1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Baseline bias evaluation: CTF (x vs swap(x)), CrowS-Pairs (gender), WinoGender.
- No training; pure scoring with Hugging Face Transformers.
- T = 0 decoding policy: we don't sample; we compute log-probs directly.
Outputs:
runs/<DATE>/baseline_eval/bias/{ctf,crows,wino}/metrics.json
runs/<DATE>/baseline_eval/bias/{ctf,crows,wino}/preds.jsonl
NOTE (2025-09-10 fix):
- Previously first_gender_span() used naive substring search (str.find),
causing false positives like "he" in "The". We now use a word-boundary
regex (compiled once) with case-insensitive matching to avoid such leaks.
"""
import argparse, json, os, math, re, time, pathlib, statistics
from typing import List, Dict, Tuple, Optional
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer
# --------------------- IO utils ---------------------
def read_jsonl(path: str) -> List[Dict]:
with open(path, "r", encoding="utf-8") as f:
return [json.loads(line) for line in f if line.strip()]
def write_json(path: str, obj: Dict):
pathlib.Path(path).parent.mkdir(parents=True, exist_ok=True)
with open(path, "w", encoding="utf-8") as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
def write_jsonl(path: str, rows: List[Dict]):
pathlib.Path(path).parent.mkdir(parents=True, exist_ok=True)
with open(path, "w", encoding="utf-8") as f:
for r in rows:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
def now_ts() -> str:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# --------------------- Token set mapping ---------------------
def load_word_list(path: str) -> List[str]:
words = []
with open(path, "r", encoding="utf-8") as f:
for line in f:
w = line.strip().lower()
if w:
words.append(w)
return words
def map_words_to_token_ids(tok: AutoTokenizer, words: List[str]) -> List[int]:
"""
Map words to token ids as single-token variants if possible.
Try with and without leading space; if both single-tokenize, include both.
Fall back: if tokenizes to multiple tokens, include the FIRST token id
(approximation for group-mass aggregation).
"""
ids = set()
for w in words:
cand = []
for form in (w, " " + w):
enc = tok(form, add_special_tokens=False, return_tensors=None)
if len(enc["input_ids"]) == 1:
cand.append(enc["input_ids"][0])
else:
cand.append(enc["input_ids"][0]) # first-piece fallback
for i in cand:
ids.add(int(i))
return sorted(ids)
# --------------------- Boundary-safe gender span finder ---------------------
def build_gender_regex(fem_words: List[str], male_words: List[str]) -> re.Pattern:
"""
Compile a single regex that matches any gender token with word boundaries:
(?<!\w)(?:w1|w2|...)(?!\w)
- Case-insensitive
- Escapes special chars (so 'mr.' works)
- Sorts by length desc to prefer longer matches (e.g., 'herself' over 'her')
"""
# Normalize and merge sets; keep both dotted/undotted variants if present
vocab = sorted({w.lower() for w in (fem_words + male_words)}, key=len, reverse=True)
pat = r"(?<!\w)(?:" + "|".join(re.escape(w) for w in vocab) + r")(?!\w)"
return re.compile(pat, flags=re.IGNORECASE)
def classify_matched_token(matched: str, fem_set: set, male_set: set) -> Optional[str]:
"""
Decide whether the matched surface form belongs to F or M (case-insensitive).
We try raw, then rstrip('.') variants for dotted honorifics (mr., ms., mrs.).
Returns "F" or "M" (or None if not classifiable, which shouldn't happen if lists are consistent).
"""
s = matched.lower()
if s in fem_set: return "F"
if s in male_set: return "M"
s2 = s.rstrip(".")
if s2 in fem_set: return "F"
if s2 in male_set: return "M"
return None
def first_gender_span(text: str, gender_re: re.Pattern, fem_set: set, male_set: set) -> Optional[Tuple[int, int, str]]:
"""
Find first occurrence (boundary-safe) of any gender word; return (start,end,group), group in {"F","M"}.
"""
m = gender_re.search(text)
if not m:
return None
grp = classify_matched_token(m.group(0), fem_set, male_set)
if grp is None:
return None
start, end = m.span()
return start, end, grp
# --------------------- Scoring utils ---------------------
@torch.no_grad()
def sequence_logprob(model, tok, text: str, device: torch.device) -> float:
""" Sum log p(y_t | y_<t) over the full sequence (excluding the first token). """
enc = tok(text, return_tensors="pt")
input_ids = enc.input_ids.to(device)
attn_mask = enc.attention_mask.to(device)
out = model(input_ids=input_ids, attention_mask=attn_mask)
logits = out.logits # [1, T, V]
logprobs = F.log_softmax(logits[:, :-1, :], dim=-1) # exclude last targetless step
tgt = input_ids[:, 1:] # shift
ll = logprobs.gather(-1, tgt.unsqueeze(-1)).squeeze(-1).sum().item()
return float(ll)
@torch.no_grad()
def conditional_logprob(model, tok, prompt: str, cont: str, device: torch.device) -> float:
""" log p(cont | prompt) by concatenation and subtracting prefix part. """
e_prompt = tok(prompt, return_tensors="pt", add_special_tokens=False)
e_cont = tok(" " + cont, return_tensors="pt", add_special_tokens=False)
input_ids = torch.cat([e_prompt.input_ids, e_cont.input_ids], dim=-1).to(device)
attn_mask = torch.ones_like(input_ids).to(device)
out = model(input_ids=input_ids, attention_mask=attn_mask)
logits = out.logits # [1, T, V]
logprobs = F.log_softmax(logits[:, :-1, :], dim=-1)
tgt = input_ids[:, 1:]
ll_all = logprobs.gather(-1, tgt.unsqueeze(-1)).squeeze(-1)
Lp = e_prompt.input_ids.size(-1)
ll = ll_all[:, Lp:].sum().item()
return float(ll)
@torch.no_grad()
def next_token_prob(model, tok, prefix: str, device: torch.device) -> torch.Tensor:
""" p_t(. | prefix) distribution for the next token. """
enc = tok(prefix, return_tensors="pt")
input_ids = enc.input_ids.to(device)
attn_mask = enc.attention_mask.to(device)
out = model(input_ids=input_ids, attention_mask=attn_mask)
logits = out.logits[:, -1, :] # last position
probs = F.softmax(logits, dim=-1).squeeze(0) # [V]
return probs # 1-D tensor
def jsd(p: torch.Tensor, q: torch.Tensor, eps: float = 1e-12) -> float:
p = p.clamp_min(eps); q = q.clamp_min(eps)
m = 0.5 * (p + q)
return 0.5 * (p * (p.log() - m.log())).sum().item() + 0.5 * (q * (q.log() - m.log())).sum().item()
def mean_ci95(xs: List[float]) -> Tuple[float, float]:
if not xs:
return 0.0, 0.0
m = statistics.fmean(xs)
if len(xs) < 2:
return m, 0.0
sd = statistics.pstdev(xs) # pop std (ok for quick CI)
ci = 1.96 * (sd / math.sqrt(len(xs)))
return m, ci
# --------------------- CTF evaluation ---------------------
def eval_ctf(model, tok, ctf_rows: List[Dict], fem_words, male_words,
fem_ids: List[int], male_ids: List[int], topk:int, device, outdir:str):
preds = []
ctf_gaps = []
jsds = []
cover = 0
# Build boundary-safe regex once
gender_re = build_gender_regex(fem_words, male_words)
fem_set = set(w.lower() for w in fem_words)
male_set = set(w.lower() for w in male_words)
for r in ctf_rows:
x = r["x"]; xs = r["x_swap"]
# choose boundary after the first gender token to probe next-token distribution
b1 = first_gender_span(x, gender_re, fem_set, male_set)
b2 = first_gender_span(xs, gender_re, fem_set, male_set)
if not b1 or not b2:
preds.append({**r, "skip_reason":"no_gender_span"})
continue
# probe right after the matched gender token (index = end)
p1 = next_token_prob(model, tok, x[:b1[1]], device)
p2 = next_token_prob(model, tok, xs[:b2[1]], device)
# group masses
piF1 = float(p1[fem_ids].sum().item()) if fem_ids else 0.0
piM1 = float(p1[male_ids].sum().item()) if male_ids else 0.0
gap1 = abs(piF1 - piM1)
piF2 = float(p2[fem_ids].sum().item()) if fem_ids else 0.0
piM2 = float(p2[male_ids].sum().item()) if male_ids else 0.0
gap2 = abs(piF2 - piM2)
# record per-sample (we report gap on factual x; swap gap optional)
ctf_gaps.append(gap1)
cover += 1
# swap JSD at the probe step
j = jsd(p1, p2)
jsds.append(float(j))
preds.append({
**r,
"probe_index_factual": b1[1],
"probe_index_swap": b2[1],
"matched_factual": x[b1[0]:b1[1]],
"matched_swap": xs[b2[0]:b2[1]],
"piF_factual": piF1, "piM_factual": piM1, "gap_factual": gap1,
"piF_swap": piF2, "piM_swap": piM2, "gap_swap": gap2,
"jsd_swap": j
})
m_gap, ci_gap = mean_ci95(ctf_gaps)
m_jsd, ci_jsd = mean_ci95(jsds)
metrics = {
"timestamp": now_ts(),
"count": len(ctf_rows),
"covered": cover,
"coverage": (cover / max(1,len(ctf_rows))),
"CTF_gap_mean": m_gap, "CTF_gap_ci95": ci_gap,
"JSD_swap_mean": m_jsd, "JSD_swap_ci95": ci_jsd,
"topk": topk
}
write_json(os.path.join(outdir, "ctf", "metrics.json"), metrics)
write_jsonl(os.path.join(outdir, "ctf", "preds.jsonl"), preds)
# --------------------- CrowS-Pairs (gender) ---------------------
def eval_crows(model, tok, rows: List[Dict], device, outdir:str):
deltas = []
preds = []
for r in rows:
s_st = r["sentence_stereo"]; s_anti = r["sentence_anti"]
ll_st = sequence_logprob(model, tok, s_st, device)
ll_anti = sequence_logprob(model, tok, s_anti, device)
delta = ll_anti - ll_st
deltas.append(float(delta))
preds.append({**r, "logp_stereo": ll_st, "logp_anti": ll_anti, "delta": delta})
m, ci = mean_ci95(deltas)
metrics = {
"timestamp": now_ts(),
"count": len(rows),
"delta_logP_mean": m, "delta_logP_ci95": ci
}
write_json(os.path.join(outdir, "crows", "metrics.json"), metrics)
write_jsonl(os.path.join(outdir, "crows", "preds.jsonl"), preds)
# --------------------- WinoGender ---------------------
def eval_wino(model, tok, rows: List[Dict], device, outdir:str):
correct = 0
preds = []
for r in rows:
prompt = r["premise"]
a = r["option_a"]; b = r["option_b"]; gold = r["gold"].strip().lower()
lpa = conditional_logprob(model, tok, prompt, a, device)
lpb = conditional_logprob(model, tok, prompt, b, device)
pred = "a" if lpa > lpb else "b"
correct += int(pred == gold)
preds.append({**r, "logp_a": lpa, "logp_b": lpb, "pred": pred, "correct": int(pred==gold)})
acc = correct / max(1,len(rows))
sd = math.sqrt(acc*(1-acc)/max(1,len(rows)))
ci = 1.96 * sd
metrics = {
"timestamp": now_ts(),
"count": len(rows),
"acc": acc, "acc_ci95": ci
}
write_json(os.path.join(outdir, "wino", "metrics.json"), metrics)
write_jsonl(os.path.join(outdir, "wino", "preds.jsonl"), preds)
# --------------------- Main ---------------------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--model", type=str, required=True, help="HF model id, e.g., Qwen/Qwen2.5-7B-Instruct")
ap.add_argument("--ctf", type=str, required=True)
ap.add_argument("--crows", type=str, required=True)
ap.add_argument("--wino", type=str, required=True)
ap.add_argument("--groups_dir", type=str, required=True, help="assets/groups/")
ap.add_argument("--out", type=str, required=True)
ap.add_argument("--top_k", type=int, default=20)
ap.add_argument("--dtype", type=str, default="bfloat16", choices=["float16","bfloat16","float32"])
args = ap.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = {"float16":torch.float16, "bfloat16":torch.bfloat16, "float32":torch.float32}[args.dtype]
tok = AutoTokenizer.from_pretrained(args.model, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
args.model,
torch_dtype=dtype if device.type=="cuda" else torch.float32,
device_map=None
).to(device)
model.eval()
fem_words = load_word_list(os.path.join(args.groups_dir, "en_female.txt"))
male_words = load_word_list(os.path.join(args.groups_dir, "en_male.txt"))
fem_ids = map_words_to_token_ids(tok, fem_words)
male_ids = map_words_to_token_ids(tok, male_words)
outdir = args.out
# CTF
ctf_rows = read_jsonl(args.ctf)
eval_ctf(model, tok, ctf_rows, fem_words, male_words, fem_ids, male_ids, args.top_k, device, outdir)
# CrowS
crows_rows = read_jsonl(args.crows)
eval_crows(model, tok, crows_rows, device, outdir)
# Wino
wino_rows = read_jsonl(args.wino)
eval_wino(model, tok, wino_rows, device, outdir)
print("[DONE] Bias baseline written to", outdir)
if __name__ == "__main__":
main()
|