):
+ return self.getToken(PSParser.R_BRACE_VISUAL, 0)
+
+ def L_BRACE_CMD(self):
+ return self.getToken(PSParser.L_BRACE_CMD, 0)
+
+ def R_BRACE_CMD(self):
+ return self.getToken(PSParser.R_BRACE_CMD, 0)
+
+ def L_BRACKET(self):
+ return self.getToken(PSParser.L_BRACKET, 0)
+
+ def R_BRACKET(self):
+ return self.getToken(PSParser.R_BRACKET, 0)
+
+ def L_BRACK(self):
+ return self.getToken(PSParser.L_BRACK, 0)
+
+ def R_BRACK(self):
+ return self.getToken(PSParser.R_BRACK, 0)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_group
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterGroup"):
+ listener.enterGroup(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitGroup"):
+ listener.exitGroup(self)
+
+ def group(self):
+
+ localctx = PSParser.GroupContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 64, self.RULE_group)
+ try:
+ self.state = 569
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 38, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 457
+ self.match(PSParser.L_PAREN)
+ self.state = 458
+ self.expr()
+ self.state = 459
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 461
+ self.match(PSParser.L_GROUP)
+ self.state = 462
+ self.expr()
+ self.state = 463
+ self.match(PSParser.R_GROUP)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 465
+ self.match(PSParser.L_BRACE)
+ self.state = 466
+ self.expr()
+ self.state = 467
+ self.match(PSParser.R_BRACE)
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 469
+ self.match(PSParser.L_BRACE_VISUAL)
+ self.state = 470
+ self.expr()
+ self.state = 471
+ self.match(PSParser.R_BRACE_VISUAL)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 473
+ self.match(PSParser.L_BRACE_CMD)
+ self.state = 474
+ self.expr()
+ self.state = 475
+ self.match(PSParser.R_BRACE_CMD)
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 477
+ self.match(PSParser.L_BRACKET)
+ self.state = 478
+ self.expr()
+ self.state = 479
+ self.match(PSParser.R_BRACKET)
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 481
+ self.match(PSParser.L_BRACK)
+ self.state = 482
+ self.expr()
+ self.state = 483
+ self.match(PSParser.R_BRACK)
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 485
+ self.match(PSParser.L_LEFT)
+ self.state = 486
+ self.match(PSParser.L_PAREN)
+ self.state = 487
+ self.expr()
+ self.state = 488
+ self.match(PSParser.R_RIGHT)
+ self.state = 489
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 9:
+ self.enterOuterAlt(localctx, 9)
+ self.state = 491
+ self.match(PSParser.L_LEFT)
+ self.state = 492
+ self.match(PSParser.L_GROUP)
+ self.state = 493
+ self.expr()
+ self.state = 494
+ self.match(PSParser.R_RIGHT)
+ self.state = 495
+ self.match(PSParser.R_GROUP)
+ pass
+
+ elif la_ == 10:
+ self.enterOuterAlt(localctx, 10)
+ self.state = 497
+ self.match(PSParser.L_LEFT)
+ self.state = 498
+ self.match(PSParser.L_BRACE)
+ self.state = 499
+ self.expr()
+ self.state = 500
+ self.match(PSParser.R_RIGHT)
+ self.state = 501
+ self.match(PSParser.R_BRACE)
+ pass
+
+ elif la_ == 11:
+ self.enterOuterAlt(localctx, 11)
+ self.state = 503
+ self.match(PSParser.L_LEFT)
+ self.state = 504
+ self.match(PSParser.L_BRACE_VISUAL)
+ self.state = 505
+ self.expr()
+ self.state = 506
+ self.match(PSParser.R_RIGHT)
+ self.state = 507
+ self.match(PSParser.R_BRACE_VISUAL)
+ pass
+
+ elif la_ == 12:
+ self.enterOuterAlt(localctx, 12)
+ self.state = 509
+ self.match(PSParser.L_LEFT)
+ self.state = 510
+ self.match(PSParser.L_BRACE_CMD)
+ self.state = 511
+ self.expr()
+ self.state = 512
+ self.match(PSParser.R_RIGHT)
+ self.state = 513
+ self.match(PSParser.R_BRACE_CMD)
+ pass
+
+ elif la_ == 13:
+ self.enterOuterAlt(localctx, 13)
+ self.state = 515
+ self.match(PSParser.L_LEFT)
+ self.state = 516
+ self.match(PSParser.L_BRACKET)
+ self.state = 517
+ self.expr()
+ self.state = 518
+ self.match(PSParser.R_RIGHT)
+ self.state = 519
+ self.match(PSParser.R_BRACKET)
+ pass
+
+ elif la_ == 14:
+ self.enterOuterAlt(localctx, 14)
+ self.state = 521
+ self.match(PSParser.L_LEFT)
+ self.state = 522
+ self.match(PSParser.L_BRACK)
+ self.state = 523
+ self.expr()
+ self.state = 524
+ self.match(PSParser.R_RIGHT)
+ self.state = 525
+ self.match(PSParser.R_BRACK)
+ pass
+
+ elif la_ == 15:
+ self.enterOuterAlt(localctx, 15)
+ self.state = 527
+ self.match(PSParser.ML_LEFT)
+ self.state = 528
+ self.match(PSParser.L_PAREN)
+ self.state = 529
+ self.expr()
+ self.state = 530
+ self.match(PSParser.MR_RIGHT)
+ self.state = 531
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 16:
+ self.enterOuterAlt(localctx, 16)
+ self.state = 533
+ self.match(PSParser.ML_LEFT)
+ self.state = 534
+ self.match(PSParser.L_GROUP)
+ self.state = 535
+ self.expr()
+ self.state = 536
+ self.match(PSParser.MR_RIGHT)
+ self.state = 537
+ self.match(PSParser.R_GROUP)
+ pass
+
+ elif la_ == 17:
+ self.enterOuterAlt(localctx, 17)
+ self.state = 539
+ self.match(PSParser.ML_LEFT)
+ self.state = 540
+ self.match(PSParser.L_BRACE)
+ self.state = 541
+ self.expr()
+ self.state = 542
+ self.match(PSParser.MR_RIGHT)
+ self.state = 543
+ self.match(PSParser.R_BRACE)
+ pass
+
+ elif la_ == 18:
+ self.enterOuterAlt(localctx, 18)
+ self.state = 545
+ self.match(PSParser.ML_LEFT)
+ self.state = 546
+ self.match(PSParser.L_BRACE_VISUAL)
+ self.state = 547
+ self.expr()
+ self.state = 548
+ self.match(PSParser.MR_RIGHT)
+ self.state = 549
+ self.match(PSParser.R_BRACE_VISUAL)
+ pass
+
+ elif la_ == 19:
+ self.enterOuterAlt(localctx, 19)
+ self.state = 551
+ self.match(PSParser.ML_LEFT)
+ self.state = 552
+ self.match(PSParser.L_BRACE_CMD)
+ self.state = 553
+ self.expr()
+ self.state = 554
+ self.match(PSParser.MR_RIGHT)
+ self.state = 555
+ self.match(PSParser.R_BRACE_CMD)
+ pass
+
+ elif la_ == 20:
+ self.enterOuterAlt(localctx, 20)
+ self.state = 557
+ self.match(PSParser.ML_LEFT)
+ self.state = 558
+ self.match(PSParser.L_BRACKET)
+ self.state = 559
+ self.expr()
+ self.state = 560
+ self.match(PSParser.MR_RIGHT)
+ self.state = 561
+ self.match(PSParser.R_BRACKET)
+ pass
+
+ elif la_ == 21:
+ self.enterOuterAlt(localctx, 21)
+ self.state = 563
+ self.match(PSParser.ML_LEFT)
+ self.state = 564
+ self.match(PSParser.L_BRACK)
+ self.state = 565
+ self.expr()
+ self.state = 566
+ self.match(PSParser.MR_RIGHT)
+ self.state = 567
+ self.match(PSParser.R_BRACK)
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Norm_groupContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Norm_groupContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def NORM(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.NORM)
+ else:
+ return self.getToken(PSParser.NORM, i)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_norm_group
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterNorm_group"):
+ listener.enterNorm_group(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitNorm_group"):
+ listener.exitNorm_group(self)
+
+ def norm_group(self):
+
+ localctx = PSParser.Norm_groupContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 66, self.RULE_norm_group)
+ try:
+ self.state = 587
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [69]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 571
+ self.match(PSParser.NORM)
+ self.state = 572
+ self.expr()
+ self.state = 573
+ self.match(PSParser.NORM)
+ pass
+ elif token in [78]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 575
+ self.match(PSParser.L_LEFT)
+ self.state = 576
+ self.match(PSParser.NORM)
+ self.state = 577
+ self.expr()
+ self.state = 578
+ self.match(PSParser.R_RIGHT)
+ self.state = 579
+ self.match(PSParser.NORM)
+ pass
+ elif token in [80]:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 581
+ self.match(PSParser.ML_LEFT)
+ self.state = 582
+ self.match(PSParser.NORM)
+ self.state = 583
+ self.expr()
+ self.state = 584
+ self.match(PSParser.MR_RIGHT)
+ self.state = 585
+ self.match(PSParser.NORM)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Abs_groupContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Abs_groupContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def BAR(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.BAR)
+ else:
+ return self.getToken(PSParser.BAR, i)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def L_VERT(self):
+ return self.getToken(PSParser.L_VERT, 0)
+
+ def R_VERT(self):
+ return self.getToken(PSParser.R_VERT, 0)
+
+ def VERT(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.VERT)
+ else:
+ return self.getToken(PSParser.VERT, i)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_abs_group
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAbs_group"):
+ listener.enterAbs_group(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAbs_group"):
+ listener.exitAbs_group(self)
+
+ def abs_group(self):
+
+ localctx = PSParser.Abs_groupContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 68, self.RULE_abs_group)
+ try:
+ self.state = 637
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 40, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 589
+ self.match(PSParser.BAR)
+ self.state = 590
+ self.expr()
+ self.state = 591
+ self.match(PSParser.BAR)
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 593
+ self.match(PSParser.L_VERT)
+ self.state = 594
+ self.expr()
+ self.state = 595
+ self.match(PSParser.R_VERT)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 597
+ self.match(PSParser.VERT)
+ self.state = 598
+ self.expr()
+ self.state = 599
+ self.match(PSParser.VERT)
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 601
+ self.match(PSParser.L_LEFT)
+ self.state = 602
+ self.match(PSParser.BAR)
+ self.state = 603
+ self.expr()
+ self.state = 604
+ self.match(PSParser.R_RIGHT)
+ self.state = 605
+ self.match(PSParser.BAR)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 607
+ self.match(PSParser.L_LEFT)
+ self.state = 608
+ self.match(PSParser.L_VERT)
+ self.state = 609
+ self.expr()
+ self.state = 610
+ self.match(PSParser.R_RIGHT)
+ self.state = 611
+ self.match(PSParser.R_VERT)
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 613
+ self.match(PSParser.L_LEFT)
+ self.state = 614
+ self.match(PSParser.VERT)
+ self.state = 615
+ self.expr()
+ self.state = 616
+ self.match(PSParser.R_RIGHT)
+ self.state = 617
+ self.match(PSParser.VERT)
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 619
+ self.match(PSParser.ML_LEFT)
+ self.state = 620
+ self.match(PSParser.BAR)
+ self.state = 621
+ self.expr()
+ self.state = 622
+ self.match(PSParser.MR_RIGHT)
+ self.state = 623
+ self.match(PSParser.BAR)
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 625
+ self.match(PSParser.ML_LEFT)
+ self.state = 626
+ self.match(PSParser.L_VERT)
+ self.state = 627
+ self.expr()
+ self.state = 628
+ self.match(PSParser.MR_RIGHT)
+ self.state = 629
+ self.match(PSParser.R_VERT)
+ pass
+
+ elif la_ == 9:
+ self.enterOuterAlt(localctx, 9)
+ self.state = 631
+ self.match(PSParser.ML_LEFT)
+ self.state = 632
+ self.match(PSParser.VERT)
+ self.state = 633
+ self.expr()
+ self.state = 634
+ self.match(PSParser.MR_RIGHT)
+ self.state = 635
+ self.match(PSParser.VERT)
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Floor_groupContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Floor_groupContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def L_FLOOR(self):
+ return self.getToken(PSParser.L_FLOOR, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_FLOOR(self):
+ return self.getToken(PSParser.R_FLOOR, 0)
+
+ def LL_CORNER(self):
+ return self.getToken(PSParser.LL_CORNER, 0)
+
+ def LR_CORNER(self):
+ return self.getToken(PSParser.LR_CORNER, 0)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_floor_group
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFloor_group"):
+ listener.enterFloor_group(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFloor_group"):
+ listener.exitFloor_group(self)
+
+ def floor_group(self):
+
+ localctx = PSParser.Floor_groupContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 70, self.RULE_floor_group)
+ try:
+ self.state = 671
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 41, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 639
+ self.match(PSParser.L_FLOOR)
+ self.state = 640
+ self.expr()
+ self.state = 641
+ self.match(PSParser.R_FLOOR)
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 643
+ self.match(PSParser.LL_CORNER)
+ self.state = 644
+ self.expr()
+ self.state = 645
+ self.match(PSParser.LR_CORNER)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 647
+ self.match(PSParser.L_LEFT)
+ self.state = 648
+ self.match(PSParser.L_FLOOR)
+ self.state = 649
+ self.expr()
+ self.state = 650
+ self.match(PSParser.R_RIGHT)
+ self.state = 651
+ self.match(PSParser.R_FLOOR)
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 653
+ self.match(PSParser.L_LEFT)
+ self.state = 654
+ self.match(PSParser.LL_CORNER)
+ self.state = 655
+ self.expr()
+ self.state = 656
+ self.match(PSParser.R_RIGHT)
+ self.state = 657
+ self.match(PSParser.LR_CORNER)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 659
+ self.match(PSParser.ML_LEFT)
+ self.state = 660
+ self.match(PSParser.L_FLOOR)
+ self.state = 661
+ self.expr()
+ self.state = 662
+ self.match(PSParser.MR_RIGHT)
+ self.state = 663
+ self.match(PSParser.R_FLOOR)
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 665
+ self.match(PSParser.ML_LEFT)
+ self.state = 666
+ self.match(PSParser.LL_CORNER)
+ self.state = 667
+ self.expr()
+ self.state = 668
+ self.match(PSParser.MR_RIGHT)
+ self.state = 669
+ self.match(PSParser.LR_CORNER)
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Ceil_groupContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Ceil_groupContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def L_CEIL(self):
+ return self.getToken(PSParser.L_CEIL, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_CEIL(self):
+ return self.getToken(PSParser.R_CEIL, 0)
+
+ def UL_CORNER(self):
+ return self.getToken(PSParser.UL_CORNER, 0)
+
+ def UR_CORNER(self):
+ return self.getToken(PSParser.UR_CORNER, 0)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_ceil_group
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterCeil_group"):
+ listener.enterCeil_group(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitCeil_group"):
+ listener.exitCeil_group(self)
+
+ def ceil_group(self):
+
+ localctx = PSParser.Ceil_groupContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 72, self.RULE_ceil_group)
+ try:
+ self.state = 705
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 42, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 673
+ self.match(PSParser.L_CEIL)
+ self.state = 674
+ self.expr()
+ self.state = 675
+ self.match(PSParser.R_CEIL)
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 677
+ self.match(PSParser.UL_CORNER)
+ self.state = 678
+ self.expr()
+ self.state = 679
+ self.match(PSParser.UR_CORNER)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 681
+ self.match(PSParser.L_LEFT)
+ self.state = 682
+ self.match(PSParser.L_CEIL)
+ self.state = 683
+ self.expr()
+ self.state = 684
+ self.match(PSParser.R_RIGHT)
+ self.state = 685
+ self.match(PSParser.R_CEIL)
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 687
+ self.match(PSParser.L_LEFT)
+ self.state = 688
+ self.match(PSParser.UL_CORNER)
+ self.state = 689
+ self.expr()
+ self.state = 690
+ self.match(PSParser.R_RIGHT)
+ self.state = 691
+ self.match(PSParser.UR_CORNER)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 693
+ self.match(PSParser.ML_LEFT)
+ self.state = 694
+ self.match(PSParser.L_CEIL)
+ self.state = 695
+ self.expr()
+ self.state = 696
+ self.match(PSParser.MR_RIGHT)
+ self.state = 697
+ self.match(PSParser.R_CEIL)
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 699
+ self.match(PSParser.ML_LEFT)
+ self.state = 700
+ self.match(PSParser.UL_CORNER)
+ self.state = 701
+ self.expr()
+ self.state = 702
+ self.match(PSParser.MR_RIGHT)
+ self.state = 703
+ self.match(PSParser.UR_CORNER)
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class AccentContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.AccentContext, self).__init__(parent, invokingState)
+ self.parser = parser
+ self.base = None # ExprContext
+
+ def accent_symbol(self):
+ return self.getTypedRuleContext(PSParser.Accent_symbolContext, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_accent
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAccent"):
+ listener.enterAccent(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAccent"):
+ listener.exitAccent(self)
+
+ def accent(self):
+
+ localctx = PSParser.AccentContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 74, self.RULE_accent)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 707
+ self.accent_symbol()
+ self.state = 708
+ self.match(PSParser.L_BRACE)
+ self.state = 709
+ localctx.base = self.expr()
+ self.state = 710
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Atom_expr_no_supexprContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Atom_expr_no_supexprContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def LETTER_NO_E(self):
+ return self.getToken(PSParser.LETTER_NO_E, 0)
+
+ def GREEK_CMD(self):
+ return self.getToken(PSParser.GREEK_CMD, 0)
+
+ def OTHER_SYMBOL_CMD(self):
+ return self.getToken(PSParser.OTHER_SYMBOL_CMD, 0)
+
+ def accent(self):
+ return self.getTypedRuleContext(PSParser.AccentContext, 0)
+
+ def subexpr(self):
+ return self.getTypedRuleContext(PSParser.SubexprContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_atom_expr_no_supexpr
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAtom_expr_no_supexpr"):
+ listener.enterAtom_expr_no_supexpr(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAtom_expr_no_supexpr"):
+ listener.exitAtom_expr_no_supexpr(self)
+
+ def atom_expr_no_supexpr(self):
+
+ localctx = PSParser.Atom_expr_no_supexprContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 76, self.RULE_atom_expr_no_supexpr)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 716
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [176]:
+ self.state = 712
+ self.match(PSParser.LETTER_NO_E)
+ pass
+ elif token in [191]:
+ self.state = 713
+ self.match(PSParser.GREEK_CMD)
+ pass
+ elif token in [192]:
+ self.state = 714
+ self.match(PSParser.OTHER_SYMBOL_CMD)
+ pass
+ elif token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 154]:
+ self.state = 715
+ self.accent()
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ self.state = 719
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 167:
+ self.state = 718
+ self.subexpr()
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Atom_exprContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Atom_exprContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def LETTER_NO_E(self):
+ return self.getToken(PSParser.LETTER_NO_E, 0)
+
+ def GREEK_CMD(self):
+ return self.getToken(PSParser.GREEK_CMD, 0)
+
+ def OTHER_SYMBOL_CMD(self):
+ return self.getToken(PSParser.OTHER_SYMBOL_CMD, 0)
+
+ def accent(self):
+ return self.getTypedRuleContext(PSParser.AccentContext, 0)
+
+ def supexpr(self):
+ return self.getTypedRuleContext(PSParser.SupexprContext, 0)
+
+ def subexpr(self):
+ return self.getTypedRuleContext(PSParser.SubexprContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_atom_expr
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAtom_expr"):
+ listener.enterAtom_expr(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAtom_expr"):
+ listener.exitAtom_expr(self)
+
+ def atom_expr(self):
+
+ localctx = PSParser.Atom_exprContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 78, self.RULE_atom_expr)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 725
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [176]:
+ self.state = 721
+ self.match(PSParser.LETTER_NO_E)
+ pass
+ elif token in [191]:
+ self.state = 722
+ self.match(PSParser.GREEK_CMD)
+ pass
+ elif token in [192]:
+ self.state = 723
+ self.match(PSParser.OTHER_SYMBOL_CMD)
+ pass
+ elif token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 154]:
+ self.state = 724
+ self.accent()
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ self.state = 735
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 46, self._ctx)
+ if la_ == 1:
+ self.state = 727
+ self.supexpr()
+ self.state = 728
+ self.subexpr()
+
+ elif la_ == 2:
+ self.state = 730
+ self.subexpr()
+ self.state = 731
+ self.supexpr()
+
+ elif la_ == 3:
+ self.state = 733
+ self.subexpr()
+
+ elif la_ == 4:
+ self.state = 734
+ self.supexpr()
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class AtomContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.AtomContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def atom_expr(self):
+ return self.getTypedRuleContext(PSParser.Atom_exprContext, 0)
+
+ def SYMBOL(self):
+ return self.getToken(PSParser.SYMBOL, 0)
+
+ def NUMBER(self):
+ return self.getToken(PSParser.NUMBER, 0)
+
+ def PERCENT_NUMBER(self):
+ return self.getToken(PSParser.PERCENT_NUMBER, 0)
+
+ def E_NOTATION(self):
+ return self.getToken(PSParser.E_NOTATION, 0)
+
+ def DIFFERENTIAL(self):
+ return self.getToken(PSParser.DIFFERENTIAL, 0)
+
+ def mathit(self):
+ return self.getTypedRuleContext(PSParser.MathitContext, 0)
+
+ def VARIABLE(self):
+ return self.getToken(PSParser.VARIABLE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_atom
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterAtom"):
+ listener.enterAtom(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitAtom"):
+ listener.exitAtom(self)
+
+ def atom(self):
+
+ localctx = PSParser.AtomContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 80, self.RULE_atom)
+ try:
+ self.state = 745
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 47, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 737
+ self.atom_expr()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 738
+ self.match(PSParser.SYMBOL)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 739
+ self.match(PSParser.NUMBER)
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 740
+ self.match(PSParser.PERCENT_NUMBER)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 741
+ self.match(PSParser.E_NOTATION)
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 742
+ self.match(PSParser.DIFFERENTIAL)
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 743
+ self.mathit()
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 744
+ self.match(PSParser.VARIABLE)
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class MathitContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.MathitContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def CMD_MATHIT(self):
+ return self.getToken(PSParser.CMD_MATHIT, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def mathit_text(self):
+ return self.getTypedRuleContext(PSParser.Mathit_textContext, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_mathit
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMathit"):
+ listener.enterMathit(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMathit"):
+ listener.exitMathit(self)
+
+ def mathit(self):
+
+ localctx = PSParser.MathitContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 82, self.RULE_mathit)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 747
+ self.match(PSParser.CMD_MATHIT)
+ self.state = 748
+ self.match(PSParser.L_BRACE)
+ self.state = 749
+ self.mathit_text()
+ self.state = 750
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Mathit_textContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Mathit_textContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def LETTER_NO_E(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.LETTER_NO_E)
+ else:
+ return self.getToken(PSParser.LETTER_NO_E, i)
+
+ def E_NOTATION_E(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.E_NOTATION_E)
+ else:
+ return self.getToken(PSParser.E_NOTATION_E, i)
+
+ def EXP_E(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.EXP_E)
+ else:
+ return self.getToken(PSParser.EXP_E, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_mathit_text
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterMathit_text"):
+ listener.enterMathit_text(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitMathit_text"):
+ listener.exitMathit_text(self)
+
+ def mathit_text(self):
+
+ localctx = PSParser.Mathit_textContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 84, self.RULE_mathit_text)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 753
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ while True:
+ self.state = 752
+ _la = self._input.LA(1)
+ if not((((_la - 174)) & ~0x3f) == 0 and ((1 << (_la - 174)) & 7) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 755
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if not ((((_la - 174)) & ~0x3f) == 0 and ((1 << (_la - 174)) & 7) != 0):
+ break
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class FracContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.FracContext, self).__init__(parent, invokingState)
+ self.parser = parser
+ self.upper = None # ExprContext
+ self.lower = None # ExprContext
+
+ def CMD_FRAC(self):
+ return self.getToken(PSParser.CMD_FRAC, 0)
+
+ def L_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.L_BRACE)
+ else:
+ return self.getToken(PSParser.L_BRACE, i)
+
+ def R_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.R_BRACE)
+ else:
+ return self.getToken(PSParser.R_BRACE, i)
+
+ def expr(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.ExprContext)
+ else:
+ return self.getTypedRuleContext(PSParser.ExprContext, i)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_frac
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFrac"):
+ listener.enterFrac(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFrac"):
+ listener.exitFrac(self)
+
+ def frac(self):
+
+ localctx = PSParser.FracContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 86, self.RULE_frac)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 757
+ self.match(PSParser.CMD_FRAC)
+ self.state = 758
+ self.match(PSParser.L_BRACE)
+ self.state = 759
+ localctx.upper = self.expr()
+ self.state = 760
+ self.match(PSParser.R_BRACE)
+ self.state = 761
+ self.match(PSParser.L_BRACE)
+ self.state = 762
+ localctx.lower = self.expr()
+ self.state = 763
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class BinomContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.BinomContext, self).__init__(parent, invokingState)
+ self.parser = parser
+ self.upper = None # ExprContext
+ self.lower = None # ExprContext
+
+ def L_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.L_BRACE)
+ else:
+ return self.getToken(PSParser.L_BRACE, i)
+
+ def CMD_CHOOSE(self):
+ return self.getToken(PSParser.CMD_CHOOSE, 0)
+
+ def R_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.R_BRACE)
+ else:
+ return self.getToken(PSParser.R_BRACE, i)
+
+ def expr(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.ExprContext)
+ else:
+ return self.getTypedRuleContext(PSParser.ExprContext, i)
+
+ def CMD_BINOM(self):
+ return self.getToken(PSParser.CMD_BINOM, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_binom
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterBinom"):
+ listener.enterBinom(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitBinom"):
+ listener.exitBinom(self)
+
+ def binom(self):
+
+ localctx = PSParser.BinomContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 88, self.RULE_binom)
+ try:
+ self.state = 779
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [55]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 765
+ self.match(PSParser.L_BRACE)
+ self.state = 766
+ localctx.upper = self.expr()
+ self.state = 767
+ self.match(PSParser.CMD_CHOOSE)
+ self.state = 768
+ localctx.lower = self.expr()
+ self.state = 769
+ self.match(PSParser.R_BRACE)
+ pass
+ elif token in [151]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 771
+ self.match(PSParser.CMD_BINOM)
+ self.state = 772
+ self.match(PSParser.L_BRACE)
+ self.state = 773
+ localctx.upper = self.expr()
+ self.state = 774
+ self.match(PSParser.R_BRACE)
+ self.state = 775
+ self.match(PSParser.L_BRACE)
+ self.state = 776
+ localctx.lower = self.expr()
+ self.state = 777
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_normal_functions_single_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_normal_functions_single_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def FUNC_LOG(self):
+ return self.getToken(PSParser.FUNC_LOG, 0)
+
+ def FUNC_LN(self):
+ return self.getToken(PSParser.FUNC_LN, 0)
+
+ def FUNC_EXP(self):
+ return self.getToken(PSParser.FUNC_EXP, 0)
+
+ def FUNC_SIN(self):
+ return self.getToken(PSParser.FUNC_SIN, 0)
+
+ def FUNC_COS(self):
+ return self.getToken(PSParser.FUNC_COS, 0)
+
+ def FUNC_TAN(self):
+ return self.getToken(PSParser.FUNC_TAN, 0)
+
+ def FUNC_CSC(self):
+ return self.getToken(PSParser.FUNC_CSC, 0)
+
+ def FUNC_SEC(self):
+ return self.getToken(PSParser.FUNC_SEC, 0)
+
+ def FUNC_COT(self):
+ return self.getToken(PSParser.FUNC_COT, 0)
+
+ def FUNC_ARCSIN(self):
+ return self.getToken(PSParser.FUNC_ARCSIN, 0)
+
+ def FUNC_ARCCOS(self):
+ return self.getToken(PSParser.FUNC_ARCCOS, 0)
+
+ def FUNC_ARCTAN(self):
+ return self.getToken(PSParser.FUNC_ARCTAN, 0)
+
+ def FUNC_ARCCSC(self):
+ return self.getToken(PSParser.FUNC_ARCCSC, 0)
+
+ def FUNC_ARCSEC(self):
+ return self.getToken(PSParser.FUNC_ARCSEC, 0)
+
+ def FUNC_ARCCOT(self):
+ return self.getToken(PSParser.FUNC_ARCCOT, 0)
+
+ def FUNC_SINH(self):
+ return self.getToken(PSParser.FUNC_SINH, 0)
+
+ def FUNC_COSH(self):
+ return self.getToken(PSParser.FUNC_COSH, 0)
+
+ def FUNC_TANH(self):
+ return self.getToken(PSParser.FUNC_TANH, 0)
+
+ def FUNC_ARSINH(self):
+ return self.getToken(PSParser.FUNC_ARSINH, 0)
+
+ def FUNC_ARCOSH(self):
+ return self.getToken(PSParser.FUNC_ARCOSH, 0)
+
+ def FUNC_ARTANH(self):
+ return self.getToken(PSParser.FUNC_ARTANH, 0)
+
+ def FUNC_ARCSINH(self):
+ return self.getToken(PSParser.FUNC_ARCSINH, 0)
+
+ def FUNC_ARCCOSH(self):
+ return self.getToken(PSParser.FUNC_ARCCOSH, 0)
+
+ def FUNC_ARCTANH(self):
+ return self.getToken(PSParser.FUNC_ARCTANH, 0)
+
+ def FUNC_FLOOR(self):
+ return self.getToken(PSParser.FUNC_FLOOR, 0)
+
+ def FUNC_CEIL(self):
+ return self.getToken(PSParser.FUNC_CEIL, 0)
+
+ def FUNC_DET(self):
+ return self.getToken(PSParser.FUNC_DET, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_normal_functions_single_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_normal_functions_single_arg"):
+ listener.enterFunc_normal_functions_single_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_normal_functions_single_arg"):
+ listener.exitFunc_normal_functions_single_arg(self)
+
+ def func_normal_functions_single_arg(self):
+
+ localctx = PSParser.Func_normal_functions_single_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 90, self.RULE_func_normal_functions_single_arg)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 781
+ _la = self._input.LA(1)
+ if not((((_la - 87)) & ~0x3f) == 0 and ((1 << (_la - 87)) & 2611356893183) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_normal_functions_multi_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_normal_functions_multi_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def FUNC_GCD(self):
+ return self.getToken(PSParser.FUNC_GCD, 0)
+
+ def FUNC_LCM(self):
+ return self.getToken(PSParser.FUNC_LCM, 0)
+
+ def FUNC_MAX(self):
+ return self.getToken(PSParser.FUNC_MAX, 0)
+
+ def FUNC_MIN(self):
+ return self.getToken(PSParser.FUNC_MIN, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_normal_functions_multi_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_normal_functions_multi_arg"):
+ listener.enterFunc_normal_functions_multi_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_normal_functions_multi_arg"):
+ listener.exitFunc_normal_functions_multi_arg(self)
+
+ def func_normal_functions_multi_arg(self):
+
+ localctx = PSParser.Func_normal_functions_multi_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 92, self.RULE_func_normal_functions_multi_arg)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 783
+ _la = self._input.LA(1)
+ if not((((_la - 122)) & ~0x3f) == 0 and ((1 << (_la - 122)) & 51) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_operator_names_single_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_operator_names_single_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def FUNC_ARSINH_NAME(self):
+ return self.getToken(PSParser.FUNC_ARSINH_NAME, 0)
+
+ def FUNC_ARCOSH_NAME(self):
+ return self.getToken(PSParser.FUNC_ARCOSH_NAME, 0)
+
+ def FUNC_ARTANH_NAME(self):
+ return self.getToken(PSParser.FUNC_ARTANH_NAME, 0)
+
+ def FUNC_ARCSINH_NAME(self):
+ return self.getToken(PSParser.FUNC_ARCSINH_NAME, 0)
+
+ def FUNC_ARCCOSH_NAME(self):
+ return self.getToken(PSParser.FUNC_ARCCOSH_NAME, 0)
+
+ def FUNC_ARCTANH_NAME(self):
+ return self.getToken(PSParser.FUNC_ARCTANH_NAME, 0)
+
+ def FUNC_FLOOR_NAME(self):
+ return self.getToken(PSParser.FUNC_FLOOR_NAME, 0)
+
+ def FUNC_CEIL_NAME(self):
+ return self.getToken(PSParser.FUNC_CEIL_NAME, 0)
+
+ def FUNC_EYE_NAME(self):
+ return self.getToken(PSParser.FUNC_EYE_NAME, 0)
+
+ def FUNC_RANK_NAME(self):
+ return self.getToken(PSParser.FUNC_RANK_NAME, 0)
+
+ def FUNC_TRACE_NAME(self):
+ return self.getToken(PSParser.FUNC_TRACE_NAME, 0)
+
+ def FUNC_RREF_NAME(self):
+ return self.getToken(PSParser.FUNC_RREF_NAME, 0)
+
+ def FUNC_NULLSPACE_NAME(self):
+ return self.getToken(PSParser.FUNC_NULLSPACE_NAME, 0)
+
+ def FUNC_DIAGONALIZE_NAME(self):
+ return self.getToken(PSParser.FUNC_DIAGONALIZE_NAME, 0)
+
+ def FUNC_NORM_NAME(self):
+ return self.getToken(PSParser.FUNC_NORM_NAME, 0)
+
+ def FUNC_EIGENVALS_NAME(self):
+ return self.getToken(PSParser.FUNC_EIGENVALS_NAME, 0)
+
+ def FUNC_EIGENVECTORS_NAME(self):
+ return self.getToken(PSParser.FUNC_EIGENVECTORS_NAME, 0)
+
+ def FUNC_SVD_NAME(self):
+ return self.getToken(PSParser.FUNC_SVD_NAME, 0)
+
+ def FUNC_COLS_NAME(self):
+ return self.getToken(PSParser.FUNC_COLS_NAME, 0)
+
+ def FUNC_ROWS_NAME(self):
+ return self.getToken(PSParser.FUNC_ROWS_NAME, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_operator_names_single_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_operator_names_single_arg"):
+ listener.enterFunc_operator_names_single_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_operator_names_single_arg"):
+ listener.exitFunc_operator_names_single_arg(self)
+
+ def func_operator_names_single_arg(self):
+
+ localctx = PSParser.Func_operator_names_single_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 94, self.RULE_func_operator_names_single_arg)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 785
+ _la = self._input.LA(1)
+ if not((((_la - 111)) & ~0x3f) == 0 and ((1 << (_la - 111)) & 66830205759) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_operator_names_multi_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_operator_names_multi_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def FUNC_GCD_NAME(self):
+ return self.getToken(PSParser.FUNC_GCD_NAME, 0)
+
+ def FUNC_LCM_NAME(self):
+ return self.getToken(PSParser.FUNC_LCM_NAME, 0)
+
+ def FUNC_ZEROS_NAME(self):
+ return self.getToken(PSParser.FUNC_ZEROS_NAME, 0)
+
+ def FUNC_ORTHOGONALIZE_NAME(self):
+ return self.getToken(PSParser.FUNC_ORTHOGONALIZE_NAME, 0)
+
+ def FUNC_ONES_NAME(self):
+ return self.getToken(PSParser.FUNC_ONES_NAME, 0)
+
+ def FUNC_DIAG_NAME(self):
+ return self.getToken(PSParser.FUNC_DIAG_NAME, 0)
+
+ def FUNC_HSTACK_NAME(self):
+ return self.getToken(PSParser.FUNC_HSTACK_NAME, 0)
+
+ def FUNC_VSTACK_NAME(self):
+ return self.getToken(PSParser.FUNC_VSTACK_NAME, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_operator_names_multi_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_operator_names_multi_arg"):
+ listener.enterFunc_operator_names_multi_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_operator_names_multi_arg"):
+ listener.exitFunc_operator_names_multi_arg(self)
+
+ def func_operator_names_multi_arg(self):
+
+ localctx = PSParser.Func_operator_names_multi_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 96, self.RULE_func_operator_names_multi_arg)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 787
+ _la = self._input.LA(1)
+ if not((((_la - 117)) & ~0x3f) == 0 and ((1 << (_la - 117)) & 29515779) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_normal_single_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_normal_single_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+ self.func_operator_name = None # Func_operator_names_single_argContext
+
+ def func_normal_functions_single_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_normal_functions_single_argContext, 0)
+
+ def CMD_OPERATORNAME(self):
+ return self.getToken(PSParser.CMD_OPERATORNAME, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def func_operator_names_single_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_operator_names_single_argContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_normal_single_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_normal_single_arg"):
+ listener.enterFunc_normal_single_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_normal_single_arg"):
+ listener.exitFunc_normal_single_arg(self)
+
+ def func_normal_single_arg(self):
+
+ localctx = PSParser.Func_normal_single_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 98, self.RULE_func_normal_single_arg)
+ try:
+ self.state = 795
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 124, 125, 128]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 789
+ self.func_normal_functions_single_arg()
+ pass
+ elif token in [155]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 790
+ self.match(PSParser.CMD_OPERATORNAME)
+ self.state = 791
+ self.match(PSParser.L_BRACE)
+ self.state = 792
+ localctx.func_operator_name = self.func_operator_names_single_arg()
+ self.state = 793
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_normal_multi_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_normal_multi_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+ self.func_operator_name = None # Func_operator_names_multi_argContext
+
+ def func_normal_functions_multi_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_normal_functions_multi_argContext, 0)
+
+ def CMD_OPERATORNAME(self):
+ return self.getToken(PSParser.CMD_OPERATORNAME, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def func_operator_names_multi_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_operator_names_multi_argContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_normal_multi_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_normal_multi_arg"):
+ listener.enterFunc_normal_multi_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_normal_multi_arg"):
+ listener.exitFunc_normal_multi_arg(self)
+
+ def func_normal_multi_arg(self):
+
+ localctx = PSParser.Func_normal_multi_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 100, self.RULE_func_normal_multi_arg)
+ try:
+ self.state = 803
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [122, 123, 126, 127]:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 797
+ self.func_normal_functions_multi_arg()
+ pass
+ elif token in [155]:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 798
+ self.match(PSParser.CMD_OPERATORNAME)
+ self.state = 799
+ self.match(PSParser.L_BRACE)
+ self.state = 800
+ localctx.func_operator_name = self.func_operator_names_multi_arg()
+ self.state = 801
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class FuncContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.FuncContext, self).__init__(parent, invokingState)
+ self.parser = parser
+ self.root = None # ExprContext
+ self.base = None # ExprContext
+
+ def func_normal_single_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_normal_single_argContext, 0)
+
+ def L_PAREN(self):
+ return self.getToken(PSParser.L_PAREN, 0)
+
+ def func_single_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_single_argContext, 0)
+
+ def R_PAREN(self):
+ return self.getToken(PSParser.R_PAREN, 0)
+
+ def func_single_arg_noparens(self):
+ return self.getTypedRuleContext(PSParser.Func_single_arg_noparensContext, 0)
+
+ def subexpr(self):
+ return self.getTypedRuleContext(PSParser.SubexprContext, 0)
+
+ def supexpr(self):
+ return self.getTypedRuleContext(PSParser.SupexprContext, 0)
+
+ def L_LEFT(self):
+ return self.getToken(PSParser.L_LEFT, 0)
+
+ def R_RIGHT(self):
+ return self.getToken(PSParser.R_RIGHT, 0)
+
+ def ML_LEFT(self):
+ return self.getToken(PSParser.ML_LEFT, 0)
+
+ def MR_RIGHT(self):
+ return self.getToken(PSParser.MR_RIGHT, 0)
+
+ def func_normal_multi_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_normal_multi_argContext, 0)
+
+ def func_multi_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_multi_argContext, 0)
+
+ def func_multi_arg_noparens(self):
+ return self.getTypedRuleContext(PSParser.Func_multi_arg_noparensContext, 0)
+
+ def atom_expr_no_supexpr(self):
+ return self.getTypedRuleContext(PSParser.Atom_expr_no_supexprContext, 0)
+
+ def func_common_args(self):
+ return self.getTypedRuleContext(PSParser.Func_common_argsContext, 0)
+
+ def L_BRACKET(self):
+ return self.getToken(PSParser.L_BRACKET, 0)
+
+ def R_BRACKET(self):
+ return self.getToken(PSParser.R_BRACKET, 0)
+
+ def L_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.L_BRACE)
+ else:
+ return self.getToken(PSParser.L_BRACE, i)
+
+ def R_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.R_BRACE)
+ else:
+ return self.getToken(PSParser.R_BRACE, i)
+
+ def FUNC_INT(self):
+ return self.getToken(PSParser.FUNC_INT, 0)
+
+ def DIFFERENTIAL(self):
+ return self.getToken(PSParser.DIFFERENTIAL, 0)
+
+ def frac(self):
+ return self.getTypedRuleContext(PSParser.FracContext, 0)
+
+ def additive(self):
+ return self.getTypedRuleContext(PSParser.AdditiveContext, 0)
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def CARET(self):
+ return self.getToken(PSParser.CARET, 0)
+
+ def FUNC_SQRT(self):
+ return self.getToken(PSParser.FUNC_SQRT, 0)
+
+ def expr(self, i=None):
+ if i is None:
+ return self.getTypedRuleContexts(PSParser.ExprContext)
+ else:
+ return self.getTypedRuleContext(PSParser.ExprContext, i)
+
+ def mp(self):
+ return self.getTypedRuleContext(PSParser.MpContext, 0)
+
+ def FUNC_SUM(self):
+ return self.getToken(PSParser.FUNC_SUM, 0)
+
+ def FUNC_PROD(self):
+ return self.getToken(PSParser.FUNC_PROD, 0)
+
+ def subeq(self):
+ return self.getTypedRuleContext(PSParser.SubeqContext, 0)
+
+ def FUNC_LIM(self):
+ return self.getToken(PSParser.FUNC_LIM, 0)
+
+ def limit_sub(self):
+ return self.getTypedRuleContext(PSParser.Limit_subContext, 0)
+
+ def EXP_E(self):
+ return self.getToken(PSParser.EXP_E, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc"):
+ listener.enterFunc(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc"):
+ listener.exitFunc(self)
+
+ def func(self):
+
+ localctx = PSParser.FuncContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 102, self.RULE_func)
+ self._la = 0 # Token type
+ try:
+ self.state = 971
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 84, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 805
+ self.func_normal_single_arg()
+ self.state = 818
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 56, self._ctx)
+ if la_ == 1:
+ self.state = 807
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 167:
+ self.state = 806
+ self.subexpr()
+
+ self.state = 810
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 809
+ self.supexpr()
+
+ pass
+
+ elif la_ == 2:
+ self.state = 813
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 812
+ self.supexpr()
+
+ self.state = 816
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 167:
+ self.state = 815
+ self.subexpr()
+
+ pass
+
+ self.state = 841
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 61, self._ctx)
+ if la_ == 1:
+ self.state = 821
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 78:
+ self.state = 820
+ self.match(PSParser.L_LEFT)
+
+ self.state = 823
+ self.match(PSParser.L_PAREN)
+ self.state = 824
+ self.func_single_arg()
+ self.state = 826
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 79:
+ self.state = 825
+ self.match(PSParser.R_RIGHT)
+
+ self.state = 828
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 2:
+ self.state = 831
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 80:
+ self.state = 830
+ self.match(PSParser.ML_LEFT)
+
+ self.state = 833
+ self.match(PSParser.L_PAREN)
+ self.state = 834
+ self.func_single_arg()
+ self.state = 836
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 81:
+ self.state = 835
+ self.match(PSParser.MR_RIGHT)
+
+ self.state = 838
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 3:
+ self.state = 840
+ self.func_single_arg_noparens()
+ pass
+
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 843
+ self.func_normal_multi_arg()
+ self.state = 856
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 66, self._ctx)
+ if la_ == 1:
+ self.state = 845
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 167:
+ self.state = 844
+ self.subexpr()
+
+ self.state = 848
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 847
+ self.supexpr()
+
+ pass
+
+ elif la_ == 2:
+ self.state = 851
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 850
+ self.supexpr()
+
+ self.state = 854
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 167:
+ self.state = 853
+ self.subexpr()
+
+ pass
+
+ self.state = 879
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 71, self._ctx)
+ if la_ == 1:
+ self.state = 859
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 78:
+ self.state = 858
+ self.match(PSParser.L_LEFT)
+
+ self.state = 861
+ self.match(PSParser.L_PAREN)
+ self.state = 862
+ self.func_multi_arg()
+ self.state = 864
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 79:
+ self.state = 863
+ self.match(PSParser.R_RIGHT)
+
+ self.state = 866
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 2:
+ self.state = 869
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 80:
+ self.state = 868
+ self.match(PSParser.ML_LEFT)
+
+ self.state = 871
+ self.match(PSParser.L_PAREN)
+ self.state = 872
+ self.func_multi_arg()
+ self.state = 874
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 81:
+ self.state = 873
+ self.match(PSParser.MR_RIGHT)
+
+ self.state = 876
+ self.match(PSParser.R_PAREN)
+ pass
+
+ elif la_ == 3:
+ self.state = 878
+ self.func_multi_arg_noparens()
+ pass
+
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 881
+ self.atom_expr_no_supexpr()
+ self.state = 883
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 882
+ self.supexpr()
+
+ self.state = 886
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 78:
+ self.state = 885
+ self.match(PSParser.L_LEFT)
+
+ self.state = 888
+ _la = self._input.LA(1)
+ if not(_la == 51 or _la == 61):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 889
+ self.func_common_args()
+ self.state = 890
+ _la = self._input.LA(1)
+ if not(_la == 52 or _la == 62):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 892
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 74, self._ctx)
+ if la_ == 1:
+ self.state = 891
+ self.match(PSParser.R_RIGHT)
+
+ pass
+
+ elif la_ == 4:
+ self.enterOuterAlt(localctx, 4)
+ self.state = 894
+ self.atom_expr_no_supexpr()
+ self.state = 896
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 895
+ self.supexpr()
+
+ self.state = 898
+ self.match(PSParser.L_BRACE)
+ self.state = 900
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 78:
+ self.state = 899
+ self.match(PSParser.L_LEFT)
+
+ self.state = 902
+ _la = self._input.LA(1)
+ if not(_la == 51 or _la == 61):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 903
+ self.func_common_args()
+ self.state = 904
+ _la = self._input.LA(1)
+ if not(_la == 52 or _la == 62):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 906
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 79:
+ self.state = 905
+ self.match(PSParser.R_RIGHT)
+
+ self.state = 908
+ self.match(PSParser.R_BRACE)
+ pass
+
+ elif la_ == 5:
+ self.enterOuterAlt(localctx, 5)
+ self.state = 910
+ self.match(PSParser.FUNC_INT)
+ self.state = 931
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 78, self._ctx)
+ if la_ == 1:
+ self.state = 911
+ self.subexpr()
+ self.state = 912
+ self.supexpr()
+
+ elif la_ == 2:
+ self.state = 914
+ self.supexpr()
+ self.state = 915
+ self.subexpr()
+
+ elif la_ == 3:
+ self.state = 917
+ self.match(PSParser.UNDERSCORE)
+ self.state = 918
+ self.match(PSParser.L_BRACE)
+ self.state = 919
+ self.match(PSParser.R_BRACE)
+
+ self.state = 921
+ self.match(PSParser.CARET)
+ self.state = 922
+ self.match(PSParser.L_BRACE)
+ self.state = 923
+ self.match(PSParser.R_BRACE)
+
+ elif la_ == 4:
+ self.state = 924
+ self.match(PSParser.CARET)
+ self.state = 925
+ self.match(PSParser.L_BRACE)
+ self.state = 926
+ self.match(PSParser.R_BRACE)
+
+ self.state = 928
+ self.match(PSParser.UNDERSCORE)
+ self.state = 929
+ self.match(PSParser.L_BRACE)
+ self.state = 930
+ self.match(PSParser.R_BRACE)
+
+ self.state = 939
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 80, self._ctx)
+ if la_ == 1:
+ self.state = 934
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 79, self._ctx)
+ if la_ == 1:
+ self.state = 933
+ self.additive(0)
+
+ self.state = 936
+ self.match(PSParser.DIFFERENTIAL)
+ pass
+
+ elif la_ == 2:
+ self.state = 937
+ self.frac()
+ pass
+
+ elif la_ == 3:
+ self.state = 938
+ self.additive(0)
+ pass
+
+ pass
+
+ elif la_ == 6:
+ self.enterOuterAlt(localctx, 6)
+ self.state = 941
+ self.match(PSParser.FUNC_SQRT)
+ self.state = 946
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 61:
+ self.state = 942
+ self.match(PSParser.L_BRACKET)
+ self.state = 943
+ localctx.root = self.expr()
+ self.state = 944
+ self.match(PSParser.R_BRACKET)
+
+ self.state = 948
+ self.match(PSParser.L_BRACE)
+ self.state = 949
+ localctx.base = self.expr()
+ self.state = 950
+ self.match(PSParser.R_BRACE)
+ pass
+
+ elif la_ == 7:
+ self.enterOuterAlt(localctx, 7)
+ self.state = 952
+ _la = self._input.LA(1)
+ if not(_la == 85 or _la == 86):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 959
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [167]:
+ self.state = 953
+ self.subeq()
+ self.state = 954
+ self.supexpr()
+ pass
+ elif token in [168]:
+ self.state = 956
+ self.supexpr()
+ self.state = 957
+ self.subeq()
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ self.state = 961
+ self.mp(0)
+ pass
+
+ elif la_ == 8:
+ self.enterOuterAlt(localctx, 8)
+ self.state = 963
+ self.match(PSParser.FUNC_LIM)
+ self.state = 964
+ self.limit_sub()
+ self.state = 965
+ self.mp(0)
+ pass
+
+ elif la_ == 9:
+ self.enterOuterAlt(localctx, 9)
+ self.state = 967
+ self.match(PSParser.EXP_E)
+ self.state = 969
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 83, self._ctx)
+ if la_ == 1:
+ self.state = 968
+ self.supexpr()
+
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class ArgsContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.ArgsContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def COMMA(self):
+ return self.getToken(PSParser.COMMA, 0)
+
+ def args(self):
+ return self.getTypedRuleContext(PSParser.ArgsContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_args
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterArgs"):
+ listener.enterArgs(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitArgs"):
+ listener.exitArgs(self)
+
+ def args(self):
+
+ localctx = PSParser.ArgsContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 104, self.RULE_args)
+ try:
+ self.state = 978
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 85, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 973
+ self.expr()
+ self.state = 974
+ self.match(PSParser.COMMA)
+ self.state = 975
+ self.args()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 977
+ self.expr()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_common_argsContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_common_argsContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def COMMA(self):
+ return self.getToken(PSParser.COMMA, 0)
+
+ def args(self):
+ return self.getTypedRuleContext(PSParser.ArgsContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_common_args
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_common_args"):
+ listener.enterFunc_common_args(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_common_args"):
+ listener.exitFunc_common_args(self)
+
+ def func_common_args(self):
+
+ localctx = PSParser.Func_common_argsContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 106, self.RULE_func_common_args)
+ try:
+ self.state = 988
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 86, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 980
+ self.atom()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 981
+ self.expr()
+ self.state = 982
+ self.match(PSParser.COMMA)
+ pass
+
+ elif la_ == 3:
+ self.enterOuterAlt(localctx, 3)
+ self.state = 984
+ self.expr()
+ self.state = 985
+ self.match(PSParser.COMMA)
+ self.state = 986
+ self.args()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Limit_subContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Limit_subContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def L_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.L_BRACE)
+ else:
+ return self.getToken(PSParser.L_BRACE, i)
+
+ def LIM_APPROACH_SYM(self):
+ return self.getToken(PSParser.LIM_APPROACH_SYM, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_BRACE(self, i=None):
+ if i is None:
+ return self.getTokens(PSParser.R_BRACE)
+ else:
+ return self.getToken(PSParser.R_BRACE, i)
+
+ def LETTER_NO_E(self):
+ return self.getToken(PSParser.LETTER_NO_E, 0)
+
+ def GREEK_CMD(self):
+ return self.getToken(PSParser.GREEK_CMD, 0)
+
+ def OTHER_SYMBOL_CMD(self):
+ return self.getToken(PSParser.OTHER_SYMBOL_CMD, 0)
+
+ def CARET(self):
+ return self.getToken(PSParser.CARET, 0)
+
+ def ADD(self):
+ return self.getToken(PSParser.ADD, 0)
+
+ def SUB(self):
+ return self.getToken(PSParser.SUB, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_limit_sub
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterLimit_sub"):
+ listener.enterLimit_sub(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitLimit_sub"):
+ listener.exitLimit_sub(self)
+
+ def limit_sub(self):
+
+ localctx = PSParser.Limit_subContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 108, self.RULE_limit_sub)
+ self._la = 0 # Token type
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 990
+ self.match(PSParser.UNDERSCORE)
+ self.state = 991
+ self.match(PSParser.L_BRACE)
+ self.state = 992
+ _la = self._input.LA(1)
+ if not((((_la - 176)) & ~0x3f) == 0 and ((1 << (_la - 176)) & 98305) != 0):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 993
+ self.match(PSParser.LIM_APPROACH_SYM)
+ self.state = 994
+ self.expr()
+ self.state = 999
+ self._errHandler.sync(self)
+ _la = self._input.LA(1)
+ if _la == 168:
+ self.state = 995
+ self.match(PSParser.CARET)
+ self.state = 996
+ self.match(PSParser.L_BRACE)
+ self.state = 997
+ _la = self._input.LA(1)
+ if not(_la == 47 or _la == 48):
+ self._errHandler.recoverInline(self)
+ else:
+ self._errHandler.reportMatch(self)
+ self.consume()
+ self.state = 998
+ self.match(PSParser.R_BRACE)
+
+ self.state = 1001
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_single_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_single_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_single_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_single_arg"):
+ listener.enterFunc_single_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_single_arg"):
+ listener.exitFunc_single_arg(self)
+
+ def func_single_arg(self):
+
+ localctx = PSParser.Func_single_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 110, self.RULE_func_single_arg)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1003
+ self.expr()
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_single_arg_noparensContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_single_arg_noparensContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def mp_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Mp_nofuncContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_single_arg_noparens
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_single_arg_noparens"):
+ listener.enterFunc_single_arg_noparens(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_single_arg_noparens"):
+ listener.exitFunc_single_arg_noparens(self)
+
+ def func_single_arg_noparens(self):
+
+ localctx = PSParser.Func_single_arg_noparensContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 112, self.RULE_func_single_arg_noparens)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1005
+ self.mp_nofunc(0)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_multi_argContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_multi_argContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def COMMA(self):
+ return self.getToken(PSParser.COMMA, 0)
+
+ def func_multi_arg(self):
+ return self.getTypedRuleContext(PSParser.Func_multi_argContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_multi_arg
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_multi_arg"):
+ listener.enterFunc_multi_arg(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_multi_arg"):
+ listener.exitFunc_multi_arg(self)
+
+ def func_multi_arg(self):
+
+ localctx = PSParser.Func_multi_argContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 114, self.RULE_func_multi_arg)
+ try:
+ self.state = 1012
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 88, self._ctx)
+ if la_ == 1:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1007
+ self.expr()
+ pass
+
+ elif la_ == 2:
+ self.enterOuterAlt(localctx, 2)
+ self.state = 1008
+ self.expr()
+ self.state = 1009
+ self.match(PSParser.COMMA)
+ self.state = 1010
+ self.func_multi_arg()
+ pass
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class Func_multi_arg_noparensContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.Func_multi_arg_noparensContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def mp_nofunc(self):
+ return self.getTypedRuleContext(PSParser.Mp_nofuncContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_func_multi_arg_noparens
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterFunc_multi_arg_noparens"):
+ listener.enterFunc_multi_arg_noparens(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitFunc_multi_arg_noparens"):
+ listener.exitFunc_multi_arg_noparens(self)
+
+ def func_multi_arg_noparens(self):
+
+ localctx = PSParser.Func_multi_arg_noparensContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 116, self.RULE_func_multi_arg_noparens)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1014
+ self.mp_nofunc(0)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class SubexprContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.SubexprContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def args(self):
+ return self.getTypedRuleContext(PSParser.ArgsContext, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_subexpr
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterSubexpr"):
+ listener.enterSubexpr(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitSubexpr"):
+ listener.exitSubexpr(self)
+
+ def subexpr(self):
+
+ localctx = PSParser.SubexprContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 118, self.RULE_subexpr)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1016
+ self.match(PSParser.UNDERSCORE)
+ self.state = 1025
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 154, 173, 176, 179, 180, 190, 191, 192, 193, 194]:
+ self.state = 1017
+ self.atom()
+ pass
+ elif token in [55]:
+ self.state = 1018
+ self.match(PSParser.L_BRACE)
+ self.state = 1021
+ self._errHandler.sync(self)
+ la_ = self._interp.adaptivePredict(self._input, 89, self._ctx)
+ if la_ == 1:
+ self.state = 1019
+ self.expr()
+ pass
+
+ elif la_ == 2:
+ self.state = 1020
+ self.args()
+ pass
+
+ self.state = 1023
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class SupexprContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.SupexprContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def CARET(self):
+ return self.getToken(PSParser.CARET, 0)
+
+ def atom(self):
+ return self.getTypedRuleContext(PSParser.AtomContext, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def expr(self):
+ return self.getTypedRuleContext(PSParser.ExprContext, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_supexpr
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterSupexpr"):
+ listener.enterSupexpr(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitSupexpr"):
+ listener.exitSupexpr(self)
+
+ def supexpr(self):
+
+ localctx = PSParser.SupexprContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 120, self.RULE_supexpr)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1027
+ self.match(PSParser.CARET)
+ self.state = 1033
+ self._errHandler.sync(self)
+ token = self._input.LA(1)
+ if token in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 154, 173, 176, 179, 180, 190, 191, 192, 193, 194]:
+ self.state = 1028
+ self.atom()
+ pass
+ elif token in [55]:
+ self.state = 1029
+ self.match(PSParser.L_BRACE)
+ self.state = 1030
+ self.expr()
+ self.state = 1031
+ self.match(PSParser.R_BRACE)
+ pass
+ else:
+ raise NoViableAltException(self)
+
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class SubeqContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.SubeqContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def equality(self):
+ return self.getTypedRuleContext(PSParser.EqualityContext, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_subeq
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterSubeq"):
+ listener.enterSubeq(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitSubeq"):
+ listener.exitSubeq(self)
+
+ def subeq(self):
+
+ localctx = PSParser.SubeqContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 122, self.RULE_subeq)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1035
+ self.match(PSParser.UNDERSCORE)
+ self.state = 1036
+ self.match(PSParser.L_BRACE)
+ self.state = 1037
+ self.equality()
+ self.state = 1038
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ class SupeqContext(ParserRuleContext):
+
+ def __init__(self, parser, parent=None, invokingState=-1):
+ super(PSParser.SupeqContext, self).__init__(parent, invokingState)
+ self.parser = parser
+
+ def UNDERSCORE(self):
+ return self.getToken(PSParser.UNDERSCORE, 0)
+
+ def L_BRACE(self):
+ return self.getToken(PSParser.L_BRACE, 0)
+
+ def equality(self):
+ return self.getTypedRuleContext(PSParser.EqualityContext, 0)
+
+ def R_BRACE(self):
+ return self.getToken(PSParser.R_BRACE, 0)
+
+ def getRuleIndex(self):
+ return PSParser.RULE_supeq
+
+ def enterRule(self, listener):
+ if hasattr(listener, "enterSupeq"):
+ listener.enterSupeq(self)
+
+ def exitRule(self, listener):
+ if hasattr(listener, "exitSupeq"):
+ listener.exitSupeq(self)
+
+ def supeq(self):
+
+ localctx = PSParser.SupeqContext(self, self._ctx, self.state)
+ self.enterRule(localctx, 124, self.RULE_supeq)
+ try:
+ self.enterOuterAlt(localctx, 1)
+ self.state = 1040
+ self.match(PSParser.UNDERSCORE)
+ self.state = 1041
+ self.match(PSParser.L_BRACE)
+ self.state = 1042
+ self.equality()
+ self.state = 1043
+ self.match(PSParser.R_BRACE)
+ except RecognitionException as re:
+ localctx.exception = re
+ self._errHandler.reportError(self, re)
+ self._errHandler.recover(self, re)
+ finally:
+ self.exitRule()
+ return localctx
+
+ def sempred(self, localctx, ruleIndex, predIndex):
+ if self._predicates == None:
+ self._predicates = dict()
+ self._predicates[12] = self.relation_sempred
+ self._predicates[17] = self.additive_sempred
+ self._predicates[18] = self.mp_sempred
+ self._predicates[19] = self.mp_nofunc_sempred
+ self._predicates[28] = self.exp_sempred
+ self._predicates[29] = self.exp_nofunc_sempred
+ pred = self._predicates.get(ruleIndex, None)
+ if pred is None:
+ raise Exception("No predicate with index:" + str(ruleIndex))
+ else:
+ return pred(localctx, predIndex)
+
+ def relation_sempred(self, localctx, predIndex):
+ if predIndex == 0:
+ return self.precpred(self._ctx, 2)
+
+ def additive_sempred(self, localctx, predIndex):
+ if predIndex == 1:
+ return self.precpred(self._ctx, 2)
+
+ def mp_sempred(self, localctx, predIndex):
+ if predIndex == 2:
+ return self.precpred(self._ctx, 2)
+
+ def mp_nofunc_sempred(self, localctx, predIndex):
+ if predIndex == 3:
+ return self.precpred(self._ctx, 2)
+
+ def exp_sempred(self, localctx, predIndex):
+ if predIndex == 4:
+ return self.precpred(self._ctx, 2)
+
+ def exp_nofunc_sempred(self, localctx, predIndex):
+ if predIndex == 5:
+ return self.precpred(self._ctx, 2)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/gen/__init__.py b/Qwen2.5-Eval/evaluation/latex2sympy/gen/__init__.py
new file mode 100755
index 0000000..e69de29
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/gen/__init__.py
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/icon.png b/Qwen2.5-Eval/evaluation/latex2sympy/icon.png
new file mode 100755
index 0000000..a569624
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/icon.png
Binary files differ
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/latex2sympy2.py b/Qwen2.5-Eval/evaluation/latex2sympy/latex2sympy2.py
new file mode 100755
index 0000000..859a8c7
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/latex2sympy2.py
@@ -0,0 +1,1162 @@
+import sympy
+import re
+from sympy import matrix_symbols, simplify, factor, expand, apart, expand_trig
+from antlr4 import InputStream, CommonTokenStream
+from antlr4.error.ErrorListener import ErrorListener
+
+try:
+ from gen.PSParser import PSParser
+ from gen.PSLexer import PSLexer
+ from gen.PSListener import PSListener
+except Exception:
+ from .gen.PSParser import PSParser
+ from .gen.PSLexer import PSLexer
+ from .gen.PSListener import PSListener
+
+from sympy.printing.str import StrPrinter
+
+from sympy.parsing.sympy_parser import parse_expr
+
+import hashlib
+
+is_real = None
+
+frac_type = r'\frac'
+
+variances = {}
+var = {}
+
+VARIABLE_VALUES = {}
+
+
+def set_real(value):
+ global is_real
+ is_real = value
+
+
+def set_variances(vars):
+ global variances
+ variances = vars
+ global var
+ var = {}
+ for variance in vars:
+ var[str(variance)] = vars[variance]
+
+
+def latex2sympy(sympy: str, variable_values={}):
+ # record frac
+ global frac_type
+ if sympy.find(r'\frac') != -1:
+ frac_type = r'\frac'
+ if sympy.find(r'\dfrac') != -1:
+ frac_type = r'\dfrac'
+ if sympy.find(r'\tfrac') != -1:
+ frac_type = r'\tfrac'
+ sympy = sympy.replace(r'\dfrac', r'\frac')
+ sympy = sympy.replace(r'\tfrac', r'\frac')
+ # Translate Transpose
+ sympy = sympy.replace(r'\mathrm{T}', 'T', -1)
+ # Translate Derivative
+ sympy = sympy.replace(r'\mathrm{d}', 'd', -1).replace(r'{\rm d}', 'd', -1)
+ # Translate Matrix
+ sympy = sympy.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
+ # Translate Permutation
+ sympy = re.sub(r"\(([a-zA-Z0-9+\-*/\\ ]+?)\)_{([a-zA-Z0-9+\-*/\\ ]+?)}", r"\\frac{(\1)!}{((\1)-(\2))!}", sympy)
+ # Remove \displaystyle
+ sympy = sympy.replace(r'\displaystyle', ' ', -1)
+ # Remove \quad
+ sympy = sympy.replace(r'\quad', ' ', -1).replace(r'\qquad', ' ', -1).replace(r'~', ' ', -1).replace(r'\,', ' ', -1)
+ # Remove $
+ sympy = sympy.replace(r'$', ' ', -1)
+
+ # variable values
+ global VARIABLE_VALUES
+ if len(variable_values) > 0:
+ VARIABLE_VALUES = variable_values
+ else:
+ VARIABLE_VALUES = {}
+
+ # setup listener
+ matherror = MathErrorListener(sympy)
+
+ # stream input
+ stream = InputStream(sympy)
+ lex = PSLexer(stream)
+ lex.removeErrorListeners()
+ lex.addErrorListener(matherror)
+
+ tokens = CommonTokenStream(lex)
+ parser = PSParser(tokens)
+
+ # remove default console error listener
+ parser.removeErrorListeners()
+ parser.addErrorListener(matherror)
+
+ # process the input
+ return_data = None
+ math = parser.math()
+
+ # if a list
+ if math.relation_list():
+ return_data = []
+
+ # go over list items
+ relation_list = math.relation_list().relation_list_content()
+ for list_item in relation_list.relation():
+ expr = convert_relation(list_item)
+ return_data.append(expr)
+
+ # if not, do default
+ else:
+ relation = math.relation()
+ return_data = convert_relation(relation)
+
+ return return_data
+
+
+class MathErrorListener(ErrorListener):
+ def __init__(self, src):
+ super(ErrorListener, self).__init__()
+ self.src = src
+
+ def syntaxError(self, recog, symbol, line, col, msg, e):
+ fmt = "%s\n%s\n%s"
+ marker = "~" * col + "^"
+
+ if msg.startswith("missing"):
+ err = fmt % (msg, self.src, marker)
+ elif msg.startswith("no viable"):
+ err = fmt % ("I expected something else here", self.src, marker)
+ elif msg.startswith("mismatched"):
+ names = PSParser.literalNames
+ expected = [names[i] for i in e.getExpectedTokens() if i < len(names)]
+ if len(expected) < 10:
+ expected = " ".join(expected)
+ err = (fmt % ("I expected one of these: " + expected,
+ self.src, marker))
+ else:
+ err = (fmt % ("I expected something else here", self.src, marker))
+ else:
+ err = fmt % ("I don't understand this", self.src, marker)
+ raise Exception(err)
+
+
+def convert_relation(rel):
+ if rel.expr():
+ return convert_expr(rel.expr())
+
+ lh = convert_relation(rel.relation(0))
+ rh = convert_relation(rel.relation(1))
+ if rel.LT():
+ return sympy.StrictLessThan(lh, rh, evaluate=False)
+ elif rel.LTE():
+ return sympy.LessThan(lh, rh, evaluate=False)
+ elif rel.GT():
+ return sympy.StrictGreaterThan(lh, rh, evaluate=False)
+ elif rel.GTE():
+ return sympy.GreaterThan(lh, rh, evaluate=False)
+ elif rel.EQUAL():
+ return sympy.Eq(lh, rh, evaluate=False)
+ elif rel.ASSIGNMENT():
+ # !Use Global variances
+ if lh.is_Symbol:
+ # set value
+ variances[lh] = rh
+ var[str(lh)] = rh
+ return rh
+ else:
+ # find the symbols in lh - rh
+ equation = lh - rh
+ syms = equation.atoms(sympy.Symbol)
+ if len(syms) > 0:
+ # Solve equation
+ result = []
+ for sym in syms:
+ values = sympy.solve(equation, sym)
+ for value in values:
+ result.append(sympy.Eq(sym, value, evaluate=False))
+ return result
+ else:
+ return sympy.Eq(lh, rh, evaluate=False)
+ elif rel.IN():
+ # !Use Global variances
+ if hasattr(rh, 'is_Pow') and rh.is_Pow and hasattr(rh.exp, 'is_Mul'):
+ n = rh.exp.args[0]
+ m = rh.exp.args[1]
+ if n in variances:
+ n = variances[n]
+ if m in variances:
+ m = variances[m]
+ rh = sympy.MatrixSymbol(lh, n, m)
+ variances[lh] = rh
+ var[str(lh)] = rh
+ else:
+ raise Exception("Don't support this form of definition of matrix symbol.")
+ return lh
+ elif rel.UNEQUAL():
+ return sympy.Ne(lh, rh, evaluate=False)
+
+
+def convert_expr(expr):
+ if expr.additive():
+ return convert_add(expr.additive())
+
+
+def convert_elementary_transform(matrix, transform):
+ if transform.transform_scale():
+ transform_scale = transform.transform_scale()
+ transform_atom = transform_scale.transform_atom()
+ k = None
+ num = int(transform_atom.NUMBER().getText()) - 1
+ if transform_scale.expr():
+ k = convert_expr(transform_scale.expr())
+ elif transform_scale.group():
+ k = convert_expr(transform_scale.group().expr())
+ elif transform_scale.SUB():
+ k = -1
+ else:
+ k = 1
+ if transform_atom.LETTER_NO_E().getText() == 'r':
+ matrix = matrix.elementary_row_op(op='n->kn', row=num, k=k)
+ elif transform_atom.LETTER_NO_E().getText() == 'c':
+ matrix = matrix.elementary_col_op(op='n->kn', col=num, k=k)
+ else:
+ raise Exception('Row and col don\'s match')
+
+ elif transform.transform_swap():
+ first_atom = transform.transform_swap().transform_atom()[0]
+ second_atom = transform.transform_swap().transform_atom()[1]
+ first_num = int(first_atom.NUMBER().getText()) - 1
+ second_num = int(second_atom.NUMBER().getText()) - 1
+ if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
+ raise Exception('Row and col don\'s match')
+ elif first_atom.LETTER_NO_E().getText() == 'r':
+ matrix = matrix.elementary_row_op(op='n<->m', row1=first_num, row2=second_num)
+ elif first_atom.LETTER_NO_E().getText() == 'c':
+ matrix = matrix.elementary_col_op(op='n<->m', col1=first_num, col2=second_num)
+ else:
+ raise Exception('Row and col don\'s match')
+
+ elif transform.transform_assignment():
+ first_atom = transform.transform_assignment().transform_atom()
+ second_atom = transform.transform_assignment().transform_scale().transform_atom()
+ transform_scale = transform.transform_assignment().transform_scale()
+ k = None
+ if transform_scale.expr():
+ k = convert_expr(transform_scale.expr())
+ elif transform_scale.group():
+ k = convert_expr(transform_scale.group().expr())
+ elif transform_scale.SUB():
+ k = -1
+ else:
+ k = 1
+ first_num = int(first_atom.NUMBER().getText()) - 1
+ second_num = int(second_atom.NUMBER().getText()) - 1
+ if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
+ raise Exception('Row and col don\'s match')
+ elif first_atom.LETTER_NO_E().getText() == 'r':
+ matrix = matrix.elementary_row_op(op='n->n+km', k=k, row1=first_num, row2=second_num)
+ elif first_atom.LETTER_NO_E().getText() == 'c':
+ matrix = matrix.elementary_col_op(op='n->n+km', k=k, col1=first_num, col2=second_num)
+ else:
+ raise Exception('Row and col don\'s match')
+
+ return matrix
+
+
+def convert_matrix(matrix):
+ # build matrix
+ row = matrix.matrix_row()
+ tmp = []
+ rows = 0
+ mat = None
+
+ for r in row:
+ tmp.append([])
+ for expr in r.expr():
+ tmp[rows].append(convert_expr(expr))
+ rows = rows + 1
+
+ mat = sympy.Matrix(tmp)
+
+ if hasattr(matrix, 'MATRIX_XRIGHTARROW') and matrix.MATRIX_XRIGHTARROW():
+ transforms_list = matrix.elementary_transforms()
+ if len(transforms_list) == 1:
+ for transform in transforms_list[0].elementary_transform():
+ mat = convert_elementary_transform(mat, transform)
+ elif len(transforms_list) == 2:
+ # firstly transform top of xrightarrow
+ for transform in transforms_list[1].elementary_transform():
+ mat = convert_elementary_transform(mat, transform)
+ # firstly transform bottom of xrightarrow
+ for transform in transforms_list[0].elementary_transform():
+ mat = convert_elementary_transform(mat, transform)
+
+ return mat
+
+
+def add_flat(lh, rh):
+ if hasattr(lh, 'is_Add') and lh.is_Add or hasattr(rh, 'is_Add') and rh.is_Add:
+ args = []
+ if hasattr(lh, 'is_Add') and lh.is_Add:
+ args += list(lh.args)
+ else:
+ args += [lh]
+ if hasattr(rh, 'is_Add') and rh.is_Add:
+ args = args + list(rh.args)
+ else:
+ args += [rh]
+ return sympy.Add(*args, evaluate=False)
+ else:
+ return sympy.Add(lh, rh, evaluate=False)
+
+
+def mat_add_flat(lh, rh):
+ if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd or hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
+ args = []
+ if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd:
+ args += list(lh.args)
+ else:
+ args += [lh]
+ if hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
+ args = args + list(rh.args)
+ else:
+ args += [rh]
+ return sympy.MatAdd(*[arg.doit() for arg in args], evaluate=False)
+ else:
+ return sympy.MatAdd(lh.doit(), rh.doit(), evaluate=False)
+
+
+def mul_flat(lh, rh):
+ if hasattr(lh, 'is_Mul') and lh.is_Mul or hasattr(rh, 'is_Mul') and rh.is_Mul:
+ args = []
+ if hasattr(lh, 'is_Mul') and lh.is_Mul:
+ args += list(lh.args)
+ else:
+ args += [lh]
+ if hasattr(rh, 'is_Mul') and rh.is_Mul:
+ args = args + list(rh.args)
+ else:
+ args += [rh]
+ return sympy.Mul(*args, evaluate=False)
+ else:
+ return sympy.Mul(lh, rh, evaluate=False)
+
+
+def mat_mul_flat(lh, rh):
+ if hasattr(lh, 'is_MatMul') and lh.is_MatMul or hasattr(rh, 'is_MatMul') and rh.is_MatMul:
+ args = []
+ if hasattr(lh, 'is_MatMul') and lh.is_MatMul:
+ args += list(lh.args)
+ else:
+ args += [lh]
+ if hasattr(rh, 'is_MatMul') and rh.is_MatMul:
+ args = args + list(rh.args)
+ else:
+ args += [rh]
+ return sympy.MatMul(*[arg.doit() for arg in args], evaluate=False)
+ else:
+ if hasattr(lh, 'doit') and hasattr(rh, 'doit'):
+ return sympy.MatMul(lh.doit(), rh.doit(), evaluate=False)
+ elif hasattr(lh, 'doit') and not hasattr(rh, 'doit'):
+ return sympy.MatMul(lh.doit(), rh, evaluate=False)
+ elif not hasattr(lh, 'doit') and hasattr(rh, 'doit'):
+ return sympy.MatMul(lh, rh.doit(), evaluate=False)
+ else:
+ return sympy.MatMul(lh, rh, evaluate=False)
+
+
+def convert_add(add):
+ if add.ADD():
+ lh = convert_add(add.additive(0))
+ rh = convert_add(add.additive(1))
+
+ if lh.is_Matrix or rh.is_Matrix:
+ return mat_add_flat(lh, rh)
+ else:
+ return add_flat(lh, rh)
+ elif add.SUB():
+ lh = convert_add(add.additive(0))
+ rh = convert_add(add.additive(1))
+
+ if lh.is_Matrix or rh.is_Matrix:
+ return mat_add_flat(lh, mat_mul_flat(-1, rh))
+ else:
+ # If we want to force ordering for variables this should be:
+ # return Sub(lh, rh, evaluate=False)
+ if not rh.is_Matrix and rh.func.is_Number:
+ rh = -rh
+ else:
+ rh = mul_flat(-1, rh)
+ return add_flat(lh, rh)
+ else:
+ return convert_mp(add.mp())
+
+
+def convert_mp(mp):
+ if hasattr(mp, 'mp'):
+ mp_left = mp.mp(0)
+ mp_right = mp.mp(1)
+ else:
+ mp_left = mp.mp_nofunc(0)
+ mp_right = mp.mp_nofunc(1)
+
+ if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
+ lh = convert_mp(mp_left)
+ rh = convert_mp(mp_right)
+
+ if lh.is_Matrix or rh.is_Matrix:
+ return mat_mul_flat(lh, rh)
+ else:
+ return mul_flat(lh, rh)
+ elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
+ lh = convert_mp(mp_left)
+ rh = convert_mp(mp_right)
+ if lh.is_Matrix or rh.is_Matrix:
+ return sympy.MatMul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
+ else:
+ return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
+ elif mp.CMD_MOD():
+ lh = convert_mp(mp_left)
+ rh = convert_mp(mp_right)
+ if rh.is_Matrix:
+ raise Exception("Cannot perform modulo operation with a matrix as an operand")
+ else:
+ return sympy.Mod(lh, rh, evaluate=False)
+ else:
+ if hasattr(mp, 'unary'):
+ return convert_unary(mp.unary())
+ else:
+ return convert_unary(mp.unary_nofunc())
+
+
+def convert_unary(unary):
+ if hasattr(unary, 'unary'):
+ nested_unary = unary.unary()
+ else:
+ nested_unary = unary.unary_nofunc()
+ if hasattr(unary, 'postfix_nofunc'):
+ first = unary.postfix()
+ tail = unary.postfix_nofunc()
+ postfix = [first] + tail
+ else:
+ postfix = unary.postfix()
+
+ if unary.ADD():
+ return convert_unary(nested_unary)
+ elif unary.SUB():
+ tmp_convert_nested_unary = convert_unary(nested_unary)
+ if tmp_convert_nested_unary.is_Matrix:
+ return mat_mul_flat(-1, tmp_convert_nested_unary, evaluate=False)
+ else:
+ if tmp_convert_nested_unary.func.is_Number:
+ return -tmp_convert_nested_unary
+ else:
+ return mul_flat(-1, tmp_convert_nested_unary)
+ elif postfix:
+ return convert_postfix_list(postfix)
+
+
+def convert_postfix_list(arr, i=0):
+ if i >= len(arr):
+ raise Exception("Index out of bounds")
+
+ res = convert_postfix(arr[i])
+
+ if isinstance(res, sympy.Expr) or isinstance(res, sympy.Matrix) or res is sympy.S.EmptySet:
+ if i == len(arr) - 1:
+ return res # nothing to multiply by
+ else:
+ # multiply by next
+ rh = convert_postfix_list(arr, i + 1)
+
+ if res.is_Matrix or rh.is_Matrix:
+ return mat_mul_flat(res, rh)
+ else:
+ return mul_flat(res, rh)
+ elif isinstance(res, tuple) or isinstance(res, list) or isinstance(res, dict):
+ return res
+ else: # must be derivative
+ wrt = res[0]
+ if i == len(arr) - 1:
+ raise Exception("Expected expression for derivative")
+ else:
+ expr = convert_postfix_list(arr, i + 1)
+ return sympy.Derivative(expr, wrt)
+
+
+def do_subs(expr, at):
+ if at.expr():
+ at_expr = convert_expr(at.expr())
+ syms = at_expr.atoms(sympy.Symbol)
+ if len(syms) == 0:
+ return expr
+ elif len(syms) > 0:
+ sym = next(iter(syms))
+ return expr.subs(sym, at_expr)
+ elif at.equality():
+ lh = convert_expr(at.equality().expr(0))
+ rh = convert_expr(at.equality().expr(1))
+ return expr.subs(lh, rh)
+
+
+def convert_postfix(postfix):
+ if hasattr(postfix, 'exp'):
+ exp_nested = postfix.exp()
+ else:
+ exp_nested = postfix.exp_nofunc()
+
+ exp = convert_exp(exp_nested)
+ for op in postfix.postfix_op():
+ if op.BANG():
+ if isinstance(exp, list):
+ raise Exception("Cannot apply postfix to derivative")
+ exp = sympy.factorial(exp, evaluate=False)
+ elif op.eval_at():
+ ev = op.eval_at()
+ at_b = None
+ at_a = None
+ if ev.eval_at_sup():
+ at_b = do_subs(exp, ev.eval_at_sup())
+ if ev.eval_at_sub():
+ at_a = do_subs(exp, ev.eval_at_sub())
+ if at_b is not None and at_a is not None:
+ exp = add_flat(at_b, mul_flat(at_a, -1))
+ elif at_b is not None:
+ exp = at_b
+ elif at_a is not None:
+ exp = at_a
+ elif op.transpose():
+ try:
+ exp = exp.T
+ except:
+ try:
+ exp = sympy.transpose(exp)
+ except:
+ pass
+ pass
+
+ return exp
+
+
+def convert_exp(exp):
+ if hasattr(exp, 'exp'):
+ exp_nested = exp.exp()
+ else:
+ exp_nested = exp.exp_nofunc()
+
+ if exp_nested:
+ base = convert_exp(exp_nested)
+ if isinstance(base, list):
+ raise Exception("Cannot raise derivative to power")
+ if exp.atom():
+ exponent = convert_atom(exp.atom())
+ elif exp.expr():
+ exponent = convert_expr(exp.expr())
+ return sympy.Pow(base, exponent, evaluate=False)
+ else:
+ if hasattr(exp, 'comp'):
+ return convert_comp(exp.comp())
+ else:
+ return convert_comp(exp.comp_nofunc())
+
+
+def convert_comp(comp):
+ if comp.group():
+ return convert_expr(comp.group().expr())
+ elif comp.norm_group():
+ return convert_expr(comp.norm_group().expr()).norm()
+ elif comp.abs_group():
+ return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
+ elif comp.floor_group():
+ return handle_floor(convert_expr(comp.floor_group().expr()))
+ elif comp.ceil_group():
+ return handle_ceil(convert_expr(comp.ceil_group().expr()))
+ elif comp.atom():
+ return convert_atom(comp.atom())
+ elif comp.frac():
+ return convert_frac(comp.frac())
+ elif comp.binom():
+ return convert_binom(comp.binom())
+ elif comp.matrix():
+ return convert_matrix(comp.matrix())
+ elif comp.det():
+ # !Use Global variances
+ return convert_matrix(comp.det()).subs(variances).det()
+ elif comp.func():
+ return convert_func(comp.func())
+
+
+def convert_atom(atom):
+ if atom.atom_expr():
+ atom_expr = atom.atom_expr()
+
+ # find the atom's text
+ atom_text = ''
+ if atom_expr.LETTER_NO_E():
+ atom_text = atom_expr.LETTER_NO_E().getText()
+ if atom_text == "I":
+ return sympy.I
+ elif atom_expr.GREEK_CMD():
+ atom_text = atom_expr.GREEK_CMD().getText()[1:].strip()
+ elif atom_expr.OTHER_SYMBOL_CMD():
+ atom_text = atom_expr.OTHER_SYMBOL_CMD().getText().strip()
+ elif atom_expr.accent():
+ atom_accent = atom_expr.accent()
+ # get name for accent
+ name = atom_accent.start.text
+ # name = atom_accent.start.text[1:]
+ # exception: check if bar or overline which are treated both as bar
+ # if name in ["bar", "overline"]:
+ # name = "bar"
+ # if name in ["vec", "overrightarrow"]:
+ # name = "vec"
+ # if name in ["tilde", "widetilde"]:
+ # name = "tilde"
+ # get the base (variable)
+ base = atom_accent.base.getText()
+ # set string to base+name
+ atom_text = name + '{' + base + '}'
+
+ # find atom's subscript, if any
+ subscript_text = ''
+ if atom_expr.subexpr():
+ subexpr = atom_expr.subexpr()
+ subscript = None
+ if subexpr.expr(): # subscript is expr
+ subscript = subexpr.expr().getText().strip()
+ elif subexpr.atom(): # subscript is atom
+ subscript = subexpr.atom().getText().strip()
+ elif subexpr.args(): # subscript is args
+ subscript = subexpr.args().getText().strip()
+ subscript_inner_text = StrPrinter().doprint(subscript)
+ if len(subscript_inner_text) > 1:
+ subscript_text = '_{' + subscript_inner_text + '}'
+ else:
+ subscript_text = '_' + subscript_inner_text
+
+ # construct the symbol using the text and optional subscript
+ atom_symbol = sympy.Symbol(atom_text + subscript_text, real=is_real)
+ # for matrix symbol
+ matrix_symbol = None
+ global var
+ if atom_text + subscript_text in var:
+ try:
+ rh = var[atom_text + subscript_text]
+ shape = sympy.shape(rh)
+ matrix_symbol = sympy.MatrixSymbol(atom_text + subscript_text, shape[0], shape[1])
+ variances[matrix_symbol] = variances[atom_symbol]
+ except:
+ pass
+
+ # find the atom's superscript, and return as a Pow if found
+ if atom_expr.supexpr():
+ supexpr = atom_expr.supexpr()
+ func_pow = None
+ if supexpr.expr():
+ func_pow = convert_expr(supexpr.expr())
+ else:
+ func_pow = convert_atom(supexpr.atom())
+ return sympy.Pow(atom_symbol, func_pow, evaluate=False)
+
+ return atom_symbol if not matrix_symbol else matrix_symbol
+ elif atom.SYMBOL():
+ s = atom.SYMBOL().getText().replace("\\$", "").replace("\\%", "")
+ if s == "\\infty":
+ return sympy.oo
+ elif s == '\\pi':
+ return sympy.pi
+ elif s == '\\emptyset':
+ return sympy.S.EmptySet
+ else:
+ raise Exception("Unrecognized symbol")
+ elif atom.NUMBER():
+ s = atom.NUMBER().getText().replace(",", "")
+ try:
+ sr = sympy.Rational(s)
+ return sr
+ except (TypeError, ValueError):
+ return sympy.Number(s)
+ elif atom.E_NOTATION():
+ s = atom.E_NOTATION().getText().replace(",", "")
+ try:
+ sr = sympy.Rational(s)
+ return sr
+ except (TypeError, ValueError):
+ return sympy.Number(s)
+ elif atom.DIFFERENTIAL():
+ var = get_differential_var(atom.DIFFERENTIAL())
+ return sympy.Symbol('d' + var.name, real=is_real)
+ elif atom.mathit():
+ text = rule2text(atom.mathit().mathit_text())
+ return sympy.Symbol(text, real=is_real)
+ elif atom.VARIABLE():
+ text = atom.VARIABLE().getText()
+ is_percent = text.endswith("\\%")
+ trim_amount = 3 if is_percent else 1
+ name = text[10:]
+ name = name[0:len(name) - trim_amount]
+
+ # add hash to distinguish from regular symbols
+ hash = hashlib.md5(name.encode()).hexdigest()
+ symbol_name = name + hash
+
+ # replace the variable for already known variable values
+ if name in VARIABLE_VALUES:
+ # if a sympy class
+ if isinstance(VARIABLE_VALUES[name], tuple(sympy.core.all_classes)):
+ symbol = VARIABLE_VALUES[name]
+
+ # if NOT a sympy class
+ else:
+ symbol = parse_expr(str(VARIABLE_VALUES[name]))
+ else:
+ symbol = sympy.Symbol(symbol_name, real=is_real)
+
+ if is_percent:
+ return sympy.Mul(symbol, sympy.Pow(100, -1, evaluate=False), evaluate=False)
+
+ # return the symbol
+ return symbol
+
+ elif atom.PERCENT_NUMBER():
+ text = atom.PERCENT_NUMBER().getText().replace("\\%", "").replace(",", "")
+ try:
+ number = sympy.Rational(text)
+ except (TypeError, ValueError):
+ number = sympy.Number(text)
+ percent = sympy.Rational(number, 100)
+ return percent
+
+
+def rule2text(ctx):
+ stream = ctx.start.getInputStream()
+ # starting index of starting token
+ startIdx = ctx.start.start
+ # stopping index of stopping token
+ stopIdx = ctx.stop.stop
+
+ return stream.getText(startIdx, stopIdx)
+
+
+def convert_frac(frac):
+ diff_op = False
+ partial_op = False
+ lower_itv = frac.lower.getSourceInterval()
+ lower_itv_len = lower_itv[1] - lower_itv[0] + 1
+ if (frac.lower.start == frac.lower.stop and
+ frac.lower.start.type == PSLexer.DIFFERENTIAL):
+ wrt = get_differential_var_str(frac.lower.start.text)
+ diff_op = True
+ elif (lower_itv_len == 2 and
+ frac.lower.start.type == PSLexer.SYMBOL and
+ frac.lower.start.text == '\\partial' and
+ (frac.lower.stop.type == PSLexer.LETTER_NO_E or frac.lower.stop.type == PSLexer.SYMBOL)):
+ partial_op = True
+ wrt = frac.lower.stop.text
+ if frac.lower.stop.type == PSLexer.SYMBOL:
+ wrt = wrt[1:]
+
+ if diff_op or partial_op:
+ wrt = sympy.Symbol(wrt, real=is_real)
+ if (diff_op and frac.upper.start == frac.upper.stop and
+ frac.upper.start.type == PSLexer.LETTER_NO_E and
+ frac.upper.start.text == 'd'):
+ return [wrt]
+ elif (partial_op and frac.upper.start == frac.upper.stop and
+ frac.upper.start.type == PSLexer.SYMBOL and
+ frac.upper.start.text == '\\partial'):
+ return [wrt]
+ upper_text = rule2text(frac.upper)
+
+ expr_top = None
+ if diff_op and upper_text.startswith('d'):
+ expr_top = latex2sympy(upper_text[1:])
+ elif partial_op and frac.upper.start.text == '\\partial':
+ expr_top = latex2sympy(upper_text[len('\\partial'):])
+ if expr_top:
+ return sympy.Derivative(expr_top, wrt)
+
+ expr_top = convert_expr(frac.upper)
+ expr_bot = convert_expr(frac.lower)
+ if expr_top.is_Matrix or expr_bot.is_Matrix:
+ return sympy.MatMul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
+ else:
+ return sympy.Mul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
+
+
+def convert_binom(binom):
+ expr_top = convert_expr(binom.upper)
+ expr_bot = convert_expr(binom.lower)
+ return sympy.binomial(expr_top, expr_bot)
+
+
+def convert_func(func):
+ if func.func_normal_single_arg():
+ if func.L_PAREN(): # function called with parenthesis
+ arg = convert_func_arg(func.func_single_arg())
+ else:
+ arg = convert_func_arg(func.func_single_arg_noparens())
+
+ name = func.func_normal_single_arg().start.text[1:]
+
+ # change arc<trig> -> a<trig>
+ if name in ["arcsin", "arccos", "arctan", "arccsc", "arcsec",
+ "arccot"]:
+ name = "a" + name[3:]
+ expr = getattr(sympy.functions, name)(arg, evaluate=False)
+ elif name in ["arsinh", "arcosh", "artanh"]:
+ name = "a" + name[2:]
+ expr = getattr(sympy.functions, name)(arg, evaluate=False)
+ elif name in ["arcsinh", "arccosh", "arctanh"]:
+ name = "a" + name[3:]
+ expr = getattr(sympy.functions, name)(arg, evaluate=False)
+ elif name == "operatorname":
+ operatorname = func.func_normal_single_arg().func_operator_name.getText()
+
+ if operatorname in ["arsinh", "arcosh", "artanh"]:
+ operatorname = "a" + operatorname[2:]
+ expr = getattr(sympy.functions, operatorname)(arg, evaluate=False)
+ elif operatorname in ["arcsinh", "arccosh", "arctanh"]:
+ operatorname = "a" + operatorname[3:]
+ expr = getattr(sympy.functions, operatorname)(arg, evaluate=False)
+ elif operatorname == "floor":
+ expr = handle_floor(arg)
+ elif operatorname == "ceil":
+ expr = handle_ceil(arg)
+ elif operatorname == 'eye':
+ expr = sympy.eye(arg)
+ elif operatorname == 'rank':
+ expr = sympy.Integer(arg.rank())
+ elif operatorname in ['trace', 'tr']:
+ expr = arg.trace()
+ elif operatorname == 'rref':
+ expr = arg.rref()[0]
+ elif operatorname == 'nullspace':
+ expr = arg.nullspace()
+ elif operatorname == 'norm':
+ expr = arg.norm()
+ elif operatorname == 'cols':
+ expr = [arg.col(i) for i in range(arg.cols)]
+ elif operatorname == 'rows':
+ expr = [arg.row(i) for i in range(arg.rows)]
+ elif operatorname in ['eig', 'eigen', 'diagonalize']:
+ expr = arg.diagonalize()
+ elif operatorname in ['eigenvals', 'eigenvalues']:
+ expr = arg.eigenvals()
+ elif operatorname in ['eigenvects', 'eigenvectors']:
+ expr = arg.eigenvects()
+ elif operatorname in ['svd', 'SVD']:
+ expr = arg.singular_value_decomposition()
+ elif name in ["log", "ln"]:
+ if func.subexpr():
+ if func.subexpr().atom():
+ base = convert_atom(func.subexpr().atom())
+ else:
+ base = convert_expr(func.subexpr().expr())
+ elif name == "log":
+ base = 10
+ elif name == "ln":
+ base = sympy.E
+ expr = sympy.log(arg, base, evaluate=False)
+ elif name in ["exp", "exponentialE"]:
+ expr = sympy.exp(arg)
+ elif name == "floor":
+ expr = handle_floor(arg)
+ elif name == "ceil":
+ expr = handle_ceil(arg)
+ elif name == 'det':
+ expr = arg.det()
+
+ func_pow = None
+ should_pow = True
+ if func.supexpr():
+ if func.supexpr().expr():
+ func_pow = convert_expr(func.supexpr().expr())
+ else:
+ func_pow = convert_atom(func.supexpr().atom())
+
+ if name in ["sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh", "tanh"]:
+ if func_pow == -1:
+ name = "a" + name
+ should_pow = False
+ expr = getattr(sympy.functions, name)(arg, evaluate=False)
+
+ if func_pow and should_pow:
+ expr = sympy.Pow(expr, func_pow, evaluate=False)
+
+ return expr
+
+ elif func.func_normal_multi_arg():
+ if func.L_PAREN(): # function called with parenthesis
+ args = func.func_multi_arg().getText().split(",")
+ else:
+ args = func.func_multi_arg_noparens().split(",")
+
+ args = list(map(lambda arg: latex2sympy(arg, VARIABLE_VALUES), args))
+ name = func.func_normal_multi_arg().start.text[1:]
+
+ if name == "operatorname":
+ operatorname = func.func_normal_multi_arg().func_operator_name.getText()
+ if operatorname in ["gcd", "lcm"]:
+ expr = handle_gcd_lcm(operatorname, args)
+ elif operatorname == 'zeros':
+ expr = sympy.zeros(*args)
+ elif operatorname == 'ones':
+ expr = sympy.ones(*args)
+ elif operatorname == 'diag':
+ expr = sympy.diag(*args)
+ elif operatorname == 'hstack':
+ expr = sympy.Matrix.hstack(*args)
+ elif operatorname == 'vstack':
+ expr = sympy.Matrix.vstack(*args)
+ elif operatorname in ['orth', 'ortho', 'orthogonal', 'orthogonalize']:
+ if len(args) == 1:
+ arg = args[0]
+ expr = sympy.matrices.GramSchmidt([arg.col(i) for i in range(arg.cols)], True)
+ else:
+ expr = sympy.matrices.GramSchmidt(args, True)
+ elif name in ["gcd", "lcm"]:
+ expr = handle_gcd_lcm(name, args)
+ elif name in ["max", "min"]:
+ name = name[0].upper() + name[1:]
+ expr = getattr(sympy.functions, name)(*args, evaluate=False)
+
+ func_pow = None
+ should_pow = True
+ if func.supexpr():
+ if func.supexpr().expr():
+ func_pow = convert_expr(func.supexpr().expr())
+ else:
+ func_pow = convert_atom(func.supexpr().atom())
+
+ if func_pow and should_pow:
+ expr = sympy.Pow(expr, func_pow, evaluate=False)
+
+ return expr
+ elif func.atom_expr_no_supexpr():
+ # define a function
+ f = sympy.Function(func.atom_expr_no_supexpr().getText())
+ # args
+ args = func.func_common_args().getText().split(",")
+ if args[-1] == '':
+ args = args[:-1]
+ args = [latex2sympy(arg, VARIABLE_VALUES) for arg in args]
+ # supexpr
+ if func.supexpr():
+ if func.supexpr().expr():
+ expr = convert_expr(func.supexpr().expr())
+ else:
+ expr = convert_atom(func.supexpr().atom())
+ return sympy.Pow(f(*args), expr, evaluate=False)
+ else:
+ return f(*args)
+ elif func.FUNC_INT():
+ return handle_integral(func)
+ elif func.FUNC_SQRT():
+ expr = convert_expr(func.base)
+ if func.root:
+ r = convert_expr(func.root)
+ return sympy.Pow(expr, 1 / r, evaluate=False)
+ else:
+ return sympy.Pow(expr, sympy.S.Half, evaluate=False)
+ elif func.FUNC_SUM():
+ return handle_sum_or_prod(func, "summation")
+ elif func.FUNC_PROD():
+ return handle_sum_or_prod(func, "product")
+ elif func.FUNC_LIM():
+ return handle_limit(func)
+ elif func.EXP_E():
+ return handle_exp(func)
+
+
+def convert_func_arg(arg):
+ if hasattr(arg, 'expr'):
+ return convert_expr(arg.expr())
+ else:
+ return convert_mp(arg.mp_nofunc())
+
+
+def handle_integral(func):
+ if func.additive():
+ integrand = convert_add(func.additive())
+ elif func.frac():
+ integrand = convert_frac(func.frac())
+ else:
+ integrand = 1
+
+ int_var = None
+ if func.DIFFERENTIAL():
+ int_var = get_differential_var(func.DIFFERENTIAL())
+ else:
+ for sym in integrand.atoms(sympy.Symbol):
+ s = str(sym)
+ if len(s) > 1 and s[0] == 'd':
+ if s[1] == '\\':
+ int_var = sympy.Symbol(s[2:], real=is_real)
+ else:
+ int_var = sympy.Symbol(s[1:], real=is_real)
+ int_sym = sym
+ if int_var:
+ integrand = integrand.subs(int_sym, 1)
+ else:
+ # Assume dx by default
+ int_var = sympy.Symbol('x', real=is_real)
+
+ if func.subexpr():
+ if func.subexpr().atom():
+ lower = convert_atom(func.subexpr().atom())
+ else:
+ lower = convert_expr(func.subexpr().expr())
+ if func.supexpr().atom():
+ upper = convert_atom(func.supexpr().atom())
+ else:
+ upper = convert_expr(func.supexpr().expr())
+ return sympy.Integral(integrand, (int_var, lower, upper))
+ else:
+ return sympy.Integral(integrand, int_var)
+
+
+def handle_sum_or_prod(func, name):
+ val = convert_mp(func.mp())
+ iter_var = convert_expr(func.subeq().equality().expr(0))
+ start = convert_expr(func.subeq().equality().expr(1))
+ if func.supexpr().expr(): # ^{expr}
+ end = convert_expr(func.supexpr().expr())
+ else: # ^atom
+ end = convert_atom(func.supexpr().atom())
+
+ if name == "summation":
+ return sympy.Sum(val, (iter_var, start, end))
+ elif name == "product":
+ return sympy.Product(val, (iter_var, start, end))
+
+
+def handle_limit(func):
+ sub = func.limit_sub()
+ if sub.LETTER_NO_E():
+ var = sympy.Symbol(sub.LETTER_NO_E().getText(), real=is_real)
+ elif sub.GREEK_CMD():
+ var = sympy.Symbol(sub.GREEK_CMD().getText()[1:].strip(), real=is_real)
+ elif sub.OTHER_SYMBOL_CMD():
+ var = sympy.Symbol(sub.OTHER_SYMBOL_CMD().getText().strip(), real=is_real)
+ else:
+ var = sympy.Symbol('x', real=is_real)
+ if sub.SUB():
+ direction = "-"
+ else:
+ direction = "+"
+ approaching = convert_expr(sub.expr())
+ content = convert_mp(func.mp())
+
+ return sympy.Limit(content, var, approaching, direction)
+
+
+def handle_exp(func):
+ if func.supexpr():
+ if func.supexpr().expr(): # ^{expr}
+ exp_arg = convert_expr(func.supexpr().expr())
+ else: # ^atom
+ exp_arg = convert_atom(func.supexpr().atom())
+ else:
+ exp_arg = 1
+ return sympy.exp(exp_arg)
+
+
+def handle_gcd_lcm(f, args):
+ """
+ Return the result of gcd() or lcm(), as UnevaluatedExpr
+
+ f: str - name of function ("gcd" or "lcm")
+ args: List[Expr] - list of function arguments
+ """
+
+ args = tuple(map(sympy.nsimplify, args))
+
+ # gcd() and lcm() don't support evaluate=False
+ return sympy.UnevaluatedExpr(getattr(sympy, f)(args))
+
+
+def handle_floor(expr):
+ """
+ Apply floor() then return the floored expression.
+
+ expr: Expr - sympy expression as an argument to floor()
+ """
+ return sympy.functions.floor(expr, evaluate=False)
+
+
+def handle_ceil(expr):
+ """
+ Apply ceil() then return the ceil-ed expression.
+
+ expr: Expr - sympy expression as an argument to ceil()
+ """
+ return sympy.functions.ceiling(expr, evaluate=False)
+
+
+def get_differential_var(d):
+ text = get_differential_var_str(d.getText())
+ return sympy.Symbol(text, real=is_real)
+
+
+def get_differential_var_str(text):
+ for i in range(1, len(text)):
+ c = text[i]
+ if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
+ idx = i
+ break
+ text = text[idx:]
+ if text[0] == "\\":
+ text = text[1:]
+ return text
+
+
+def latex(tex):
+ global frac_type
+ result = sympy.latex(tex)
+ result = result.replace(r'\frac', frac_type, -1).replace(r'\dfrac', frac_type, -1).replace(r'\tfrac', frac_type, -1)
+ result = result.replace(r'\left[\begin{matrix}', r'\begin{bmatrix}', -1).replace(r'\end{matrix}\right]', r'\end{bmatrix}', -1)
+ result = result.replace(r'\left', r'', -1).replace(r'\right', r'', -1)
+ result = result.replace(r' )', r')', -1)
+ result = result.replace(r'\log', r'\ln', -1)
+ return result
+
+
+def latex2latex(tex):
+ result = latex2sympy(tex)
+ # if result is a list or tuple or dict
+ if isinstance(result, list) or isinstance(result, tuple) or isinstance(result, dict):
+ return latex(result)
+ else:
+ return latex(simplify(result.subs(variances).doit().doit()))
+
+
+# Set image value
+latex2latex('i=I')
+latex2latex('j=I')
+# set Identity(i)
+for i in range(1, 10):
+ lh = sympy.Symbol(r'\bm{I}_' + str(i), real=False)
+ lh_m = sympy.MatrixSymbol(r'\bm{I}_' + str(i), i, i)
+ rh = sympy.Identity(i).as_mutable()
+ variances[lh] = rh
+ variances[lh_m] = rh
+ var[str(lh)] = rh
+
+if __name__ == '__main__':
+ # latex2latex(r'A_1=\begin{bmatrix}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{bmatrix}')
+ # latex2latex(r'b_1=\begin{bmatrix}1 \\ 2 \\ 3 \\ 4\end{bmatrix}')
+ # tex = r"(x+2)|_{x=y+1}"
+ # tex = r"\operatorname{zeros}(3)"
+ tex = r"\operatorname{rows}(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix})"
+ # print("latex2latex:", latex2latex(tex))
+ math = latex2sympy(tex)
+ # math = math.subs(variances)
+ print("latex:", tex)
+ # print("var:", variances)
+ print("raw_math:", math)
+ # print("math:", latex(math.doit()))
+ # print("math_type:", type(math.doit()))
+ # print("shape:", (math.doit()).shape)
+ print("cal:", latex2latex(tex))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/requirements.in b/Qwen2.5-Eval/evaluation/latex2sympy/requirements.in
new file mode 100755
index 0000000..49c5490
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/requirements.in
@@ -0,0 +1,2 @@
+sympy
+antlr4-python3-runtime
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/requirements.txt b/Qwen2.5-Eval/evaluation/latex2sympy/requirements.txt
new file mode 100755
index 0000000..d940f0b
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/requirements.txt
@@ -0,0 +1,12 @@
+#
+# This file is autogenerated by pip-compile with Python 3.10
+# by the following command:
+#
+# pip-compile requirements.in
+#
+antlr4-python3-runtime==4.11.1
+ # via -r requirements.in
+mpmath==1.3.0
+ # via sympy
+sympy==1.12
+ # via -r requirements.in
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_equations.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_equations.py
new file mode 100755
index 0000000..fa65ba7
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_equations.py
@@ -0,0 +1,10 @@
+from latex2sympy import process_sympy
+import sys
+sys.path.append("..")
+
+# latex = "2\\begin{pmatrix}1&1&1\\\\0&1&1\\\\0&0&1\\end{pmatrix}\\begin{pmatrix}1&1&1\\\\0&1&1\\\\0&0&1\\end{pmatrix}"
+latex = "\\frac{a^{2} \\left(3 \\pi - 4 \\sin{\\left(\\pi \\right)} + \\frac{\\sin{\\left(2 \\pi \\right)}}{2}\\right)}{2}"
+math = process_sympy(latex)
+
+print(type(math))
+print("latex: %s to math: %s" % (latex, math))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_span.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_span.py
new file mode 100755
index 0000000..2839139
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/linalg_span.py
@@ -0,0 +1,19 @@
+from latex2sympy import process_sympy
+import sys
+sys.path.append("..")
+
+latex = "\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "[\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}]"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}\\right\\}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix.py
new file mode 100755
index 0000000..9aed3c2
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix.py
@@ -0,0 +1,46 @@
+from latex2sympy import process_sympy
+from sympy import *
+import sys
+sys.path.append("..")
+
+theta = Symbol('theta', real=True)
+
+latex = "\\begin{matrix}1&2\\\\3&4\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\begin{matrix}1&2\\\\3&4\\\\5&6\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\begin{matrix}1&2&3\\\\4&5&6\\\\7&8&9\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\begin{matrix}x^1&x^2&x^3\\\\y^1&y^2&y^3\\\\z^1&z^2&z^3\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\begin{matrix}x\\\\y\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "2\\cdot\\begin{matrix}x\\\\y\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "2\\cdot\\begin{matrix}x\\\\y\\end{matrix} + \\begin{matrix}2\\\\3\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "-2\\begin{matrix}1&2\\\\3&4\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "2\\cdot\\theta\\begin{matrix}x\\\\y\\end{matrix} + \\begin{matrix}2\\\\3\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
+
+latex = "\\theta\\begin{matrix}1\\\\3\\end{matrix} - \\begin{matrix}-1\\\\2\\end{matrix}"
+math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, math))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix_placeholders.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix_placeholders.py
new file mode 100755
index 0000000..79cb672
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/matrix_placeholders.py
@@ -0,0 +1,65 @@
+from latex2sympy import process_sympy
+from sympy import *
+import sys
+import hashlib
+import time
+
+sys.path.append("..")
+
+
+M = Matrix([[1, 2], [3, 4]])
+v = Matrix([1, 2])
+
+# sub settings
+sub_settings_symbols = {}
+sub_settings_symbols[Symbol('M' + hashlib.md5('M'.encode()).hexdigest(), real=True)] = M
+sub_settings_symbols[Symbol('v' + hashlib.md5('v'.encode()).hexdigest(), real=True)] = v
+
+
+# one parameters
+latex = "\\begin{matrix}1&2\\\\3&4\\end{matrix}\\cdot[!v!]"
+equation_sympy_check = MatMul(M, Symbol('v' + hashlib.md5('v'.encode()).hexdigest(), real=True))
+equation_sympy_subs_check = MatMul(M, v)
+# placeholders
+equation_sympy = process_sympy(latex)
+print('latex = %s' % latex)
+print('equation_sympy = %s' % equation_sympy)
+print('equation_sympy_check = %s' % equation_sympy_check)
+print('equation_sympy = %s' % (srepr(equation_sympy)))
+
+equation_sympy_subs = equation_sympy.subs(sub_settings_symbols, evaluate=False)
+print('equation_sympy_subs = %s' % equation_sympy_subs)
+print('equation_sympy_subs_check = %s' % equation_sympy_subs_check)
+
+
+# two parameters
+
+# sub settings
+print('')
+print('============== Two Parameters -> M*v = Matrix*Vector =============')
+sub_settings_symbols = {}
+sub_settings_symbols[Symbol('M' + hashlib.md5('M'.encode()).hexdigest(), commutative=False)] = M
+sub_settings_symbols[Symbol('v' + hashlib.md5('v'.encode()).hexdigest(), commutative=False)] = v
+
+latex = "[!M!]\\cdot[!v!]"
+math_check = Mul(Symbol('M' + hashlib.md5('M'.encode()).hexdigest(), commutative=False), Symbol('v' + hashlib.md5('v'.encode()).hexdigest(), commutative=False))
+# placeholders
+equation_sympy = process_sympy(latex)
+print(latex)
+print(math_check)
+print(equation_sympy)
+print(srepr(equation_sympy))
+
+# performance
+t0 = time.time()
+
+# process_sympy and substitute at the same time
+# Only needed for linalg input
+placeholder_values = {'M': M, 'v': v}
+equation_sympy_subs = process_sympy(latex, variable_values=placeholder_values)
+
+t1 = time.time()
+print('equation with substituted placeholders = %s' % (str(equation_sympy_subs)))
+print('time to process to sympy with placeholders = %s s' % (t1 - t0))
+print('')
+print('============== Two Parameters -> M*v = Matrix*Vector =============')
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox.py
new file mode 100755
index 0000000..2c41100
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox.py
@@ -0,0 +1,23 @@
+from sympy import *
+from latex2sympy import process_sympy
+
+
+# latex = '\\variable{a}^{\\variable{b}}'
+# variables = {'a': process_sympy('658.95998'), 'b': process_sympy('185083.8060')}
+# c_ans_expr = process_sympy(latex, variables)
+# print(c_ans_expr)
+# print(srepr(c_ans_expr))
+# c_ans = c_ans_expr.doit(deep=False).evalf(chop=True)
+# print(c_ans)
+# print(srepr(c_ans))
+
+
+# numeric_responses = ['1', '1.0', '-1', '-1.0', '.5', '-.5', '3x10^3', '3E3', '3,000x10^{-3}', '0.5E-1', '\\frac{1}{3}', '(5\\times 3)^3', '\\sin(1)']
+# for latex in numeric_responses:
+# parsed = process_sympy(latex)
+# print('latex: ', latex)
+# print('sympy: ', parsed)
+# print('is_number: ', parsed.is_number)
+# print('is_Number: ', parsed.is_Number)
+# print('srepr: ', srepr(parsed))
+# print('-----------------------------------------------------')
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox_equality.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox_equality.py
new file mode 100755
index 0000000..5e3f444
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sandbox_equality.py
@@ -0,0 +1,75 @@
+from sympy import *
+from latex2sympy import process_sympy
+
+
+#
+# Equality Testing
+#
+
+answer_sets = [
+ {
+ 'correct_answer': '(x-y)(x+2y)',
+ 'student_answers': [
+ 'x^2+xy-2y^2',
+ '(x-y)(x+2y)',
+ '(x+2y)(x-y)',
+ '(2\\times y+x)(-y+x)',
+ '(y\\cdot 2+x)(-y+x)'
+ ]
+ },
+ {
+ 'correct_answer': '2\\pi \\variable{r}^2',
+ 'student_answers': [
+ '2\\pi \\variable{r}^2',
+ '\\pi 2\\variable{r}^2',
+ '2\\times \\pi \\times \\variable{r}^2',
+ '2\\pi \\variable{r} \\times \\variable{r}'
+ ]
+ },
+ {
+ 'correct_answer': '2x - 3y',
+ 'student_answers': [
+ '-3y + 2x'
+ ]
+ },
+ {
+ 'correct_answer': 'x\\times x',
+ 'student_answers': [
+ 'x\\times x',
+ 'x\\cdot x',
+ 'x^2',
+ '(\\sqrt{x})^{4}'
+ ]
+ },
+ {
+ 'correct_answer': '23e^{-1\\times \\sqrt{t^2}}',
+ 'student_answers': [
+ '23e^{-t}'
+ ]
+ },
+ {
+ 'correct_answer': 'a=x^2+1',
+ 'student_answers': [
+ 'x^2+1=a'
+ ]
+ }
+]
+
+for answer_set in answer_sets:
+ correct_answer = answer_set['correct_answer']
+ correct_answer_parsed = process_sympy(answer_set['correct_answer'])
+ for student_answer in answer_set['student_answers']:
+ student_answer_parsed = process_sympy(student_answer)
+ print('correct_answer (c): ', correct_answer, correct_answer_parsed)
+ print('student_answer (a): ', student_answer, student_answer_parsed)
+ print('')
+ print('Expression Tree (srepr(c) == srepr(a)) =>', srepr(correct_answer_parsed) == srepr(student_answer_parsed))
+ print('srepr(c) =>', srepr(correct_answer_parsed))
+ print('srepr(a) =>', srepr(student_answer_parsed))
+ print('')
+ # print('Structural (c == a) =>', correct_answer_parsed == student_answer_parsed)
+ print('Symbolic (simplify(c - s) == 0) =>', simplify(correct_answer_parsed - student_answer_parsed) == 0)
+ print('simplified =>', simplify(correct_answer_parsed - student_answer_parsed))
+ print('')
+ print('Numeric Substitution (c.equals(s)) =>', correct_answer_parsed.equals(student_answer_parsed))
+ print('-----------------------------------------------------')
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sectan.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sectan.py
new file mode 100755
index 0000000..0e0c7aa
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/sectan.py
@@ -0,0 +1,51 @@
+from sympy import *
+import sys
+sys.path.append("..")
+
+# # x^2\cdot \left(3\cdot \tan \left([!a!]\cdot x+[!c!]\right)+[!a!]\cdot x\left(\sec \left([!a!]\cdot x+[!c!]\right)\right)^2\right)
+# latex1 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(\\sec \\left(2\\cdot x+5\\right)\\right)^2\\right)"
+# math1 = process_sympy(latex1)
+# print("latex: %s to math: %s" %(latex1,math1))
+#
+# latex2 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(\\sec \\left(2\\cdot x+5\\right)^2\\right)\\right)"
+# math2 = process_sympy(latex2)
+# print("latex: %s to math: %s" %(latex2,math2))
+#
+# latex3 = "x^2\\cdot \\left(3\\cdot \\tan \\left(2\\cdot x+5\\right)+2\\cdot x\\left(1+\\tan \\left(2\\cdot x+5\\right)^2\\right)\\right)"
+# math3 = process_sympy(latex3)
+# print("latex: %s to math: %s" %(latex3,math3))
+#
+# print(simplify(math1 - math2))
+# print(simplify(math1 - math3))
+
+#
+# latex1 = "\\sec^2(2\\cdot x+5)"
+# math1 = process_sympy(latex1)
+# print("latex: %s to math: %s" %(latex1,math1))
+#
+# latex2 = "1+\\tan^2(2\\cdot x+5)"
+# math2 = process_sympy(latex2)
+# print("latex: %s to math: %s" %(latex2,math2))
+# print(simplify(math1 - math2))
+
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+
+# BUG: 1 + tan^2(x+1) should be == sec^2(x+1) but isnt
+lhs = (1 + (tan(x + 1))**2)
+rhs = (sec(x + 1))**2
+eq = lhs - rhs
+print(simplify(lhs))
+print(simplify(rhs))
+print(simplify(eq))
+print(simplify(lhs) == simplify(rhs))
+
+# 1 + tan^2(x) == sec^2(x) but isnt
+lhs = (1 + (tan(x))**2)
+rhs = (sec(x))**2
+eq = lhs - rhs
+print(simplify(lhs))
+print(simplify(rhs))
+print(simplify(eq))
+print(simplify(lhs) == simplify(rhs))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/vector.py b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/vector.py
new file mode 100755
index 0000000..5b48aee
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/sandbox/vector.py
@@ -0,0 +1,75 @@
+import numpy as np
+from sympy import *
+import sys
+sys.path.append("..")
+
+# row column matrix = vector
+v = [1, 2, 3]
+
+# single column matrix = vector
+m = Matrix([1, 2, 3])
+print(m[:, 0])
+
+# a three row and 2 column matrix
+m = Matrix([[1, 2], [3, 4], [5, 6]])
+print(m[:, 0])
+
+# determinant of lin indp system != 0
+m = Matrix([[1, 1], [1, 2]])
+print(m.det())
+
+# determinant of lin dep system = 0
+m = Matrix([[1, 1], [2, 2]])
+print(m.det())
+
+# determinant of lin dep system = 0
+x = Symbol('x')
+y = Symbol('y')
+m = Matrix([[x, y], [x, y]])
+print(m.det())
+# Reduced Row-Echelon Form
+_, ind = m.rref()
+print(len(ind))
+
+# determinant of lin dep system != 0
+m = Matrix([[x, y], [y, x]])
+print(m.det())
+# Reduced Row-Echelon Form
+_, ind = m.rref()
+print(len(ind))
+
+# determinant of lin dep system != 0
+# Reduced Row-Echelon Form
+m = Matrix([[x, x, y], [y, y, y]])
+_, ind = m.rref()
+# Reduced Row-Echelon Form
+print(len(ind))
+
+#==================#
+#===== Numpy ======#
+#==================#
+# http://kitchingroup.cheme.cmu.edu/blog/2013/03/01/Determining-linear-independence-of-a-set-of-vectors/
+# Lin Indp of set of numerical vectors
+TOLERANCE = 1e-14
+v1 = [6, 0, 3, 1, 4, 2]
+v2 = [0, -1, 2, 7, 0, 5]
+v3 = [12, 3, 0, -19, 8, -11]
+
+A = np.row_stack([v1, v2, v3])
+
+U, s, V = np.linalg.svd(A)
+print(s)
+print(np.sum(s > TOLERANCE))
+
+v1 = [1, 1]
+v2 = [4, 4]
+
+A = np.row_stack([v1, v2])
+U, s, V = np.linalg.svd(A)
+print(s)
+print(np.sum(s > TOLERANCE))
+
+
+latex = "\\begin{matrix}1&2\\\\3&4\\end{matrix}"
+# math = process_sympy(latex)
+print("latex: %s to math: %s" % (latex, 1))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/compile.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/compile.sh
new file mode 100755
index 0000000..566d911
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/compile.sh
@@ -0,0 +1,9 @@
+#!/bin/sh
+
+# Get relative path of the root directory of the project
+rdir=`git rev-parse --git-dir`
+rel_path="$(dirname "$rdir")"
+# Change to that path and run the file
+cd $rel_path
+
+java -jar antlr-4.11.1-complete.jar PS.g4 -o gen
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/coverage-ci.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/coverage-ci.sh
new file mode 100755
index 0000000..335d4c3
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/coverage-ci.sh
@@ -0,0 +1,3 @@
+#!/bin/sh
+
+pytest --doctest-modules --junitxml=junit/test-results.xml --cov-report=xml --cov-config=.coveragerc --cov=latex2sympy tests \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/coverage.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/coverage.sh
new file mode 100755
index 0000000..a704a21
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/coverage.sh
@@ -0,0 +1,23 @@
+#!/bin/sh
+
+# Get relative path of the root directory of the project
+rdir=`git rev-parse --git-dir`
+rel_path="$(dirname "$rdir")"
+# Change to that path and run the file
+cd $rel_path
+
+# Activate virtual environment
+echo "activating venv..."
+if test -f .env/bin/activate
+then source .env/bin/activate && echo "venv activate (bin)"
+elif test -f .env/Scripts/activate
+then source .env/Scripts/activate && echo "venv activated (Scripts)"
+else exit 1
+fi
+
+# Run unit test coverage
+echo "starting coverage..."
+if pytest --doctest-modules --cov-report=html --cov-config=.coveragerc --cov=latex2sympy tests
+then echo "coverage finished"
+else exit 1
+fi
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/pre-commit b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/pre-commit
new file mode 100755
index 0000000..a5ae67c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/pre-commit
@@ -0,0 +1,28 @@
+#!/bin/sh
+
+# Get relative path of the root directory of the project
+rdir=`git rev-parse --git-dir`
+rel_path="$(dirname "$rdir")"
+
+# Change to that path and run the file
+cd $rel_path
+
+echo "pre-commit hook started..."
+
+# Activate virtual environment
+echo "activating venv..."
+if test -f .env/bin/activate
+then source .env/bin/activate && echo "venv activated."
+elif test -f .env/Scripts/activate
+then source .env/Scripts/activate && echo "venv activated."
+else exit 1
+fi
+
+# Run auto formatting on all staged python files, then add those changes
+echo "auto-formatting code..."
+if autopep8 --in-place `git diff --name-status --cached | grep '.py' | awk 'match($1, "A|M"){print $2}'` && git add `git diff --name-status --cached | grep '.py' | awk 'match($1, "A|M"){print $2}'`
+then echo "code was auto-formatted."
+else echo "no code was auto-formatted."
+fi
+
+exit 0
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/pre-push b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/pre-push
new file mode 100755
index 0000000..123ce64
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/pre-push
@@ -0,0 +1,28 @@
+#!/bin/sh
+
+# Get relative path of the root directory of the project
+rdir=`git rev-parse --git-dir`
+rel_path="$(dirname "$rdir")"
+
+# Change to that path and run the file
+cd $rel_path
+
+echo "pre-push hook started..."
+
+# Activate virtual environment
+echo "activating venv..."
+if test -f .env/bin/activate
+then source .env/bin/activate && echo "venv activated."
+elif test -f .env/Scripts/activate
+then source .env/Scripts/activate && echo "venv activated."
+else exit 1
+fi
+
+# Run unit tests
+echo "starting tests..."
+# if pytest tests
+# then echo "tests finished."
+# else exit 1
+# fi
+
+exit 0
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/publish.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/publish.sh
new file mode 100755
index 0000000..dc12a03
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/publish.sh
@@ -0,0 +1,3 @@
+rm ./dist/*
+python3 setup.py bdist_wheel
+twine upload dist/*
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/setup-hooks.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/setup-hooks.sh
new file mode 100755
index 0000000..760dfd5
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/setup-hooks.sh
@@ -0,0 +1,3 @@
+#!/bin/sh
+cp scripts/pre-push .git/hooks/
+cp scripts/pre-commit .git/hooks/ \ No newline at end of file
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/setup.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/setup.sh
new file mode 100755
index 0000000..b7e71c9
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/setup.sh
@@ -0,0 +1,42 @@
+#!/bin/sh
+
+# Get relative path of the root directory of the project
+rdir=`git rev-parse --git-dir`
+rel_path="$(dirname "$rdir")"
+# Change to that path and run the file
+cd $rel_path
+
+echo "creating venv..."
+if test -d .env
+then echo "venv exists"
+else python3 -m venv .env && echo "venv created"
+fi
+
+echo ''
+# Activate virtual environment
+echo "activating venv..."
+if test -f .env/bin/activate
+then source .env/bin/activate && echo "venv activate (bin)"
+elif test -f .env/Scripts/activate
+then source .env/Scripts/activate && echo "venv activated (Scripts)"
+else exit 1
+fi
+
+echo ''
+echo "installing requirements..."
+if pip install -r dev-requirements.txt
+then echo "requirements installed"
+else exit 1
+fi
+
+echo ''
+echo "compiling parser..."
+sh scripts/compile.sh
+echo "parser compiled"
+
+echo ''
+echo "setup git hooks..."
+sh scripts/setup-hooks.sh
+echo "git hooks setup"
+
+exit 0
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/scripts/test.sh b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/test.sh
new file mode 100755
index 0000000..20d6b01
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/scripts/test.sh
@@ -0,0 +1,31 @@
+#!/bin/sh
+
+# Get relative path of the root directory of the project
+rdir=`git rev-parse --git-dir`
+rel_path="$(dirname "$rdir")"
+# Change to that path and run the file
+cd $rel_path
+
+# Activate virtual environment
+echo "activating venv..."
+if test -f .env/bin/activate
+then source .env/bin/activate && echo "venv activate (bin)"
+elif test -f .env/Scripts/activate
+then source .env/Scripts/activate && echo "venv activated (Scripts)"
+else exit 1
+fi
+
+echo ''
+echo "compiling parser..."
+sh scripts/compile.sh
+echo "parser compiled"
+
+echo ''
+# Run unit tests
+echo "starting tests..."
+if pytest tests
+then echo "tests finished"
+else exit 1
+fi
+
+exit 0
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/setup.cfg b/Qwen2.5-Eval/evaluation/latex2sympy/setup.cfg
new file mode 100755
index 0000000..80fb81b
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/setup.cfg
@@ -0,0 +1,3 @@
+[pycodestyle]
+max-line-length = 120
+ignore = E501
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/setup.py b/Qwen2.5-Eval/evaluation/latex2sympy/setup.py
new file mode 100755
index 0000000..2df9dd2
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/setup.py
@@ -0,0 +1,45 @@
+from setuptools import setup, find_packages
+from codecs import open
+from os import path
+here = path.abspath(path.dirname(__file__))
+
+
+setup(
+ name="latex2sympy2",
+ version="1.9.0",
+ description='Convert latex to sympy with ANTLR and support Matrix, Linear Algebra and CAS functions.',
+ long_description_content_type='text/markdown',
+ long_description=open(path.join(here, "README.md"), encoding='utf-8').read(),
+ # The project's main homepage.
+ url='https://github.com/ZubinGou/latex2sympy',
+ # Author details
+ author='ZubinGou',
+ author_email='zebgou@gmail.com',
+ # Choose your license
+ license='MIT',
+ classifiers=[
+ 'Development Status :: 4 - Beta',
+ 'Intended Audience :: Developers',
+ 'Intended Audience :: Education',
+ 'Intended Audience :: Science/Research',
+ 'License :: OSI Approved :: MIT License',
+ 'Topic :: Education',
+ 'Topic :: Scientific/Engineering :: Mathematics',
+ 'Topic :: Software Development :: Compilers',
+ 'Topic :: Text Processing :: Markup :: LaTeX',
+ 'Topic :: Text Processing :: Markup :: Markdown',
+ 'Programming Language :: Python :: 3',
+ 'Programming Language :: Python :: 3.3',
+ 'Programming Language :: Python :: 3.4',
+ 'Programming Language :: Python :: 3.5',
+ 'Programming Language :: Python :: 3.6',
+ 'Programming Language :: Python :: 3.7',
+ 'Programming Language :: Python :: 3.8',
+ ],
+ packages=find_packages(exclude=('tests')),
+ py_modules=['asciimath_printer', 'latex2sympy2'],
+ install_requires=[
+ 'sympy>=1.4',
+ 'antlr4-python3-runtime==4.11.1'
+ ],
+)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/__init__.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/__init__.py
new file mode 100755
index 0000000..e69de29
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/__init__.py
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/abs_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/abs_test.py
new file mode 100755
index 0000000..37d130c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/abs_test.py
@@ -0,0 +1,19 @@
+from .context import assert_equal, get_simple_examples
+import pytest
+from sympy import Abs
+
+examples = get_simple_examples(Abs)
+
+delimiter_pairs = {
+ '|': '|',
+ '\\vert': '\\vert',
+ '\\lvert': '\\rvert'
+}
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_abs(input, output, symbolically):
+ for left, right in delimiter_pairs.items():
+ assert_equal("{left}{input}{right}".format(left=left, right=right, input=input), output, symbolically=symbolically)
+ assert_equal("\\left{left}{input}\\right{right}".format(left=left, right=right, input=input), output, symbolically=symbolically)
+ assert_equal("\\mleft{left}{input}\\mright{right}".format(left=left, right=right, input=input), output, symbolically=symbolically)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/all_bad_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/all_bad_test.py
new file mode 100755
index 0000000..b136313
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/all_bad_test.py
@@ -0,0 +1,70 @@
+from .context import assert_equal, process_sympy
+import pytest
+
+
+def pytest_generate_tests(metafunc):
+ metafunc.parametrize('s', metafunc.cls.BAD_STRINGS)
+
+
+class TestAllBad(object):
+ # These bad latex strings should raise an exception when parsed
+ BAD_STRINGS = [
+ "(",
+ ")",
+ # "a / b /",
+ "\\frac{d}{dx}",
+ "(\\frac{d}{dx})"
+ "\\sqrt{}",
+ "\\sqrt",
+ "{",
+ "}",
+ # "1.1.1",
+ "\\mathit{TEST}"
+ "\\frac{2}{}",
+ "\\frac{}{2}",
+ "\\int",
+ # "1 +",
+ # "a +",
+ "!",
+ "!0",
+ "_",
+ "^",
+ # "a // b",
+ # "a \\cdot \\cdot b",
+ # "a \\div \\div b",
+ "a\\mod \\begin{matrix}b\\end{matrix}"
+ "|",
+ "||x|",
+ "\\lfloor x",
+ "\\lfloor a \\rceil",
+ "\\operatorname{floor}(12.3, 123.4)",
+ "()",
+ "((((((((((((((((()))))))))))))))))",
+ "-",
+ "\\frac{d}{dx} + \\frac{d}{dt}",
+ # "f()",
+ # "f(,",
+ # "f(x,,y)",
+ # "f(x,y,",
+ "\\sin^x",
+ "\\cos^2",
+ # "\\cos 1 \\cos",
+ # "\\gcd(3)",
+ # "\\lcm(2)",
+ "@", "#", "$", "%", "&", "*",
+ "\\",
+ "~",
+ "\\frac{(2 + x}{1 - x)}",
+ "\\lim_{\\pi \\to 3} a",
+ # because mix of COMMA and SEMICOLON
+ "\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix};\\begin{pmatrix}1\\\\1\\\\1\\end{pmatrix}\\right\\}",
+ # percentages without numbers before-hand
+ "a\\%",
+ "\\%100",
+ # dollar signs without numbers after
+ "\\$"
+ ]
+
+ def test_bad_string(self, s):
+ with pytest.raises(Exception):
+ process_sympy(s)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/all_good_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/all_good_test.py
new file mode 100755
index 0000000..6d8aa1d
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/all_good_test.py
@@ -0,0 +1,284 @@
+from .context import assert_equal, process_sympy, _Add, _Mul, _Pow
+import pytest
+import hashlib
+from sympy import (
+ E, I, oo, pi, sqrt, root, Symbol, Add, Mul, Pow, Abs, factorial, log, Eq, Ne, S, Rational, Integer, UnevaluatedExpr,
+ sin, cos, tan, sinh, cosh, tanh, asin, acos, atan, asinh, acosh, atanh,
+ csc, sec, Sum, Product, Limit, Integral, Derivative,
+ LessThan, StrictLessThan, GreaterThan, StrictGreaterThan,
+ exp, binomial, Matrix, MatMul, MatAdd,
+ Mod, gcd, lcm, floor, ceiling, Max, Min
+)
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+z = Symbol('z', real=True)
+a = Symbol('a', real=True)
+b = Symbol('b', real=True)
+c = Symbol('c', real=True)
+f = Symbol('f', real=True)
+t = Symbol('t', real=True)
+k = Symbol('k', real=True)
+n = Symbol('n', real=True)
+theta = Symbol('theta', real=True)
+
+# shorthand definitions
+
+
+def _Abs(a):
+ return Abs(a, evaluate=False)
+
+
+def _factorial(a):
+ return factorial(a, evaluate=False)
+
+
+def _log(a, b):
+ return log(a, b, evaluate=False)
+
+
+def pytest_generate_tests(metafunc):
+ metafunc.parametrize('s, eq', metafunc.cls.GOOD_PAIRS)
+
+
+class TestAllGood(object):
+ # These latex strings should parse to the corresponding SymPy expression
+ GOOD_PAIRS = [
+ ("0", 0),
+ ("1", 1),
+ ("-3.14", -3.14),
+ ("5-3", _Add(5, -3)),
+ ("(-7.13)(1.5)", _Mul(Rational('-7.13'), Rational('1.5'))),
+ ("\\left(-7.13\\right)\\left(1.5\\right)", _Mul(Rational('-7.13'), Rational('1.5'))),
+ ("x", x),
+ ("2x", 2 * x),
+ ("x^2", x**2),
+ ("x^{3 + 1}", x**_Add(3, 1)),
+ ("x^{\\left\\{3 + 1\\right\\}}", x**_Add(3, 1)),
+ ("-3y + 2x", _Add(_Mul(2, x), Mul(-1, 3, y, evaluate=False))),
+ ("-c", -c),
+ ("a \\cdot b", a * b),
+ ("a / b", a / b),
+ ("a \\div b", a / b),
+ ("a + b", a + b),
+ ("a + b - a", Add(a, b, _Mul(-1, a), evaluate=False)),
+ ("a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
+ ("a^2 + b^2 != 2c^2", Ne(a**2 + b**2, 2 * c**2)),
+ ("a\\mod b", Mod(a, b)),
+ ("\\sin \\theta", sin(theta)),
+ ("\\sin(\\theta)", sin(theta)),
+ ("\\sin\\left(\\theta\\right)", sin(theta)),
+ ("\\sin^{-1} a", asin(a)),
+ ("\\sin a \\cos b", _Mul(sin(a), cos(b))),
+ ("\\sin \\cos \\theta", sin(cos(theta))),
+ ("\\sin(\\cos \\theta)", sin(cos(theta))),
+ ("\\arcsin(a)", asin(a)),
+ ("\\arccos(a)", acos(a)),
+ ("\\arctan(a)", atan(a)),
+ ("\\sinh(a)", sinh(a)),
+ ("\\cosh(a)", cosh(a)),
+ ("\\tanh(a)", tanh(a)),
+ ("\\sinh^{-1}(a)", asinh(a)),
+ ("\\cosh^{-1}(a)", acosh(a)),
+ ("\\tanh^{-1}(a)", atanh(a)),
+ ("\\arcsinh(a)", asinh(a)),
+ ("\\arccosh(a)", acosh(a)),
+ ("\\arctanh(a)", atanh(a)),
+ ("\\arsinh(a)", asinh(a)),
+ ("\\arcosh(a)", acosh(a)),
+ ("\\artanh(a)", atanh(a)),
+ ("\\operatorname{arcsinh}(a)", asinh(a)),
+ ("\\operatorname{arccosh}(a)", acosh(a)),
+ ("\\operatorname{arctanh}(a)", atanh(a)),
+ ("\\operatorname{arsinh}(a)", asinh(a)),
+ ("\\operatorname{arcosh}(a)", acosh(a)),
+ ("\\operatorname{artanh}(a)", atanh(a)),
+ ("\\operatorname{gcd}(a, b)", UnevaluatedExpr(gcd(a, b))),
+ ("\\operatorname{lcm}(a, b)", UnevaluatedExpr(lcm(a, b))),
+ ("\\operatorname{gcd}(a,b)", UnevaluatedExpr(gcd(a, b))),
+ ("\\operatorname{lcm}(a,b)", UnevaluatedExpr(lcm(a, b))),
+ ("\\operatorname{floor}(a)", floor(a)),
+ ("\\operatorname{ceil}(b)", ceiling(b)),
+ ("\\cos^2(x)", cos(x)**2),
+ ("\\cos(x)^2", cos(x)**2),
+ ("\\gcd(a, b)", UnevaluatedExpr(gcd(a, b))),
+ ("\\lcm(a, b)", UnevaluatedExpr(lcm(a, b))),
+ ("\\gcd(a,b)", UnevaluatedExpr(gcd(a, b))),
+ ("\\lcm(a,b)", UnevaluatedExpr(lcm(a, b))),
+ ("\\floor(a)", floor(a)),
+ ("\\ceil(b)", ceiling(b)),
+ ("\\max(a, b)", Max(a, b)),
+ ("\\min(a, b)", Min(a, b)),
+ ("\\frac{a}{b}", a / b),
+ ("\\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
+ ("\\frac{7}{3}", _Mul(7, _Pow(3, -1))),
+ ("(\\csc x)(\\sec y)", csc(x) * sec(y)),
+ ("\\lim_{x \\to 3} a", Limit(a, x, 3)),
+ ("\\lim_{x \\rightarrow 3} a", Limit(a, x, 3)),
+ ("\\lim_{x \\Rightarrow 3} a", Limit(a, x, 3)),
+ ("\\lim_{x \\longrightarrow 3} a", Limit(a, x, 3)),
+ ("\\lim_{x \\Longrightarrow 3} a", Limit(a, x, 3)),
+ ("\\lim_{x \\to 3^{+}} a", Limit(a, x, 3, dir='+')),
+ ("\\lim_{x \\to 3^{-}} a", Limit(a, x, 3, dir='-')),
+ ("\\infty", oo),
+ ("\\infty\\%", oo),
+ ("\\$\\infty", oo),
+ ("-\\infty", -oo),
+ ("-\\infty\\%", -oo),
+ ("-\\$\\infty", -oo),
+ ("\\lim_{x \\to \\infty} \\frac{1}{x}", Limit(_Mul(1, _Pow(x, -1)), x, oo)),
+ ("\\frac{d}{dx} x", Derivative(x, x)),
+ ("\\frac{d}{dt} x", Derivative(x, t)),
+ # ("f(x)", f(x)),
+ # ("f(x, y)", f(x, y)),
+ # ("f(x, y, z)", f(x, y, z)),
+ # ("\\frac{d f(x)}{dx}", Derivative(f(x), x)),
+ # ("\\frac{d\\theta(x)}{dx}", Derivative(theta(x), x)),
+ ("|x|", _Abs(x)),
+ ("\\left|x\\right|", _Abs(x)),
+ ("||x||", _Abs(Abs(x))),
+ ("|x||y|", _Abs(x) * _Abs(y)),
+ ("||x||y||", _Abs(_Abs(x) * _Abs(y))),
+ ("\\lfloor x\\rfloor", floor(x)),
+ ("\\lceil y\\rceil", ceiling(y)),
+ ("\\pi^{|xy|}", pi**_Abs(x * y)),
+ ("\\frac{\\pi}{3}", _Mul(pi, _Pow(3, -1))),
+ ("\\sin{\\frac{\\pi}{2}}", sin(_Mul(pi, _Pow(2, -1)), evaluate=False)),
+ ("a+bI", a + I * b),
+ ("e^{I\\pi}", -1),
+ ("\\int x dx", Integral(x, x)),
+ ("\\int x d\\theta", Integral(x, theta)),
+ ("\\int (x^2 - y)dx", Integral(x**2 - y, x)),
+ ("\\int x + a dx", Integral(_Add(x, a), x)),
+ ("\\int da", Integral(1, a)),
+ ("\\int_0^7 dx", Integral(1, (x, 0, 7))),
+ ("\\int_a^b x dx", Integral(x, (x, a, b))),
+ ("\\int^b_a x dx", Integral(x, (x, a, b))),
+ ("\\int_{a}^b x dx", Integral(x, (x, a, b))),
+ ("\\int^{b}_a x dx", Integral(x, (x, a, b))),
+ ("\\int_{a}^{b} x dx", Integral(x, (x, a, b))),
+ ("\\int_{ }^{}x dx", Integral(x, x)),
+ ("\\int^{ }_{ }x dx", Integral(x, x)),
+ ("\\int^{b}_{a} x dx", Integral(x, (x, a, b))),
+ # ("\\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
+ ("\\int (x+a)", Integral(_Add(x, a), x)),
+ ("\\int a + b + c dx", Integral(Add(a, b, c, evaluate=False), x)),
+ ("\\int \\frac{dz}{z}", Integral(Pow(z, -1), z)),
+ ("\\int \\frac{3 dz}{z}", Integral(3 * Pow(z, -1), z)),
+ ("\\int \\frac{1}{x} dx", Integral(Pow(x, -1), x)),
+ ("\\int \\frac{1}{a} + \\frac{1}{b} dx", Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)),
+ ("\\int \\frac{3 \\cdot d\\theta}{\\theta}", Integral(3 * _Pow(theta, -1), theta)),
+ ("\\int \\frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)),
+ ("x_0", Symbol('x_0', real=True)),
+ ("x_{1}", Symbol('x_1', real=True)),
+ ("x_a", Symbol('x_a', real=True)),
+ ("x_{b}", Symbol('x_b', real=True)),
+ ("h_\\theta", Symbol('h_{\\theta}', real=True)),
+ ("h_\\theta ", Symbol('h_{\\theta}', real=True)),
+ ("h_{\\theta}", Symbol('h_{\\theta}', real=True)),
+ # ("h_{\\theta}(x_0, x_1)", Symbol('h_{theta}', real=True)(Symbol('x_{0}', real=True), Symbol('x_{1}', real=True))),
+ ("x!", _factorial(x)),
+ ("100!", _factorial(100)),
+ ("\\theta!", _factorial(theta)),
+ ("(x + 1)!", _factorial(_Add(x, 1))),
+ ("\\left(x + 1\\right)!", _factorial(_Add(x, 1))),
+ ("(x!)!", _factorial(_factorial(x))),
+ ("x!!!", _factorial(_factorial(_factorial(x)))),
+ ("5!7!", _Mul(_factorial(5), _factorial(7))),
+ ("\\sqrt{x}", sqrt(x)),
+ ("\\sqrt{x + b}", sqrt(_Add(x, b))),
+ ("\\sqrt[3]{\\sin x}", root(sin(x), 3)),
+ ("\\sqrt[y]{\\sin x}", root(sin(x), y)),
+ ("\\sqrt[\\theta]{\\sin x}", root(sin(x), theta)),
+ ("x < y", StrictLessThan(x, y)),
+ ("x \\leq y", LessThan(x, y)),
+ ("x > y", StrictGreaterThan(x, y)),
+ ("x \\geq y", GreaterThan(x, y)),
+ ("\\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
+ ("\\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
+ ("\\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
+ ("\\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
+ ("\\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))),
+ ("\\sum_{n = 0}^{\\infty} \\frac{1}{n!}", Sum(_Pow(_factorial(n), -1), (n, 0, oo))),
+ ("\\prod_{a = b}^{c} x", Product(x, (a, b, c))),
+ ("\\prod_{a = b}^c x", Product(x, (a, b, c))),
+ ("\\prod^{c}_{a = b} x", Product(x, (a, b, c))),
+ ("\\prod^c_{a = b} x", Product(x, (a, b, c))),
+ ("\\ln x", _log(x, E)),
+ ("\\ln xy", _log(x * y, E)),
+ ("\\log x", _log(x, 10)),
+ ("\\log xy", _log(x * y, 10)),
+ # ("\\log_2 x", _log(x, 2)),
+ ("\\log_{2} x", _log(x, 2)),
+ # ("\\log_a x", _log(x, a)),
+ ("\\log_{a} x", _log(x, a)),
+ ("\\log_{11} x", _log(x, 11)),
+ ("\\log_{a^2} x", _log(x, _Pow(a, 2))),
+ ("[x]", x),
+ ("[a + b]", _Add(a, b)),
+ ("\\frac{d}{dx} [ \\tan x ]", Derivative(tan(x), x)),
+ ("2\\overline{x}", 2 * Symbol('xbar', real=True)),
+ ("2\\overline{x}_n", 2 * Symbol('xbar_n', real=True)),
+ ("\\frac{x}{\\overline{x}_n}", x / Symbol('xbar_n', real=True)),
+ ("\\frac{\\sin(x)}{\\overline{x}_n}", sin(Symbol('x', real=True)) / Symbol('xbar_n', real=True)),
+ ("2\\bar{x}", 2 * Symbol('xbar', real=True)),
+ ("2\\bar{x}_n", 2 * Symbol('xbar_n', real=True)),
+ ("\\sin\\left(\\theta\\right) \\cdot4", sin(theta) * 4),
+ ("\\ln\\left(\\theta\\right)", _log(theta, E)),
+ ("\\ln\\left(x-\\theta\\right)", _log(x - theta, E)),
+ ("\\ln\\left(\\left(x-\\theta\\right)\\right)", _log(x - theta, E)),
+ ("\\ln\\left(\\left[x-\\theta\\right]\\right)", _log(x - theta, E)),
+ ("\\ln\\left(\\left\\{x-\\theta\\right\\}\\right)", _log(x - theta, E)),
+ ("\\ln\\left(\\left|x-\\theta\\right|\\right)", _log(_Abs(x - theta), E)),
+ ("\\frac{1}{2}xy(x+y)", Mul(_Pow(2, -1), x, y, (x + y), evaluate=False)),
+ ("\\frac{1}{2}\\theta(x+y)", Mul(_Pow(2, -1), theta, (x + y), evaluate=False)),
+ ("1-f(x)", 1 - f * x),
+
+ ("\\begin{matrix}1&2\\\\3&4\\end{matrix}", Matrix([[1, 2], [3, 4]])),
+ ("\\begin{matrix}x&x^2\\\\\\sqrt{x}&x\\end{matrix}", Matrix([[x, x**2], [_Pow(x, S.Half), x]])),
+ ("\\begin{matrix}\\sqrt{x}\\\\\\sin(\\theta)\\end{matrix}", Matrix([_Pow(x, S.Half), sin(theta)])),
+ ("\\begin{pmatrix}1&2\\\\3&4\\end{pmatrix}", Matrix([[1, 2], [3, 4]])),
+ ("\\begin{bmatrix}1&2\\\\3&4\\end{bmatrix}", Matrix([[1, 2], [3, 4]])),
+
+ # scientific notation
+ ("2.5\\times 10^2", 250),
+ ("1,500\\times 10^{-1}", 150),
+
+ # e notation
+ ("2.5E2", 250),
+ ("1,500E-1", 150),
+
+ # multiplication without cmd
+ ("2x2y", Mul(2, x, 2, y, evaluate=False)),
+ ("2x2", Mul(2, x, 2, evaluate=False)),
+ ("x2", x * 2),
+
+ # lin alg processing
+ ("\\theta\\begin{matrix}1&2\\\\3&4\\end{matrix}", MatMul(theta, Matrix([[1, 2], [3, 4]]), evaluate=False)),
+ ("\\theta\\begin{matrix}1\\\\3\\end{matrix} - \\begin{matrix}-1\\\\2\\end{matrix}", MatAdd(MatMul(theta, Matrix([[1], [3]]), evaluate=False), MatMul(-1, Matrix([[-1], [2]]), evaluate=False), evaluate=False)),
+ ("\\theta\\begin{matrix}1&0\\\\0&1\\end{matrix}*\\begin{matrix}3\\\\-2\\end{matrix}", MatMul(theta, Matrix([[1, 0], [0, 1]]), Matrix([3, -2]), evaluate=False)),
+ ("\\frac{1}{9}\\theta\\begin{matrix}1&2\\\\3&4\\end{matrix}", MatMul(Pow(9, -1, evaluate=False), theta, Matrix([[1, 2], [3, 4]]), evaluate=False)),
+ ("\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]),
+ ("\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix};\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]),
+ ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}\\right\\}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]),
+ ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix},\\begin{pmatrix}1\\\\1\\\\1\\end{pmatrix}\\right\\}", [Matrix([1, 2, 3]), Matrix([4, 3, 1]), Matrix([1, 1, 1])]),
+ ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}\\right\\}", Matrix([1, 2, 3])),
+ ("\\left{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}\\right}", Matrix([1, 2, 3])),
+ ("{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}}", Matrix([1, 2, 3])),
+
+ # us dollars
+ ("\\$1,000.00", 1000),
+ ("\\$543.21", 543.21),
+ ("\\$0.009", 0.009),
+
+ # percentages
+ ("100\\%", 1),
+ ("1.5\\%", 0.015),
+ ("0.05\\%", 0.0005),
+
+ # empty set
+ ("\\emptyset", S.EmptySet)
+ ]
+
+ def test_good_pair(self, s, eq):
+ assert_equal(s, eq)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/atom_expr_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/atom_expr_test.py
new file mode 100755
index 0000000..23b69b4
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/atom_expr_test.py
@@ -0,0 +1,58 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol, Integer, Pow
+
+# label, text, symbol_text
+symbols = [
+ ('letter', 'x', 'x'),
+ ('greek letter', '\\lambda', 'lambda'),
+ ('greek letter w/ space', '\\alpha ', 'alpha'),
+ ('accented letter', '\\overline{x}', 'xbar')
+]
+
+subscripts = [
+ ('2'),
+ ('{23}'),
+ ('i'),
+ ('{ij}'),
+ ('{i,j}'),
+ ('{good}'),
+ ('{x^2}')
+]
+
+examples = []
+for symbol in symbols:
+ for subscript in subscripts:
+ examples.append(tuple(list(symbol) + [subscript]))
+
+
+@pytest.mark.parametrize('label, text, symbol_text, subscript', examples)
+def test_with_supexpr(label, text, symbol_text, subscript):
+ assert_equal(text + '^2', Pow(Symbol(symbol_text, real=True), Integer(2)))
+
+
+@pytest.mark.parametrize('label, text, symbol_text, subscript', examples)
+def test_with_subexpr(label, text, symbol_text, subscript):
+ assert_equal(text + '_' + subscript, Symbol(symbol_text + '_' + subscript, real=True))
+
+
+@pytest.mark.parametrize('label, text, symbol_text, subscript', examples)
+def test_with_subexpr_before_supexpr(label, text, symbol_text, subscript):
+ assert_equal(text + '_' + subscript + '^2', Pow(Symbol(symbol_text + '_' + subscript, real=True), Integer(2)))
+
+
+@pytest.mark.parametrize('label, text, symbol_text, subscript', examples)
+def test_with_subexpr_before_supexpr_with_braces(label, text, symbol_text, subscript):
+ wrapped_subscript = subscript if '{' in subscript else '{' + subscript + '}'
+ assert_equal(text + '_' + wrapped_subscript + '^{2}', Pow(Symbol(symbol_text + '_' + subscript, real=True), Integer(2)))
+
+
+@pytest.mark.parametrize('label, text, symbol_text, subscript', examples)
+def test_with_supexpr_before_subexpr(label, text, symbol_text, subscript):
+ assert_equal(text + '^2_' + subscript, Pow(Symbol(symbol_text + '_' + subscript, real=True), Integer(2)))
+
+
+@pytest.mark.parametrize('label, text, symbol_text, subscript', examples)
+def test_with_supexpr_before_subexpr_with_braces(label, text, symbol_text, subscript):
+ wrapped_subscript = subscript if '{' in subscript else '{' + subscript + '}'
+ assert_equal(text + '^{2}_' + wrapped_subscript, Pow(Symbol(symbol_text + '_' + subscript, real=True), Integer(2)))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/binomial_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/binomial_test.py
new file mode 100755
index 0000000..2fec010
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/binomial_test.py
@@ -0,0 +1,36 @@
+from .context import assert_equal, _Add, _Mul, _Pow
+import pytest
+from sympy import binomial, Symbol
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+theta = Symbol('theta', real=True)
+gamma = Symbol('gamma', real=True)
+
+
+def test_binomial_numeric():
+ assert_equal("\\binom{16}{2}", binomial(16, 2))
+
+
+def test_binomial_symbols():
+ assert_equal("\\binom{x}{y}", binomial(x, y))
+
+
+def test_binomial_greek_symbols():
+ assert_equal("\\binom{\\theta}{\\gamma}", binomial(theta, gamma))
+
+
+def test_binomial_expr():
+ assert_equal("\\binom{16+2}{\\frac{4}{2}}", binomial(_Add(16, 2), _Mul(4, _Pow(2, -1)), evaluate=False))
+
+
+def test_choose_numeric():
+ assert_equal("\\choose{16}{2}", binomial(16, 2))
+
+
+def test_choose_symbols():
+ assert_equal("\\choose{x}{y}", binomial(x, y))
+
+
+def test_choose_greek_symbols():
+ assert_equal("\\choose{\\theta}{\\gamma}", binomial(theta, gamma))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/ceil_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/ceil_test.py
new file mode 100755
index 0000000..f4c419c
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/ceil_test.py
@@ -0,0 +1,29 @@
+from .context import assert_equal, get_simple_examples
+import pytest
+from sympy import ceiling
+
+examples = get_simple_examples(ceiling)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_ceil_func(input, output, symbolically):
+ assert_equal("\\ceil({input})".format(input=input), output, symbolically=symbolically)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_ceil_operatorname(input, output, symbolically):
+ assert_equal("\\operatorname{{ceil}}({input})".format(input=input), output, symbolically=symbolically)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_ceil_cmd(input, output, symbolically):
+ assert_equal("\\lceil {input}\\rceil".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\left\\lceil {input}\\right\\rceil".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\mleft\\lceil {input}\\mright\\rceil".format(input=input), output, symbolically=symbolically)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_ceil_corners(input, output, symbolically):
+ assert_equal("\\ulcorner {input}\\urcorner".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\left\\ulcorner {input}\\right\\urcorner".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\mleft\\ulcorner {input}\\mright\\urcorner".format(input=input), output, symbolically=symbolically)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/complex_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/complex_test.py
new file mode 100755
index 0000000..2197141
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/complex_test.py
@@ -0,0 +1,21 @@
+from .context import assert_equal
+import pytest
+from sympy import Sum, I, Symbol, Integer
+
+a = Symbol('a', real=True)
+b = Symbol('b', real=True)
+i = Symbol('i', real=True)
+n = Symbol('n', real=True)
+x = Symbol('x', real=True)
+
+
+def test_complex():
+ assert_equal("a+Ib", a + I * b)
+
+
+def test_complex_e():
+ assert_equal("e^{I\\pi}", Integer(-1))
+
+
+def test_complex_sum():
+ assert_equal("\\sum_{i=0}^{n} i \\cdot x", Sum(i * x, (i, 0, n)))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/context.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/context.py
new file mode 100755
index 0000000..f48cfd3
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/context.py
@@ -0,0 +1,84 @@
+from sympy import simplify, srepr, Add, Mul, Pow, Rational, pi, sqrt, Symbol
+from latex2sympy.latex2sympy2 import latex2sympy as process_sympy
+import sys
+import os
+sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+
+# shorthand definitions
+
+
+def _Add(a, b):
+ return Add(a, b, evaluate=False)
+
+
+def _Mul(a, b):
+ return Mul(a, b, evaluate=False)
+
+
+def _Pow(a, b):
+ return Pow(a, b, evaluate=False)
+
+
+def get_simple_examples(func):
+ '''
+ Returns an array of tuples, containing the string `input`, sympy `output` using the provided sympy `func`, and `symbolically` boolean
+ for calling `compare`.
+ '''
+ return [
+ ("1.1", func(1.1), False),
+ ("6.9", func(6.9), False),
+ ("3.5", func(3.5), False),
+ ("8", func(8), False),
+ ("0", func(0), False),
+ ("290348E32", func(Rational('290348E32')), False),
+ ("1237.293894239480234", func(Rational('1237.293894239480234')), False),
+ ("8623.4592104E-2", func(Rational('8623.4592104E-2')), False),
+ ("\\pi ", func(pi), False),
+ ("\\sqrt{100}", func(sqrt(100)), False),
+ ("12,123.4", func(Rational('12123.4')), False),
+ ("-9.4", func(-9.4), False),
+ ("-35.9825", func(-35.9825), False),
+ ("-\\sqrt{5}", func(-sqrt(5)), False),
+ ("-324E-3", func(Rational('-324E-3')), False),
+ ("-0.23", func(-0.23), False),
+ ("\\frac{1}{2}", func(Rational('1/2')), False),
+ ("\\frac{6}{2}", func(Rational('6/2')), False),
+ ("\\frac{9}{5}", func(Rational('9/5')), False),
+ ("\\frac{-42}{6}", func(Rational('-42/6')), False),
+ ("-\\frac{325}{3}", func(Rational('-325/3')), False),
+ ("\\frac{\\pi }{2}", func(pi / 2), False),
+ ("(1+6)/3", func(Rational(1 + 6, 3)), False),
+ ("1+6/3", func(1 + Rational('6/3')), False),
+ ("7*4/5", func(7 * 4 / 5), False),
+ ("15-2.3", func(15 - Rational('2.3')), False),
+ ("x", func(x), True),
+ ("x + y", func(x + y), True),
+ ("\\frac{9x}{4}", func(9 * x / 4), True),
+ ("y\\pi", func(y * pi), True),
+ ("2y-y-y", func(2 * y - y - y), True)
+ ]
+
+
+def compare(actual, expected, symbolically=False):
+ if symbolically:
+ assert simplify(actual - expected) == 0
+ else:
+ actual_exp_tree = srepr(actual)
+ expected_exp_tree = srepr(expected)
+ try:
+ assert actual_exp_tree == expected_exp_tree
+ except Exception:
+ if isinstance(actual, int) or isinstance(actual, float) or actual.is_number and isinstance(expected, int) or isinstance(expected, float) or expected.is_number:
+ assert actual == expected or actual - expected == 0 or simplify(actual - expected) == 0
+ else:
+ print('expected_exp_tree = ', expected_exp_tree)
+ print('actual exp tree = ', actual_exp_tree)
+ raise
+
+
+def assert_equal(latex, expr, variable_values={}, symbolically=False):
+ parsed = process_sympy(latex, variable_values)
+ compare(parsed, expr, symbolically)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/exp_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/exp_test.py
new file mode 100755
index 0000000..1ef20c6
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/exp_test.py
@@ -0,0 +1,57 @@
+from .context import assert_equal
+import pytest
+from sympy import exp, sin, Symbol, E
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+
+
+def test_exp_letter():
+ assert_equal("e", E)
+ assert_equal("e", exp(1))
+
+
+def test_exp_func():
+ assert_equal("\\exp(3)", exp(3))
+
+
+def test_exp_func_no_delim():
+ assert_equal("\\exp3", exp(3))
+
+
+def test_exp_command_symbol():
+ assert_equal("\\exponentialE", E)
+ assert_equal("\\exponentialE", exp(1))
+
+
+def test_exp_command_symbol_expression():
+ assert_equal("\\exponentialE^{3}", exp(3))
+
+
+def test_exp_command_symbol_multiplied():
+ '''
+ \\exponentialE is NOT a function, so using the following notation equates to multiplication
+ '''
+ assert_equal("\\exponentialE (3)", E * 3)
+ assert_equal("\\exponentialE \\left( 3\\right)", E * 3)
+ assert_equal("\\exponentialE \\times 3", E * 3)
+
+
+def test_exp_numeric():
+ assert_equal("e^3", exp(3))
+
+
+def test_exp_symbol():
+ assert_equal("e^x", exp(x))
+
+
+def test_exp_symbol_expr():
+ assert_equal("e^{x+y}", exp(x + y))
+
+
+def test_exp_symbol_expr_group():
+ assert_equal("e^{(x+y)}", exp(x + y))
+
+
+def test_exp_expr():
+ assert_equal("\\sin(x)*e^x", sin(x) * exp(x))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/floor_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/floor_test.py
new file mode 100755
index 0000000..3961782
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/floor_test.py
@@ -0,0 +1,29 @@
+from .context import assert_equal, get_simple_examples
+import pytest
+from sympy import floor
+
+examples = get_simple_examples(floor)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_floor_func(input, output, symbolically):
+ assert_equal("\\floor({input})".format(input=input), output, symbolically=symbolically)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_floor_operatorname(input, output, symbolically):
+ assert_equal("\\operatorname{{floor}}({input})".format(input=input), output, symbolically=symbolically)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_floor_cmd(input, output, symbolically):
+ assert_equal("\\lfloor {input}\\rfloor".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\left\\lfloor {input}\\right\\rfloor".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\mleft\\lfloor {input}\\mright\\rfloor".format(input=input), output, symbolically=symbolically)
+
+
+@pytest.mark.parametrize('input, output, symbolically', examples)
+def test_floor_corners(input, output, symbolically):
+ assert_equal("\\llcorner {input}\\lrcorner".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\left\\llcorner {input}\\right\\lrcorner".format(input=input), output, symbolically=symbolically)
+ assert_equal("\\mleft\\llcorner {input}\\mright\\lrcorner".format(input=input), output, symbolically=symbolically)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/gcd_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/gcd_test.py
new file mode 100755
index 0000000..a45a215
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/gcd_test.py
@@ -0,0 +1,161 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol, Rational, UnevaluatedExpr, gcd, igcd, sqrt, pi
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+z = Symbol('z', real=True)
+
+
+def test_gcd_usual():
+ assert_equal("\\gcd(18, 3)", gcd(18, 3))
+ assert_equal("\\gcd(3, 18)", gcd(3, 18))
+ assert_equal("\\gcd(2, 2)", gcd(2, 2))
+ assert_equal("\\gcd(0, 21)", UnevaluatedExpr(gcd(0, 21)))
+ assert_equal("\\gcd(21, 0)", UnevaluatedExpr(gcd(21, 0)))
+ assert_equal("\\gcd(0, 0)", UnevaluatedExpr(gcd(0, 0)))
+ assert_equal("\\gcd(6128, 24)", gcd(6128, 24))
+ assert_equal("\\gcd(24, 6128)", gcd(24, 6128))
+ assert_equal("\\gcd(1E20, 1000000)", gcd(Rational('1E20'), 1000000))
+ assert_equal("\\gcd(128*10^32, 1)", gcd(Rational('128E32'), 1))
+
+ assert_equal("\\operatorname{gcd}(18, 3)", gcd(18, 3))
+ assert_equal("\\operatorname{gcd}(3, 18)", gcd(3, 18))
+ assert_equal("\\operatorname{gcd}(2, 2)", gcd(2, 2))
+ assert_equal("\\operatorname{gcd}(0, 21)", UnevaluatedExpr(gcd(0, 21)))
+ assert_equal("\\operatorname{gcd}(21, 0)", UnevaluatedExpr(gcd(21, 0)))
+ assert_equal("\\operatorname{gcd}(0, 0)", UnevaluatedExpr(gcd(0, 0)))
+ assert_equal("\\operatorname{gcd}(6128, 24)", gcd(6128, 24))
+ assert_equal("\\operatorname{gcd}(24, 6128)", gcd(24, 6128))
+ assert_equal("\\operatorname{gcd}(1E20, 1000000)", gcd(Rational('1E20'), 1000000))
+ assert_equal("\\operatorname{gcd}(128*10^32, 1)", gcd(Rational('128E32'), 1))
+
+
+def test_gcd_negative():
+ assert_equal("\\gcd(-12, 4)", gcd(-12, 4))
+ assert_equal("\\gcd(219, -9)", gcd(219, -9))
+ assert_equal("\\gcd(-8, -64)", gcd(-8, -64))
+ assert_equal("\\gcd(-5, -5)", gcd(-5, -5))
+ assert_equal("\\gcd(-1, 182033)", gcd(-1, 182033))
+ assert_equal("\\gcd(25, -6125)", gcd(25, -6125))
+ assert_equal("\\gcd(243, -2.9543127E21)", gcd(243, Rational('-2.9543127E21')))
+
+ assert_equal("\\operatorname{gcd}(-12, 4)", gcd(-12, 4))
+ assert_equal("\\operatorname{gcd}(219, -9)", gcd(219, -9))
+ assert_equal("\\operatorname{gcd}(-8, -64)", gcd(-8, -64))
+ assert_equal("\\operatorname{gcd}(-5, -5)", gcd(-5, -5))
+ assert_equal("\\operatorname{gcd}(-1, 182033)", gcd(-1, 182033))
+ assert_equal("\\operatorname{gcd}(25, -6125)", gcd(25, -6125))
+ assert_equal("\\operatorname{gcd}(243, -2.9543127E21)", gcd(243, Rational('-2.9543127E21')))
+
+
+def test_gcd_float():
+ assert_equal("\\gcd(2.4, 3.6)", gcd(Rational('2.4'), Rational('3.6')))
+ assert_equal("\\gcd(3.6, 2.4)", gcd(Rational('3.6'), Rational('2.4')))
+ assert_equal("\\gcd(\\pi, 3)", gcd(pi, 3))
+ assert_equal("\\gcd(618, 1.5)", gcd(618, Rational('1.5')))
+ assert_equal("\\gcd(-1.5, 618)", gcd(Rational('-1.5'), 618))
+ assert_equal("\\gcd(0.42, 2)", gcd(Rational('0.42'), 2))
+ assert_equal("\\gcd(1.43E-13, 21)", gcd(Rational('1.43E-13'), 21))
+ assert_equal("\\gcd(21, -143E-13)", gcd(21, Rational('-143E-13')))
+ assert_equal("\\gcd(9.80655, 9.80655)", gcd(Rational('9.80655'), Rational('9.80655')))
+ assert_equal("\\gcd(0.0000923423, -8341.234802909)", gcd(Rational('0.0000923423'), Rational('-8341.234802909')))
+ assert_equal("\\gcd(\\sqrt{5}, \\sqrt{2})", gcd(sqrt(5), sqrt(2)))
+
+ assert_equal("\\operatorname{gcd}(2.4, 3.6)", gcd(Rational('2.4'), Rational('3.6')))
+ assert_equal("\\operatorname{gcd}(3.6, 2.4)", gcd(Rational('3.6'), Rational('2.4')))
+ assert_equal("\\operatorname{gcd}(\\pi, 3)", gcd(pi, 3))
+ assert_equal("\\operatorname{gcd}(618, 1.5)", gcd(618, Rational('1.5')))
+ assert_equal("\\operatorname{gcd}(-1.5, 618)", gcd(Rational('-1.5'), 618))
+ assert_equal("\\operatorname{gcd}(0.42, 2)", gcd(Rational('0.42'), 2))
+ assert_equal("\\operatorname{gcd}(1.43E-13, 21)", gcd(Rational('1.43E-13'), 21))
+ assert_equal("\\operatorname{gcd}(21, -143E-13)", gcd(21, Rational('-143E-13')))
+ assert_equal("\\operatorname{gcd}(9.80655, 9.80655)", gcd(Rational('9.80655'), Rational('9.80655')))
+ assert_equal("\\operatorname{gcd}(0.0000923423, -8341.234802909)", gcd(Rational('0.0000923423'), Rational('-8341.234802909')))
+ assert_equal("\\operatorname{gcd}(\\sqrt{5}, \\sqrt{2})", gcd(sqrt(5), sqrt(2)))
+
+
+def test_gcd_fraction():
+ assert_equal("\\gcd(1/2, 3)", gcd(Rational('1/2'), 3))
+ assert_equal("\\gcd(3, 1/2)", gcd(3, Rational('1/2')))
+ assert_equal("\\gcd(6/2, 3)", gcd(Rational('6/2'), 3))
+ assert_equal("\\gcd(1/10, 1/10)", gcd(Rational('1/10'), Rational('1/10')))
+ assert_equal("\\gcd(42, 42/6)", gcd(42, Rational('42/6')))
+ assert_equal("\\gcd(10000000/10, 10000)", gcd(Rational('10000000/10'), 10000))
+
+ assert_equal("\\operatorname{gcd}(1/2, 3)", gcd(Rational('1/2'), 3))
+ assert_equal("\\operatorname{gcd}(3, 1/2)", gcd(3, Rational('1/2')))
+ assert_equal("\\operatorname{gcd}(6/2, 3)", gcd(Rational('6/2'), 3))
+ assert_equal("\\operatorname{gcd}(1/10, 1/10)", gcd(Rational('1/10'), Rational('1/10')))
+ assert_equal("\\operatorname{gcd}(42, 42/6)", gcd(42, Rational('42/6')))
+ assert_equal("\\operatorname{gcd}(10000000/10, 10000)", gcd(Rational('10000000/10'), 10000))
+
+
+def test_gcd_expr():
+ assert_equal("\\gcd(1+1, 8)", gcd(1 + 1, 8))
+ assert_equal("920*\\gcd(9, 12*4/2)", 920 * gcd(9, 12 * Rational('4/2')))
+ assert_equal("\\gcd(32-128, 10)*22", gcd(32 - 128, 10) * 22)
+ assert_equal("\\sqrt{\\gcd(1.25E24, 1E12)}", sqrt(gcd(Rational('1.25E24'), Rational('1E12'))))
+ assert_equal("\\gcd(92.0, 000+2)", gcd(Rational('92.0'), 000 + 2))
+
+ assert_equal("\\operatorname{gcd}(1+1, 8)", gcd(1 + 1, 8))
+ assert_equal("920*\\operatorname{gcd}(9, 12*4/2)", 920 * gcd(9, 12 * Rational('4/2')))
+ assert_equal("\\operatorname{gcd}(32-128, 10)*22", gcd(32 - 128, 10) * 22)
+ assert_equal("\\sqrt{\\operatorname{gcd}(1.25E24, 1E12)}", sqrt(gcd(Rational('1.25E24'), Rational('1E12'))))
+ assert_equal("\\operatorname{gcd}(92.0, 000+2)", gcd(Rational('92.0'), 000 + 2))
+
+
+def test_gcd_symbol():
+ assert_equal("\\gcd(x, y)", gcd(x, y), symbolically=True)
+ assert_equal("\\gcd(y, -x)", gcd(y, -x), symbolically=True)
+ assert_equal("\\gcd(2y, x)", gcd(2 * y, x), symbolically=True)
+ assert_equal("\\gcd(125, 50x)", gcd(125, 50 * x), symbolically=True)
+ assert_equal("\\gcd(x + 76, \\sqrt{x} * 4)", gcd(x + 76, sqrt(x) * 4), symbolically=True)
+ assert_equal("\\gcd(y, y)", gcd(y, y), symbolically=True)
+ assert_equal("y + \\gcd(0.4x, 8/3) / 2", y + gcd(Rational('0.4') * x, Rational('8/3')) / 2, symbolically=True)
+ assert_equal("6.673E-11 * (\\gcd(8.85418782E-12, 9x) + 4) / 8y", Rational('6.673E-11') * (gcd(Rational('8.85418782E-12'), 9 * x) + 4) / (8 * y), symbolically=True)
+
+ assert_equal("\\operatorname{gcd}(x, y)", gcd(x, y), symbolically=True)
+ assert_equal("\\operatorname{gcd}(y, -x)", gcd(y, -x), symbolically=True)
+ assert_equal("\\operatorname{gcd}(2y, x)", gcd(2 * y, x), symbolically=True)
+ assert_equal("\\operatorname{gcd}(125, 50x)", gcd(125, 50 * x), symbolically=True)
+ assert_equal("\\operatorname{gcd}(x + 76, \\sqrt{x} * 4)", gcd(x + 76, sqrt(x) * 4), symbolically=True)
+ assert_equal("\\operatorname{gcd}(y, y)", gcd(y, y), symbolically=True)
+ assert_equal("y + \\operatorname{gcd}(0.4x, 8/3) / 2", y + gcd(Rational('0.4') * x, Rational('8/3')) / 2, symbolically=True)
+ assert_equal("6.673E-11 * (\\operatorname{gcd}(8.85418782E-12, 9x) + 4) / 8y", Rational('6.673E-11') * (gcd(Rational('8.85418782E-12'), 9 * x) + 4) / (8 * y), symbolically=True)
+
+
+def test_multiple_parameters():
+ assert_equal("\\gcd(830,450)", gcd(830, 450))
+ assert_equal("\\gcd(6,321,429)", igcd(6, 321, 429))
+ assert_equal("\\gcd(14,2324)", gcd(14, 2324))
+ assert_equal("\\gcd(3, 6, 2)", igcd(3, 6, 2))
+ assert_equal("\\gcd(144, 2988, 37116)", igcd(144, 2988, 37116))
+ assert_equal("\\gcd(144,2988, 37116,18, 72)", igcd(144, 2988, 37116, 18, 72))
+ assert_equal("\\gcd(144, 2988, 37116, 18, 72, 12, 6)", igcd(144, 2988, 37116, 18, 72, 12, 6))
+ assert_equal("\\gcd(32)", gcd(32, 32))
+ assert_equal("\\gcd(-8, 4,-2)", gcd(-8, gcd(4, -2)))
+ assert_equal("\\gcd(x, y,z)", gcd(x, gcd(y, z)), symbolically=True)
+ assert_equal("\\gcd(6*4,48, 3)", igcd(6 * 4, 48, 3))
+ assert_equal("\\gcd(6*4,48,3)", igcd(6 * 4, 48, 3))
+ assert_equal("\\gcd(2.4,3.6, 0.6)", gcd(Rational('2.4'), gcd(Rational('3.6'), Rational('0.6'))))
+ assert_equal("\\gcd(2.4,3.6,0.6)", gcd(Rational('2.4'), gcd(Rational('3.6'), Rational('0.6'))))
+ assert_equal("\\gcd(\\sqrt{3},\\sqrt{2}, \\sqrt{100})", gcd(sqrt(3), gcd(sqrt(2), sqrt(100))))
+ assert_equal("\\gcd(1E12, 1E6,1E3, 10)", igcd(Rational('1E12'), Rational('1E6'), Rational('1E3'), 10))
+
+ assert_equal("\\operatorname{gcd}(830,450)", gcd(830, 450))
+ assert_equal("\\operatorname{gcd}(6,321,429)", igcd(6, 321, 429))
+ assert_equal("\\operatorname{gcd}(14,2324)", gcd(14, 2324))
+ assert_equal("\\operatorname{gcd}(3, 6, 2)", igcd(3, 6, 2))
+ assert_equal("\\operatorname{gcd}(144, 2988, 37116)", igcd(144, 2988, 37116))
+ assert_equal("\\operatorname{gcd}(144,2988, 37116,18, 72)", igcd(144, 2988, 37116, 18, 72))
+ assert_equal("\\operatorname{gcd}(144, 2988, 37116, 18, 72, 12, 6)", igcd(144, 2988, 37116, 18, 72, 12, 6))
+ assert_equal("\\operatorname{gcd}(32)", gcd(32, 32))
+ assert_equal("\\operatorname{gcd}(-8, 4,-2)", gcd(-8, gcd(4, -2)))
+ assert_equal("\\operatorname{gcd}(x, y,z)", gcd(x, gcd(y, z)), symbolically=True)
+ assert_equal("\\operatorname{gcd}(6*4,48, 3)", igcd(6 * 4, 48, 3))
+ assert_equal("\\operatorname{gcd}(6*4,48,3)", igcd(6 * 4, 48, 3))
+ assert_equal("\\operatorname{gcd}(2.4,3.6, 0.6)", gcd(Rational('2.4'), gcd(Rational('3.6'), Rational('0.6'))))
+ assert_equal("\\operatorname{gcd}(2.4,3.6,0.6)", gcd(Rational('2.4'), gcd(Rational('3.6'), Rational('0.6'))))
+ assert_equal("\\operatorname{gcd}(\\sqrt{3},\\sqrt{2}, \\sqrt{100})", gcd(sqrt(3), gcd(sqrt(2), sqrt(100))))
+ assert_equal("\\operatorname{gcd}(1E12, 1E6,1E3, 10)", igcd(Rational('1E12'), Rational('1E6'), Rational('1E3'), 10))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/greek_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/greek_test.py
new file mode 100755
index 0000000..1e23a0d
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/greek_test.py
@@ -0,0 +1,19 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol
+
+epsilon_upper = Symbol('char"000190', real=True)
+epsilon_lower = Symbol('epsilon', real=True)
+varepsilon = Symbol('varepsilon', real=True)
+
+
+def test_greek_epsilon():
+ assert_equal("\\epsilon", epsilon_lower)
+
+
+def test_greek_epsilon_upper():
+ assert_equal('\\char"000190', epsilon_upper)
+
+
+def test_greek_varepsilon():
+ assert_equal('\\varepsilon', varepsilon)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/grouping_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/grouping_test.py
new file mode 100755
index 0000000..139f3f1
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/grouping_test.py
@@ -0,0 +1,52 @@
+from .context import assert_equal, _Pow, _Add, _Mul
+import pytest
+from sympy import Integral, sin, Symbol, Mul, Integer, Pow
+from latex2sympy.latex2sympy2 import latex2sympy as process_sympy
+
+a = Symbol('a', real=True)
+b = Symbol('b', real=True)
+x = Symbol('x', real=True)
+theta = Symbol('theta', real=True)
+
+
+func_arg_examples = [
+ ('\\int ', 'x dx', Integral(x, x)),
+ ('\\sin', '\\theta ', sin(theta))
+]
+
+example_groups = [
+ ('1+2', '3-4', _Mul(_Add(1, 2), _Add(3, _Mul(-1, 4))))
+]
+
+modifiable_delimiter_pairs = {
+ '(': ')',
+ '\\lgroup': '\\rgroup',
+ '\\{': '\\}',
+ '\\lbrace': '\\rbrace',
+ '[': ']',
+ '\\lbrack': '\\rbrack',
+}
+
+
+@pytest.mark.parametrize('func, args, output', func_arg_examples)
+def test_func_arg_groupings(func, args, output):
+ # none
+ assert_equal("{func} {args}".format(func=func, args=args), output)
+ # normal brace (not modifiable)
+ assert_equal("{func}{{{args}}}".format(func=func, args=args), output)
+ # rest of delimiters, with modifications
+ for left, right in modifiable_delimiter_pairs.items():
+ assert_equal("{func}{left}{args}{right}".format(left=left, right=right, func=func, args=args), output)
+ assert_equal("{func}\\left{left}{args}\\right{right}".format(left=left, right=right, func=func, args=args), output)
+ assert_equal("{func}\\mleft{left}{args}\\mright{right}".format(left=left, right=right, func=func, args=args), output)
+
+
+@pytest.mark.parametrize('group1, group2, output', example_groups)
+def test_delimiter_groupings(group1, group2, output):
+ # normal brace (not modifiable)
+ assert_equal("{{{group1}}}{{{group2}}}".format(group1=group1, group2=group2), output)
+ # rest of delimiters, with modifications
+ for left, right in modifiable_delimiter_pairs.items():
+ assert_equal("{left}{group1}{right}{left}{group2}{right}".format(left=left, right=right, group1=group1, group2=group2), output)
+ assert_equal("\\left{left}{group1}\\right{right}\\left{left}{group2}\\right{right}".format(left=left, right=right, group1=group1, group2=group2), output)
+ assert_equal("\\mleft{left}{group1}\\mright{right}\\mleft{left}{group2}\\mright{right}".format(left=left, right=right, group1=group1, group2=group2), output)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/lcm_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/lcm_test.py
new file mode 100755
index 0000000..1e10ce5
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/lcm_test.py
@@ -0,0 +1,161 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol, Rational, UnevaluatedExpr, lcm, ilcm, sqrt, pi
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+z = Symbol('z', real=True)
+
+
+def test_lcm_usual():
+ assert_equal("\\lcm(6, 4)", lcm(6, 4))
+ assert_equal("\\lcm(4, 6)", lcm(4, 6))
+ assert_equal("\\lcm(2, 2)", lcm(2, 2))
+ assert_equal("\\lcm(0, 21)", UnevaluatedExpr(lcm(0, 21)))
+ assert_equal("\\lcm(21, 0)", UnevaluatedExpr(lcm(21, 0)))
+ assert_equal("\\lcm(0, 0)", UnevaluatedExpr(lcm(0, 0)))
+ assert_equal("\\lcm(9, 21)", lcm(9, 21))
+ assert_equal("\\lcm(6128, 24)", lcm(6128, 24))
+ assert_equal("\\lcm(24, 6128)", lcm(24, 6128))
+ assert_equal("\\lcm(1E20, 1000000)", lcm(Rational('1E20'), 1000000))
+ assert_equal("\\lcm(128*10^32, 1)", lcm(Rational('128E32'), 1))
+
+ assert_equal("\\operatorname{lcm}(6, 4)", lcm(6, 4))
+ assert_equal("\\operatorname{lcm}(4, 6)", lcm(4, 6))
+ assert_equal("\\operatorname{lcm}(2, 2)", lcm(2, 2))
+ assert_equal("\\operatorname{lcm}(0, 21)", UnevaluatedExpr(lcm(0, 21)))
+ assert_equal("\\operatorname{lcm}(21, 0)", UnevaluatedExpr(lcm(21, 0)))
+ assert_equal("\\operatorname{lcm}(0, 0)", UnevaluatedExpr(lcm(0, 0)))
+ assert_equal("\\operatorname{lcm}(9, 21)", lcm(9, 21))
+ assert_equal("\\operatorname{lcm}(6128, 24)", lcm(6128, 24))
+ assert_equal("\\operatorname{lcm}(24, 6128)", lcm(24, 6128))
+ assert_equal("\\operatorname{lcm}(1E20, 1000000)", lcm(Rational('1E20'), 1000000))
+ assert_equal("\\operatorname{lcm}(128*10^32, 1)", lcm(Rational('128E32'), 1))
+
+
+def test_lcm_negative():
+ assert_equal("\\lcm(-12, 4)", lcm(-12, 4))
+ assert_equal("\\lcm(219, -9)", lcm(219, -9))
+ assert_equal("\\lcm(-8, -12)", lcm(-8, -12))
+ assert_equal("\\lcm(-5, -5)", lcm(-5, -5))
+ assert_equal("\\lcm(-1, 182033)", lcm(-1, 182033))
+ assert_equal("\\lcm(25, -30)", lcm(25, -30))
+ assert_equal("\\lcm(243, -2.9543127E21)", lcm(243, Rational('-2.9543127E21')))
+
+ assert_equal("\\operatorname{lcm}(-12, 4)", lcm(-12, 4))
+ assert_equal("\\operatorname{lcm}(219, -9)", lcm(219, -9))
+ assert_equal("\\operatorname{lcm}(-8, -12)", lcm(-8, -12))
+ assert_equal("\\operatorname{lcm}(-5, -5)", lcm(-5, -5))
+ assert_equal("\\operatorname{lcm}(-1, 182033)", lcm(-1, 182033))
+ assert_equal("\\operatorname{lcm}(25, -30)", lcm(25, -30))
+ assert_equal("\\operatorname{lcm}(243, -2.9543127E21)", lcm(243, Rational('-2.9543127E21')))
+
+
+def test_lcm_float():
+ assert_equal("\\lcm(2.4, 3.6)", lcm(Rational('2.4'), Rational('3.6')))
+ assert_equal("\\lcm(3.6, 2.4)", lcm(Rational('3.6'), Rational('2.4')))
+ assert_equal("\\lcm(\\pi, 3)", lcm(pi, 3))
+ assert_equal("\\lcm(618, 1.5)", lcm(618, Rational('1.5')))
+ assert_equal("\\lcm(-1.5, 618)", lcm(Rational('-1.5'), 618))
+ assert_equal("\\lcm(0.42, 2)", lcm(Rational('0.42'), 2))
+ assert_equal("\\lcm(1.43E-13, 21)", lcm(Rational('1.43E-13'), 21))
+ assert_equal("\\lcm(21, -143E-13)", lcm(21, Rational('-143E-13')))
+ assert_equal("\\lcm(9.80655, 9.80655)", lcm(Rational('9.80655'), Rational('9.80655')))
+ assert_equal("\\lcm(0.0000923423, -8341.234802909)", lcm(Rational('0.0000923423'), Rational('-8341.234802909')))
+ assert_equal("\\lcm(\\sqrt{5}, \\sqrt{2})", lcm(sqrt(5), sqrt(2)))
+
+ assert_equal("\\operatorname{lcm}(2.4, 3.6)", lcm(Rational('2.4'), Rational('3.6')))
+ assert_equal("\\operatorname{lcm}(3.6, 2.4)", lcm(Rational('3.6'), Rational('2.4')))
+ assert_equal("\\operatorname{lcm}(\\pi, 3)", lcm(pi, 3))
+ assert_equal("\\operatorname{lcm}(618, 1.5)", lcm(618, Rational('1.5')))
+ assert_equal("\\operatorname{lcm}(-1.5, 618)", lcm(Rational('-1.5'), 618))
+ assert_equal("\\operatorname{lcm}(0.42, 2)", lcm(Rational('0.42'), 2))
+ assert_equal("\\operatorname{lcm}(1.43E-13, 21)", lcm(Rational('1.43E-13'), 21))
+ assert_equal("\\operatorname{lcm}(21, -143E-13)", lcm(21, Rational('-143E-13')))
+ assert_equal("\\operatorname{lcm}(9.80655, 9.80655)", lcm(Rational('9.80655'), Rational('9.80655')))
+ assert_equal("\\operatorname{lcm}(0.0000923423, -8341.234802909)", lcm(Rational('0.0000923423'), Rational('-8341.234802909')))
+ assert_equal("\\operatorname{lcm}(\\sqrt{5}, \\sqrt{2})", lcm(sqrt(5), sqrt(2)))
+
+
+def test_lcm_fraction():
+ assert_equal("\\lcm(1/2, 3)", lcm(Rational('1/2'), 3))
+ assert_equal("\\lcm(3, 1/2)", lcm(3, Rational('1/2')))
+ assert_equal("\\lcm(6/2, 3)", lcm(Rational('6/2'), 3))
+ assert_equal("\\lcm(1/10, 1/10)", lcm(Rational('1/10'), Rational('1/10')))
+ assert_equal("\\lcm(42, 42/6)", lcm(42, Rational('42/6')))
+ assert_equal("\\lcm(10000000/10, 10000)", lcm(Rational('10000000/10'), 10000))
+
+ assert_equal("\\operatorname{lcm}(1/2, 3)", lcm(Rational('1/2'), 3))
+ assert_equal("\\operatorname{lcm}(3, 1/2)", lcm(3, Rational('1/2')))
+ assert_equal("\\operatorname{lcm}(6/2, 3)", lcm(Rational('6/2'), 3))
+ assert_equal("\\operatorname{lcm}(1/10, 1/10)", lcm(Rational('1/10'), Rational('1/10')))
+ assert_equal("\\operatorname{lcm}(42, 42/6)", lcm(42, Rational('42/6')))
+ assert_equal("\\operatorname{lcm}(10000000/10, 10000)", lcm(Rational('10000000/10'), 10000))
+
+
+def test_lcm_expr():
+ assert_equal("\\lcm(1+1, 8)", lcm(1 + 1, 8))
+ assert_equal("920*\\lcm(9, 12*4/2)", 920 * lcm(9, 12 * Rational('4/2')))
+ assert_equal("\\lcm(32-128, 10)*22", lcm(32 - 128, 10) * 22)
+ assert_equal("\\sqrt{\\lcm(1.25E24, 1E12)}", sqrt(lcm(Rational('1.25E24'), Rational('1E12'))))
+ assert_equal("\\lcm(92.0, 000+2)", lcm(Rational('92.0'), 000 + 2))
+
+ assert_equal("\\operatorname{lcm}(1+1, 8)", lcm(1 + 1, 8))
+ assert_equal("920*\\operatorname{lcm}(9, 12*4/2)", 920 * lcm(9, 12 * Rational('4/2')))
+ assert_equal("\\operatorname{lcm}(32-128, 10)*22", lcm(32 - 128, 10) * 22)
+ assert_equal("\\sqrt{\\operatorname{lcm}(1.25E24, 1E12)}", sqrt(lcm(Rational('1.25E24'), Rational('1E12'))))
+ assert_equal("\\operatorname{lcm}(92.0, 000+2)", lcm(Rational('92.0'), 000 + 2))
+
+
+def test_lcm_symbol():
+ assert_equal("\\lcm(x, y)", lcm(x, y), symbolically=True)
+ assert_equal("\\lcm(y, -x)", lcm(y, -x), symbolically=True)
+ assert_equal("\\lcm(2y, x)", lcm(2 * y, x), symbolically=True)
+ assert_equal("\\lcm(125, 50x)", lcm(125, 50 * x), symbolically=True)
+ assert_equal("\\lcm(x + 76, \\sqrt{x} * 4)", lcm(x + 76, sqrt(x) * 4), symbolically=True)
+ assert_equal("\\lcm(y, y)", lcm(y, y), symbolically=True)
+ assert_equal("y + \\lcm(0.4x, 8/3) / 2", y + lcm(Rational('0.4') * x, Rational('8/3')) / 2, symbolically=True)
+ assert_equal("6.673E-11 * (\\lcm(8.85418782E-12, 9x) + 4) / 8y", Rational('6.673E-11') * (lcm(Rational('8.85418782E-12'), 9 * x) + 4) / (8 * y), symbolically=True)
+
+ assert_equal("\\operatorname{lcm}(x, y)", lcm(x, y), symbolically=True)
+ assert_equal("\\operatorname{lcm}(y, -x)", lcm(y, -x), symbolically=True)
+ assert_equal("\\operatorname{lcm}(2y, x)", lcm(2 * y, x), symbolically=True)
+ assert_equal("\\operatorname{lcm}(125, 50x)", lcm(125, 50 * x), symbolically=True)
+ assert_equal("\\operatorname{lcm}(x + 76, \\sqrt{x} * 4)", lcm(x + 76, sqrt(x) * 4), symbolically=True)
+ assert_equal("\\operatorname{lcm}(y, y)", lcm(y, y), symbolically=True)
+ assert_equal("y + \\operatorname{lcm}(0.4x, 8/3) / 2", y + lcm(Rational('0.4') * x, Rational('8/3')) / 2, symbolically=True)
+ assert_equal("6.673E-11 * (\\operatorname{lcm}(8.85418782E-12, 9x) + 4) / 8y", Rational('6.673E-11') * (lcm(Rational('8.85418782E-12'), 9 * x) + 4) / (8 * y), symbolically=True)
+
+
+def test_multiple_parameters():
+ assert_equal("\\lcm(830,450)", lcm(830, 450))
+ assert_equal("\\lcm(6,321,429)", ilcm(6, 321, 429))
+ assert_equal("\\lcm(14,2324)", lcm(14, 2324))
+ assert_equal("\\lcm(3, 6, 2)", ilcm(3, 6, 2))
+ assert_equal("\\lcm(8, 9, 21)", ilcm(8, 9, 21))
+ assert_equal("\\lcm(144, 2988, 37116)", ilcm(144, 2988, 37116))
+ assert_equal("\\lcm(144,2988,37116,18,72)", ilcm(144, 2988, 37116, 18, 72))
+ assert_equal("\\lcm(144, 2988, 37116, 18, 72, 12, 6)", ilcm(144, 2988, 37116, 18, 72, 12, 6))
+ assert_equal("\\lcm(32)", lcm(32, 32))
+ assert_equal("\\lcm(-8, 4, -2)", lcm(-8, lcm(4, -2)))
+ assert_equal("\\lcm(x, y, z)", lcm(x, lcm(y, z)), symbolically=True)
+ assert_equal("\\lcm(6*4, 48, 3)", ilcm(6 * 4, 48, 3))
+ assert_equal("\\lcm(2.4, 3.6, 0.6)", lcm(Rational('2.4'), lcm(Rational('3.6'), Rational('0.6'))))
+ assert_equal("\\lcm(\\sqrt{3}, \\sqrt{2},\\sqrt{100})", lcm(sqrt(3), lcm(sqrt(2), sqrt(100))))
+ assert_equal("\\lcm(1E12, 1E6, 1E3, 10)", ilcm(Rational('1E12'), Rational('1E6'), Rational('1E3'), 10))
+
+ assert_equal("\\operatorname{lcm}(830,450)", lcm(830, 450))
+ assert_equal("\\operatorname{lcm}(6,321,429)", ilcm(6, 321, 429))
+ assert_equal("\\operatorname{lcm}(14,2324)", lcm(14, 2324))
+ assert_equal("\\operatorname{lcm}(3, 6, 2)", ilcm(3, 6, 2))
+ assert_equal("\\operatorname{lcm}(8, 9, 21)", ilcm(8, 9, 21))
+ assert_equal("\\operatorname{lcm}(144, 2988, 37116)", ilcm(144, 2988, 37116))
+ assert_equal("\\operatorname{lcm}(144,2988,37116,18,72)", ilcm(144, 2988, 37116, 18, 72))
+ assert_equal("\\operatorname{lcm}(144, 2988, 37116, 18, 72, 12, 6)", ilcm(144, 2988, 37116, 18, 72, 12, 6))
+ assert_equal("\\operatorname{lcm}(32)", lcm(32, 32))
+ assert_equal("\\operatorname{lcm}(-8, 4, -2)", lcm(-8, lcm(4, -2)))
+ assert_equal("\\operatorname{lcm}(x, y, z)", lcm(x, lcm(y, z)), symbolically=True)
+ assert_equal("\\operatorname{lcm}(6*4,48, 3)", ilcm(6 * 4, 48, 3))
+ assert_equal("\\operatorname{lcm}(2.4, 3.6,0.6)", lcm(Rational('2.4'), lcm(Rational('3.6'), Rational('0.6'))))
+ assert_equal("\\operatorname{lcm}(\\sqrt{3}, \\sqrt{2},\\sqrt{100})", lcm(sqrt(3), lcm(sqrt(2), sqrt(100))))
+ assert_equal("\\operatorname{lcm}(1E12,1E6, 1E3, 10)", ilcm(Rational('1E12'), Rational('1E6'), Rational('1E3'), 10))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/left_right_cdot_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/left_right_cdot_test.py
new file mode 100755
index 0000000..5533b59
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/left_right_cdot_test.py
@@ -0,0 +1,9 @@
+from .context import assert_equal
+import pytest
+from sympy import sin, Symbol
+
+x = Symbol('x', real=True)
+
+
+def test_left_right_cdot():
+ assert_equal("\\sin\\left(x\\right)\\cdot x", sin(x) * x)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/linalg_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/linalg_test.py
new file mode 100755
index 0000000..d6dea56
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/linalg_test.py
@@ -0,0 +1,15 @@
+from .context import assert_equal
+import pytest
+from sympy import MatMul, Matrix
+
+
+def test_linalg_placeholder():
+ assert_equal("\\begin{pmatrix}1&2\\\\3&4\\end{pmatrix}\\cdot\\variable{v}", MatMul(Matrix([[1, 2], [3, 4]]), Matrix([1, 2])), {'v': Matrix([1, 2])})
+
+
+def test_linalg_placeholder_multiple():
+ assert_equal("\\variable{M}\\cdot\\variable{v}", MatMul(Matrix([[1, 2], [3, 4]]), Matrix([1, 2])), {'M': Matrix([[1, 2], [3, 4]]), 'v': Matrix([1, 2])})
+
+
+def test_linalg_placeholder_multiple_mul():
+ assert_equal("\\begin{pmatrix}3&-1\\end{pmatrix}\\cdot\\variable{M}\\cdot\\variable{v}", MatMul(Matrix([[3, -1]]), Matrix([[1, 2], [3, 4]]), Matrix([1, 2])), {'M': Matrix([[1, 2], [3, 4]]), 'v': Matrix([1, 2])})
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/max_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/max_test.py
new file mode 100755
index 0000000..d359c69
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/max_test.py
@@ -0,0 +1,79 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol, Rational, Float, Max, sqrt, exp, pi, nsimplify
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+z = Symbol('z', real=True)
+
+
+def test_max_usual():
+ assert_equal("\\max(1, 5)", Max(1, 5))
+ assert_equal("\\max(12, 4)", Max(12, 4))
+ assert_equal("\\max(109, 120)", Max(109, 120))
+ assert_equal("\\max(3, 3)", Max(3, 3))
+ assert_equal("\\max(0, 0)", Max(0, 0))
+ assert_equal("\\max(1)", Max(1))
+ assert_equal("\\max(1092198374, 290348E32)", Max(1092198374, Rational('290348E32')))
+ assert_equal("\\max(5, 2, 17, 4)", Max(5, 2, 17, 4))
+
+
+def test_max_negative():
+ assert_equal("\\max(-9, 4)", Max(-9, 4))
+ assert_equal("\\max(4, -9)", Max(4, -9))
+ assert_equal("\\max(-7)", Max(-7))
+ assert_equal("\\max(-2, -2)", Max(-2, -2))
+ assert_equal("\\max(-324E-3, -58)", Max(Rational('-324E-3'), -58))
+ assert_equal("\\max(-1, 0, 1, -37, 42)", Max(-1, 0, 1, -37, 42))
+
+
+def test_max_float():
+ assert_equal("\\max(\\pi, 3)", Max(pi, 3))
+ assert_equal("\\max(1234.56789, 1234.5678901)", Max(Rational('1234.56789'), Rational('1234.5678901')))
+ assert_equal("\\max(12.4, 9.5)", Max(12.4, 9.5))
+ assert_equal("\\max(6, 6.2)", Max(6, 6.2))
+ assert_equal("\\max(-98.7)", Max(-98.7))
+ assert_equal("\\max(7.1, 9)", Max(7.1, 9))
+ assert_equal("\\max(-21E-12, 0.00005)", Max(nsimplify(Rational('-21E-12')), Rational('0.00005')), symbolically=True)
+ assert_equal("\\max(\\sqrt{3}, 0, 1)", Max(sqrt(3), 0, 1))
+
+
+def test_max_fraction():
+ assert_equal("\\max(1/2, 1/4)", Max(Rational('1/2'), Rational('1/4')))
+ assert_equal("\\max(6/2, 3)", Max(Rational('6/2'), 3))
+ assert_equal("\\max(2/4, 1/2)", Max(Rational('2/4'), Rational('1/2')))
+ assert_equal("\\max(-12/5, 6.4)", Max(Rational('-12/5'), Rational('6.4')))
+ assert_equal("\\max(1/10)", Max(Rational('1/10')))
+ assert_equal("\\max(1.5, \\pi/2)", Max(Rational('1.5'), pi / 2, evaluate=False))
+ assert_equal("\\max(-4/3, -2/1, 0/9, -3)", Max(Rational('-4/3'), Rational('-2/1'), Rational('0/9'), -3))
+
+
+def test_max_expr():
+ assert_equal("\\max((1+6)/3, 7)", Max(Rational(1 + 6, 3), 7))
+ assert_equal("\\max(58*9)", Max(58 * 9))
+ assert_equal("\\max(1+6/3, -5)", Max(1 + Rational('6/3'), -5))
+ assert_equal("\\max(7*4/5, 092) * 2", Max(7 * 4 / 5, 92) * 2)
+ assert_equal("38+\\max(13, 15-2.3)", 38 + Max(13, 15 - Rational('2.3')))
+ assert_equal("\\sqrt{\\max(99.9999999999999, 100)}", sqrt(Max(Rational('99.9999999999999'), 100)))
+ assert_equal("\\max(274/(5+2), \\exp(12.4), 1.4E2)", Max(Rational(274, 5 + 2), exp(Rational('12.4')), Rational('1.4E2')))
+
+
+def test_max_symbol():
+ assert_equal("\\max(x)", Max(x), symbolically=True)
+ assert_equal("\\max(x, y)", Max(x, y), symbolically=True)
+ assert_equal("\\max(y, x)", Max(y, x), symbolically=True)
+ assert_equal("\\max(x+y, y+x)", Max(x + y, y + x), symbolically=True)
+ assert_equal("\\max(9x/4, z)", Max(9 * x / 4, z), symbolically=True)
+ assert_equal("\\max(y\\pi, 9)", Max(y * pi, 9), symbolically=True)
+ assert_equal("\\max(2y-y, y + 1)", Max(2 * y - y, y + 1), symbolically=True)
+ assert_equal("\\max(z, y, x)", Max(z, y, x), symbolically=True)
+
+
+def test_max_multiarg():
+ assert_equal("\\max(1,2)", Max(1, 2))
+ assert_equal("\\max(9,876,543)", Max(9, 876, 543))
+ assert_equal("\\max(x, y,z)", Max(x, y, z), symbolically=True)
+ assert_equal("\\max(5.8,7.4, 2.2,-10)", Max(Rational('5.8'), Rational('7.4'), Rational('2.2'), -10))
+ assert_equal("\\max(\\pi,12E2,84,\\sqrt{5},12/5)", Max(pi, Rational('12E2'), 84, sqrt(5), Rational('12/5')))
+ assert_equal("\\max(823,51)", Max(823, 51))
+ assert_equal("\\max(72*4,23, 9)", Max(72 * 4, 23, 9))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/min_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/min_test.py
new file mode 100755
index 0000000..f60a5cd
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/min_test.py
@@ -0,0 +1,79 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol, Rational, Float, Min, sqrt, exp, pi, nsimplify
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+z = Symbol('z', real=True)
+
+
+def test_min_usual():
+ assert_equal("\\min(1, 5)", Min(1, 5))
+ assert_equal("\\min(12, 4)", Min(12, 4))
+ assert_equal("\\min(109, 120)", Min(109, 120))
+ assert_equal("\\min(3, 3)", Min(3, 3))
+ assert_equal("\\min(0, 0)", Min(0, 0))
+ assert_equal("\\min(1)", Min(1))
+ assert_equal("\\min(1092198374, 290348E32)", Min(1092198374, Rational('290348E32')))
+ assert_equal("\\min(5, 2, 17, 4)", Min(5, 2, 17, 4))
+
+
+def test_min_negative():
+ assert_equal("\\min(-9, 4)", Min(-9, 4))
+ assert_equal("\\min(4, -9)", Min(4, -9))
+ assert_equal("\\min(-7)", Min(-7))
+ assert_equal("\\min(-2, -2)", Min(-2, -2))
+ assert_equal("\\min(-324E-3, -58)", Min(Rational('-324E-3'), -58))
+ assert_equal("\\min(-1, 0, 1, -37, 42)", Min(-1, 0, 1, -37, 42))
+
+
+def test_min_float():
+ assert_equal("\\min(\\pi, 3)", Min(pi, 3))
+ assert_equal("\\min(1234.56789, 1234.5678901)", Min(Rational('1234.56789'), Rational('1234.5678901')))
+ assert_equal("\\min(12.4, 9.5)", Min(12.4, 9.5))
+ assert_equal("\\min(6, 6.2)", Min(6, 6.2))
+ assert_equal("\\min(-98.7)", Min(-98.7))
+ assert_equal("\\min(7.1, 9)", Min(7.1, 9))
+ assert_equal("\\min(-21E-12, 0.00005)", Min(nsimplify(Rational('-21E-12')), Rational('0.00005')), symbolically=True)
+ assert_equal("\\min(\\sqrt{3}, 0, 1)", Min(sqrt(3), 0, 1))
+
+
+def test_min_fraction():
+ assert_equal("\\min(1/2, 1/4)", Min(Rational('1/2'), Rational('1/4')))
+ assert_equal("\\min(6/2, 3)", Min(Rational('6/2'), 3))
+ assert_equal("\\min(2/4, 1/2)", Min(Rational('2/4'), Rational('1/2')))
+ assert_equal("\\min(-12/5, 6.4)", Min(Rational('-12/5'), Rational('6.4')))
+ assert_equal("\\min(1/10)", Min(Rational('1/10')))
+ assert_equal("\\min(1.5, \\pi/2)", Min(Rational('1.5'), pi / 2, evaluate=False))
+ assert_equal("\\min(-4/3, -2/1, 0/9, -3)", Min(Rational('-4/3'), Rational('-2/1'), Rational('0/9'), -3))
+
+
+def test_min_expr():
+ assert_equal("\\min((1+6)/3, 7)", Min(Rational(1 + 6, 3), 7))
+ assert_equal("\\min(58*9)", Min(58 * 9))
+ assert_equal("\\min(1+6/3, -5)", Min(1 + Rational('6/3'), -5))
+ assert_equal("\\min(7*4/5, 092) * 2", Min(7 * 4 / 5, 92) * 2)
+ assert_equal("38+\\min(13, 15-2.3)", 38 + Min(13, 15 - Rational('2.3')))
+ assert_equal("\\sqrt{\\min(99.9999999999999, 100)}", sqrt(Min(Rational('99.9999999999999'), 100)))
+ assert_equal("\\min(274/(5+2), \\exp(12.4), 1.4E2)", Min(Rational(274, 5 + 2), exp(Rational('12.4')), Rational('1.4E2')))
+
+
+def test_min_symbol():
+ assert_equal("\\min(x)", Min(x), symbolically=True)
+ assert_equal("\\min(x, y)", Min(x, y), symbolically=True)
+ assert_equal("\\min(y, x)", Min(y, x), symbolically=True)
+ assert_equal("\\min(x+y, y+x)", Min(x + y, y + x), symbolically=True)
+ assert_equal("\\min(9x/4, z)", Min(9 * x / 4, z), symbolically=True)
+ assert_equal("\\min(y\\pi, 9)", Min(y * pi, 9), symbolically=True)
+ assert_equal("\\min(2y-y, y + 1)", Min(2 * y - y, y + 1), symbolically=True)
+ assert_equal("\\min(z, y, x)", Min(z, y, x), symbolically=True)
+
+
+def test_min_multiarg():
+ assert_equal("\\min(1,2)", Min(1, 2))
+ assert_equal("\\min(9,876,543)", Min(9, 876, 543))
+ assert_equal("\\min(x, y,z)", Min(x, y, z), symbolically=True)
+ assert_equal("\\min(5.8,7.4, 2.2,-10)", Min(Rational('5.8'), Rational('7.4'), Rational('2.2'), -10))
+ assert_equal("\\min(\\pi,12E2,84,\\sqrt{5},12/5)", Min(pi, Rational('12E2'), 84, sqrt(5), Rational('12/5')))
+ assert_equal("\\min(823,51)", Min(823, 51))
+ assert_equal("\\min(72*4,23, 9)", Min(72 * 4, 23, 9))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/mod_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/mod_test.py
new file mode 100755
index 0000000..972fe7a
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/mod_test.py
@@ -0,0 +1,70 @@
+from .context import assert_equal
+import pytest
+from sympy import Symbol, Rational, Mod, sqrt, nsimplify, pi, GoldenRatio
+from sympy.physics.units import hbar
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+
+
+def test_mod_usual():
+ assert_equal("128\\mod 3", Mod(128, 3))
+ assert_equal("7\\mod 128", Mod(7, 128))
+ assert_equal("5\\mod 10", Mod(5, 10))
+ assert_equal("5\\mod 5", Mod(5, 5))
+ assert_equal("3\\mod 2", Mod(3, 2))
+ assert_equal("0 \\mod 6", Mod(0, 6))
+ assert_equal("6109\\mod 28", Mod(6109, 28))
+ assert_equal("4000000000\\mod 28791", Mod(4000000000, 28791))
+ assert_equal("128*10^300\\mod 876123", Mod(Rational('128E300'), 876123))
+ assert_equal("876,123\\mod 128E300)", Mod(876123, Rational('128E300')))
+
+
+def test_mod_negative():
+ assert_equal("-1\\mod 2", Mod(-1, 2))
+ assert_equal("-3\\mod 3", Mod(-3, 3))
+ assert_equal("-12\\mod -12", Mod(-12, -12))
+ assert_equal("-128\\mod 4", Mod(-128, 4))
+ assert_equal("9\\mod -213", Mod(9, -213))
+ assert_equal("123123\\mod -541", Mod(123123, -541))
+ assert_equal("-123123\\mod 541", Mod(-123123, 541))
+ assert_equal("-97E34\\mod 7", Mod(Rational('-97E34'), 7))
+
+
+def test_mod_fraction():
+ assert_equal("1/2\\mod 3", Mod(Rational(1, 2), 3))
+ assert_equal("6/2\\mod 3", Mod(Rational(6, 2), 3))
+ assert_equal("-14/2\\mod 5", Mod(Rational(-14, 2), 5))
+ assert_equal("123\\mod (42/6)", Mod(123, Rational(42, 6)))
+ assert_equal("431\\mod (2/123)", Mod(431, Rational(2, 123)))
+ assert_equal("5/5\\mod (5/5)", Mod(Rational(5, 5), Rational(5, 5)))
+ assert_equal("849/-21\\mod (092/2)", Mod(Rational(849, -21), Rational(92, 2)))
+ assert_equal("13*10^9\\mod (21/-2)", Mod(13E9, Rational(21, -2)))
+
+
+def test_mod_float():
+ assert_equal("0.41\\mod 2", Mod(Rational('0.41'), 2))
+ assert_equal("143E-13\\mod 21", Mod(Rational('143E-13'), 21))
+ assert_equal("-9.80665\\mod 9.80665", Mod(-9.80665, 9.80665))
+ assert_equal("0.0000923423\\mod -8341.234802909", nsimplify(Mod(0.0000923423, -8341.234802909)))
+ assert_equal("\\sqrt{5}\\mod \\sqrt{2}", Mod(sqrt(5), sqrt(2)))
+ assert_equal("987\\mod \\pi", Mod(987, pi))
+ assert_equal("\\pi\\mod ((1+\\sqrt{5})/2)", Mod(pi, nsimplify(GoldenRatio)), symbolically=True)
+ assert_equal("1234\\mod 1E-29", Mod(1234, Rational('1E-29'), evaluate=False))
+
+
+def test_mod_expr():
+ assert_equal("1+1\\mod 2", 1 + Mod(1, 2))
+ assert_equal("876123\\mod 128\\times 10^300", Mod(876123, 128) * 1E300)
+ assert_equal("141\\mod 9/3", Rational(Mod(141, 9) / 3))
+ assert_equal("872 / (12\\mod 9 * 4) * 2", Rational(2 * 872, (Mod(12, 9) * 4)))
+ assert_equal("1E-32 * (1E29\\mod 74)", Rational('1E-32') * Mod(Rational('1E29'), 74))
+ assert_equal("299,792,458\\mod 9.81", Mod(299792458, Rational('9.81')))
+
+
+def test_mod_symbol():
+ assert_equal("x\\mod y", Mod(x, y))
+ assert_equal("2x\\mod y", Mod(2 * x, y))
+ assert_equal("y + 3\\mod 2 / 4", y + Rational(Mod(3, 2), 4), symbolically=True)
+ assert_equal("0.5x * 2 + \\sqrt{x}\\mod 8y", 0.5 * x * 2 + Mod(sqrt(x), 8 * y), symbolically=True)
+ assert_equal("6.673E-11 * ((8.85418782E-12\\mod 9x) + 4) / 2y", Rational('6.673E-11') * (Mod(Rational('8.85418782E-12'), 9 * x) + 4) / (2 * y), symbolically=True)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/overline_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/overline_test.py
new file mode 100755
index 0000000..a75103e
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/overline_test.py
@@ -0,0 +1,9 @@
+from .context import assert_equal
+import pytest
+from sympy import sin, Symbol
+
+x = Symbol('x', real=True)
+
+
+def test_overline():
+ assert_equal("\\frac{\\sin(x)}{\\overline{x}_n}", sin(x) / Symbol('xbar_n', real=True))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/pi_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/pi_test.py
new file mode 100755
index 0000000..050190d
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/pi_test.py
@@ -0,0 +1,15 @@
+from .context import assert_equal, _Mul, _Pow
+import pytest
+from sympy import pi, Symbol, acos, cos
+
+
+def test_pi_frac():
+ assert_equal("\\frac{\\pi}{3}", _Mul(pi, _Pow(3, -1)))
+
+
+def test_pi_nested():
+ assert_equal("\\arccos{\\cos{\\frac{\\pi}{3}}}", acos(cos(_Mul(pi, _Pow(3, -1)), evaluate=False), evaluate=False))
+
+
+def test_pi_arccos():
+ assert_equal("\\arccos{-1}", pi, symbolically=True)
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/trig_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/trig_test.py
new file mode 100755
index 0000000..4689ea5
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/trig_test.py
@@ -0,0 +1,21 @@
+from .context import assert_equal
+import pytest
+from sympy import asinh, Symbol
+
+# x = Symbol('x', real=True);
+
+# latex = "\\sinh(x)"
+# math = process_sympy(latex)
+# print("latex: %s to math: %s" %(latex,math))
+#
+# latex = "\\arcsinh(x)"
+# math = process_sympy(latex)
+# print("latex: %s to math: %s" %(latex,math))
+#
+# latex = "\\arsinh(x)"
+# math = process_sympy(latex)
+# print("latex: %s to math: %s" %(latex,math))
+
+
+def test_arcsinh():
+ assert_equal("\\operatorname{arcsinh}\\left(1\\right)", asinh(1, evaluate=False))
diff --git a/Qwen2.5-Eval/evaluation/latex2sympy/tests/variable_test.py b/Qwen2.5-Eval/evaluation/latex2sympy/tests/variable_test.py
new file mode 100755
index 0000000..9fc13c7
--- /dev/null
+++ b/Qwen2.5-Eval/evaluation/latex2sympy/tests/variable_test.py
@@ -0,0 +1,92 @@
+from .context import assert_equal
+import pytest
+import hashlib
+from sympy import UnevaluatedExpr, Symbol, Mul, Pow, Max, Min, gcd, lcm, floor, ceiling
+
+x = Symbol('x', real=True)
+y = Symbol('y', real=True)
+
+
+def test_variable_letter():
+ assert_equal("\\variable{x}", Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True))
+
+
+def test_variable_digit():
+ assert_equal("\\variable{1}", Symbol('1' + hashlib.md5('1'.encode()).hexdigest(), real=True))
+
+
+def test_variable_letter_subscript():
+ assert_equal("\\variable{x_y}", Symbol('x_y' + hashlib.md5('x_y'.encode()).hexdigest(), real=True))
+
+
+def test_variable_letter_comma_subscript():
+ assert_equal("\\variable{x_{i,j}}", Symbol('x_{i,j}' + hashlib.md5('x_{i,j}'.encode()).hexdigest(), real=True))
+
+
+def test_variable_digit_subscript():
+ assert_equal("\\variable{x_1}", Symbol('x_1' + hashlib.md5('x_1'.encode()).hexdigest(), real=True))
+
+
+def test_variable_after_subscript_required():
+ with pytest.raises(Exception):
+ assert_equal("\\variable{x_}", Symbol('x_' + hashlib.md5('x_'.encode()).hexdigest(), real=True))
+
+
+def test_variable_before_subscript_required():
+ with pytest.raises(Exception):
+ assert_equal("\\variable{_x}", Symbol('_x' + hashlib.md5('_x'.encode()).hexdigest(), real=True))
+
+
+def test_variable_bad_name():
+ with pytest.raises(Exception):
+ assert_equal("\\variable{\\sin xy}", None)
+
+
+def test_variable_in_expr():
+ assert_equal("4\\cdot\\variable{x}", 4 * Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True))
+
+
+def test_variable_greek_letter():
+ assert_equal("\\variable{\\alpha }\\alpha", Symbol('\\alpha ' + hashlib.md5('\\alpha '.encode()).hexdigest(), real=True) * Symbol('alpha', real=True))
+
+
+def test_variable_greek_letter_subscript():
+ assert_equal("\\variable{\\alpha _{\\beta }}\\alpha ", Symbol('\\alpha _{\\beta }' + hashlib.md5('\\alpha _{\\beta }'.encode()).hexdigest(), real=True) * Symbol('alpha', real=True))
+
+
+def test_variable_bad_unbraced_long_subscript():
+ with pytest.raises(Exception):
+ assert_equal("\\variable{x_yz}", None)
+
+
+def test_variable_bad_unbraced_long_complex_subscript():
+ with pytest.raises(Exception):
+ assert_equal("\\variable{x\\beta 10_y\\alpha 20}", None)
+
+
+def test_variable_braced_subscript():
+ assert_equal("\\variable{x\\beta 10_{y\\alpha 20}}", Symbol('x\\beta 10_{y\\alpha 20}' + hashlib.md5('x\\beta 10_{y\\alpha 20}'.encode()).hexdigest(), real=True))
+
+
+def test_variable_complex_expr():
+ assert_equal("4\\cdot\\variable{value1}\\frac{\\variable{value_2}}{\\variable{a}}\\cdot x^2", 4 * Symbol('value1' + hashlib.md5('value1'.encode()).hexdigest(), real=True) * Symbol('value_2' + hashlib.md5('value_2'.encode()).hexdigest(), real=True) / Symbol('a' + hashlib.md5('a'.encode()).hexdigest(), real=True) * x**2)
+
+
+def test_variable_dollars():
+ assert_equal("\\$\\variable{x}", Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True))
+
+
+def test_variable_percentage():
+ assert_equal("\\variable{x}\\%", Mul(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True), Pow(100, -1, evaluate=False), evaluate=False))
+
+
+def test_variable_single_arg_func():
+ assert_equal("\\floor(\\variable{x})", floor(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True)))
+ assert_equal("\\ceil(\\variable{x})", ceiling(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True)))
+
+
+def test_variable_multi_arg_func():
+ assert_equal("\\gcd(\\variable{x}, \\variable{y})", UnevaluatedExpr(gcd(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True), Symbol('y' + hashlib.md5('y'.encode()).hexdigest(), real=True))))
+ assert_equal("\\lcm(\\variable{x}, \\variable{y})", UnevaluatedExpr(lcm(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True), Symbol('y' + hashlib.md5('y'.encode()).hexdigest(), real=True))))
+ assert_equal("\\max(\\variable{x}, \\variable{y})", Max(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True), Symbol('y' + hashlib.md5('y'.encode()).hexdigest(), real=True), evaluate=False))
+ assert_equal("\\min(\\variable{x}, \\variable{y})", Min(Symbol('x' + hashlib.md5('x'.encode()).hexdigest(), real=True), Symbol('y' + hashlib.md5('y'.encode()).hexdigest(), real=True), evaluate=False))