1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
import os
from typing import Literal
from loguru import logger
from OpenCodeEval.benchmark.base import Benchmark, PYTHON_IMPORTS, LEETCODE_IMPORTS, PYTHON_STOP
from OpenCodeEval.utils import refine_text, stream_jsonl
from OpenCodeEval.eval.func_eval import check_correctness
from OpenCodeEval.eval.sanitize import sanitize
class LeetCode(Benchmark):
name: str = "LeetCode"
imports_code = PYTHON_IMPORTS + LEETCODE_IMPORTS
chat_stop = PYTHON_STOP
base_stop = ["\ndef ", "\nclass ", "\nimport ", "\nfrom ", "\nassert "]
def __init__(
self,
split: Literal["contest", "train", "validation", "test"] = "contest",
time_out: float = 3.0,
prompt_type: Literal["Completion", "Instruction"] = "Instruction"
):
super().__init__()
self.name = name
self.split = split
self.time_out = time_out
self.prompt_type = prompt_type
if self.split != "contest" and self.prompt_type == "Completion":
logger.error(f"Completion prompt type not support {self.split} split")
self.path = os.path.join(self.path, f"{self.name}/{self.split}.jsonl")
self.tasks = self.get_task()
def get_task(self):
"""
Get the task data from the jsonl file into a dictionary.
"""
tasks = {}
for task_data in stream_jsonl(filename=self.path):
if self.split == "contest":
task_id = int(task_data["meta"]["questionId"])
else:
task_id = int(task_data["meta"]["question_id"])
tasks[task_id] = task_data
return tasks
def get_prompt(self):
"""
Builds the prompt for the LM to generate from.
"""
prompts = []
for task_id, task_data in self.tasks.items():
if self.split == "contest":
if self.prompt_type == "Completion":
prompt = task_data['prompt']
elif self.prompt_type == "Instruction":
prompt = task_data['prompt_sft']
else:
prompt = task_data['meta']['query']
prompts.append(
dict(
task_id = task_id,
prompt = refine_text(prompt)
)
)
return prompts
def postprocess_generation(self, generation):
"""
Postprocess the generations.
"""
return dict(
task_id = generation['task_id'],
completion_id = generation['completion_id'],
solution = sanitize(
text = generation['completion'],
entrypoint = "Solution",
)
)
def process_results(self, solution):
"""
Takes the list of LM generations and evaluates them against the test cases
"""
task_data = self.tasks[solution['task_id']]
if self.split == "contest":
code = (
"\n".join(self.imports_code) + "\n\n"
+ solution['solution'] + "\n\n"
+ task_data['test']
)
else:
code = (
"\n".join(self.imports_code) + "\n\n"
+ task_data['meta']['lang_code'] + "\n"
+ " pass\n" + "\n"
+ solution['solution'] + "\n"
+ task_data['test'] + "\n"
+ f"check({task_data['entry_point']})"
)
result = check_correctness(solution['task_id'],
solution['completion_id'],
code,
self.time_out)
return result
|