summaryrefslogtreecommitdiff
path: root/scripts/eval_main_baseline.py
blob: 0d16f797f0fed2210a7d0158c70a860c9c7e38ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Baseline main-task eval: MATH (EM, greedy) and PPL (LM perplexity).
Outputs:
  runs/<DATE>/baseline_eval/main/{math,ppl}/metrics.json
  runs/<DATE>/baseline_eval/main/{math,ppl}/preds.jsonl
"""
import argparse, json, os, math, re, time, pathlib, statistics
from typing import List, Dict

import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer

def read_jsonl(path: str) -> List[Dict]:
    with open(path, "r", encoding="utf-8") as f:
        return [json.loads(line) for line in f if line.strip()]

def write_json(path: str, obj):
    pathlib.Path(path).parent.mkdir(parents=True, exist_ok=True)
    with open(path, "w", encoding="utf-8") as f:
        json.dump(obj, f, indent=2, ensure_ascii=False)

def write_jsonl(path: str, rows: List[Dict]):
    pathlib.Path(path).parent.mkdir(parents=True, exist_ok=True)
    with open(path, "w", encoding="utf-8") as f:
        for r in rows:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")

def now_ts() -> str:
    import time
    return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())

# ---------- PPL ----------
@torch.no_grad()
def sequence_nll(model, tok, text: str, device: torch.device) -> float:
    enc = tok(text, return_tensors="pt")
    input_ids = enc.input_ids.to(device)
    attn_mask = enc.attention_mask.to(device)
    out = model(input_ids=input_ids, attention_mask=attn_mask)
    logits = out.logits  # [1, T, V]
    logprobs = F.log_softmax(logits[:, :-1, :], dim=-1)
    tgt = input_ids[:, 1:]
    nll = -(logprobs.gather(-1, tgt.unsqueeze(-1)).squeeze(-1)).sum().item()
    return float(nll), int(tgt.numel())

def eval_ppl(model, tok, rows: List[Dict], device, outdir: str):
    nll_sum = 0.0
    tok_count = 0
    preds = []
    for r in rows:
        nll, n = sequence_nll(model, tok, r["text"], device)
        nll_sum += nll; tok_count += n
        preds.append({**r, "nll": nll, "tokens": n})
    ppl = math.exp(nll_sum / max(1, tok_count))
    write_json(os.path.join(outdir, "ppl", "metrics.json"), {
        "timestamp": now_ts(), "count": len(rows), "tokens": tok_count, "ppl": ppl
    })
    write_jsonl(os.path.join(outdir, "ppl", "preds.jsonl"), preds)

# ---------- MATH ----------
def canon_num(s: str) -> str:
    # Extract the last integer/decimal (simple heuristic for our 5 examples)
    # Remove commas/whitespace; keep leading minus; allow ^digits not needed here
    s = s.strip()
    # pick last number-like pattern
    nums = re.findall(r"-?\d+(?:\.\d+)?", s.replace(",", ""))
    return nums[-1] if nums else s.strip().lower()

@torch.no_grad()
def greedy_generate(model, tok, prompt: str, device, max_new_tokens: int) -> str:
    enc = tok(prompt, return_tensors="pt").to(device)
    out = model.generate(
        **enc,
        do_sample=False, temperature=0.0, top_p=1.0,
        max_new_tokens=max_new_tokens,
        eos_token_id=tok.eos_token_id
    )
    text = tok.decode(out[0], skip_special_tokens=True)
    # return only the newly generated tail (after prompt)
    prompt_text = tok.decode(enc.input_ids[0], skip_special_tokens=True)
    if text.startswith(prompt_text):
        return text[len(prompt_text):].strip()
    return text.strip()

def eval_math(model, tok, rows: List[Dict], device, outdir: str, max_new_tokens: int):
    correct = 0
    preds = []
    for r in rows:
        q = r["question"]; gold = r["gold"]
        gen = greedy_generate(model, tok, q, device, max_new_tokens=max_new_tokens)
        pred = canon_num(gen); gold_c = canon_num(gold)
        is_ok = int(pred == gold_c)
        correct += is_ok
        preds.append({**r, "gen": gen, "pred": pred, "gold_canon": gold_c, "correct": is_ok})
    acc = correct / max(1,len(rows))
    sd = math.sqrt(acc*(1-acc)/max(1,len(rows)))
    ci = 1.96 * sd
    write_json(os.path.join(outdir, "math", "metrics.json"), {
        "timestamp": now_ts(), "count": len(rows),
        "acc": acc, "acc_ci95": ci
    })
    write_jsonl(os.path.join(outdir, "math", "preds.jsonl"), preds)

def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--model", type=str, required=True)
    ap.add_argument("--math", type=str, required=True)
    ap.add_argument("--ppl", type=str, required=True)
    ap.add_argument("--out", type=str, required=True)
    ap.add_argument("--dtype", type=str, default="bfloat16", choices=["float16","bfloat16","float32"])
    ap.add_argument("--max_new_tokens_math", type=int, default=512)
    args = ap.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    dtype = {"float16":torch.float16, "bfloat16":torch.bfloat16, "float32":torch.float32}[args.dtype]

    tok = AutoTokenizer.from_pretrained(args.model, use_fast=True)
    model = AutoModelForCausalLM.from_pretrained(
        args.model,
        torch_dtype=dtype if device.type=="cuda" else torch.float32,
        device_map=None
    ).to(device)
    model.eval()

    # MATH
    math_rows = read_jsonl(args.math)
    eval_math(model, tok, math_rows, device, args.out, max_new_tokens=args.max_new_tokens_math)

    # PPL
    ppl_rows = read_jsonl(args.ppl)
    eval_ppl(model, tok, ppl_rows, device, args.out)

    print("[DONE] Main baseline written to", args.out)

if __name__ == "__main__":
    main()