1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
# -*- coding: utf-8 -*-
"""
Losses for:
- EM (entropy minimization)
- Group-EM (entropy-difference between female/male token groups)
- JSD counterfactual invariance (x vs swap(x)) with optional Top-K
Guards:
- Mass parity: (piF - piM)^2
- Stability: KL( p_theta || p_base )
Gating:
- Top-K trigger on {F ∪ M} at each step (boundary-safe happens at text level during data build/eval)
Note:
- All losses are averaged over steps where gate==1 AND (optionally) generation mask==1.
"""
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
def map_words_to_token_ids(tok, words: List[str]) -> List[int]:
ids = set()
for w in words:
for form in (w, " " + w):
enc = tok(form, add_special_tokens=False, return_tensors=None)
toks = enc["input_ids"]
if len(toks) == 1:
ids.add(int(toks[0]))
elif len(toks) > 1:
ids.add(int(toks[0])) # first-piece fallback
return sorted(ids)
def probs_from_logits(logits: torch.Tensor, temperature: float = 1.0) -> torch.Tensor:
if temperature <= 0:
# avoid div-by-zero; at T=0 use softmax on raw logits (equivalent to no scaling)
return F.softmax(logits, dim=-1)
return F.softmax(logits / temperature, dim=-1)
def topk_gate(logits: torch.Tensor, fem_ids: List[int], male_ids: List[int], k: int = 20) -> torch.Tensor:
"""
logits: [B,T,V]
Return gate mask [B,T] == 1 if top-k at step contains any F∪M id.
"""
B,T,V = logits.shape
topk = torch.topk(logits, k=min(k, V), dim=-1).indices # [B,T,k]
ids = torch.tensor(list(set(fem_ids) | set(male_ids)), device=logits.device, dtype=torch.long)
if ids.numel() == 0:
return torch.zeros(B,T, dtype=torch.float32, device=logits.device)
# Compare with broadcasting
match = (topk.unsqueeze(-1) == ids.view(1,1,1,-1)).any(dim=-1) # [B,T,k] -> [B,T]
return match.float()
def group_masses(probs: torch.Tensor, fem_ids: List[int], male_ids: List[int]) -> Tuple[torch.Tensor, torch.Tensor]:
"""
probs: [B,T,V]
Returns piF, piM of shape [B,T]
"""
if len(fem_ids) == 0 and len(male_ids) == 0:
return torch.zeros_like(probs[...,0]), torch.zeros_like(probs[...,0])
idxF = torch.tensor(fem_ids, device=probs.device, dtype=torch.long) if len(fem_ids)>0 else None
idxM = torch.tensor(male_ids, device=probs.device, dtype=torch.long) if len(male_ids)>0 else None
piF = probs[..., idxF].sum(dim=-1) if idxF is not None else torch.zeros_like(probs[...,0])
piM = probs[..., idxM].sum(dim=-1) if idxM is not None else torch.zeros_like(probs[...,0])
return piF, piM
def normalized_entropy(sub_probs: torch.Tensor) -> torch.Tensor:
"""
sub_probs: [*, K]
Return normalized entropy in [0,1]: H(p)/log(K)
"""
eps = 1e-12
K = sub_probs.size(-1)
H = -(sub_probs.clamp_min(eps) * sub_probs.clamp_min(eps).log()).sum(dim=-1)
denom = torch.log(torch.tensor(float(K), device=sub_probs.device))
return H / (denom + eps)
def group_entropies(probs: torch.Tensor, fem_ids: List[int], male_ids: List[int]) -> Tuple[torch.Tensor, torch.Tensor]:
"""
probs: [B,T,V] -> qF [B,T,|F|], qM [B,T,|M|] -> HF, HM in [0,1]
"""
eps = 1e-12
idxF = torch.tensor(fem_ids, device=probs.device, dtype=torch.long) if len(fem_ids)>0 else None
idxM = torch.tensor(male_ids, device=probs.device, dtype=torch.long) if len(male_ids)>0 else None
if idxF is None:
HF = torch.zeros(probs.shape[:2], device=probs.device)
else:
pF = probs[..., idxF] # [B,T,|F|]
piF = pF.sum(dim=-1, keepdim=True) + eps
qF = pF / piF
HF = normalized_entropy(qF)
if idxM is None:
HM = torch.zeros(probs.shape[:2], device=probs.device)
else:
pM = probs[..., idxM]
piM = pM.sum(dim=-1, keepdim=True) + eps
qM = pM / piM
HM = normalized_entropy(qM)
return HF, HM
def reduce_steps(x: torch.Tensor, step_mask: torch.Tensor) -> torch.Tensor:
"""
x: [B,T], step_mask: [B,T] in {0,1}
Return mean over steps where mask==1 (avoid div by 0).
"""
w = step_mask
s = (x * w).sum()
d = w.sum().clamp_min(1.0)
return s / d
# ---------------- EM ----------------
def loss_em(logits: torch.Tensor, gen_mask: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
"""
Entropy minimization over generation steps (no gating).
logits: [B,T,V]; gen_mask: [B,T] 1 for generation steps (non-prompt)
"""
probs = probs_from_logits(logits) # [B,T,V]
eps = 1e-12
Ht = -(probs.clamp_min(eps) * probs.clamp_min(eps).log()).sum(dim=-1) # [B,T]
L = reduce_steps(Ht, gen_mask)
return L, {"H_mean": float(reduce_steps(Ht, gen_mask).item())}
# ------------- Group-EM -------------
def loss_group_em(
logits: torch.Tensor,
gen_mask: torch.Tensor,
fem_ids: List[int],
male_ids: List[int],
gate_mask: Optional[torch.Tensor] = None,
lambda_mass: float = 0.0,
beta_kl: float = 0.0,
ref_probs: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Dict]:
"""
Group-EM loss with optional guards.
- core: (H_F - H_M)^2
- mass guard: (piF - piM)^2
- stability: KL( p || pref )
"""
probs = probs_from_logits(logits) # [B,T,V]
HF, HM = group_entropies(probs, fem_ids, male_ids) # [B,T], [B,T]
core = (HF - HM) ** 2 # [B,T]
piF, piM = group_masses(probs, fem_ids, male_ids)
Lmass = (piF - piM) ** 2 # [B,T]
if gate_mask is None:
step_mask = gen_mask
else:
step_mask = (gen_mask * gate_mask).float()
L_core = reduce_steps(core, step_mask)
L_mass = reduce_steps(Lmass, step_mask)
L_kl = torch.tensor(0.0, device=logits.device)
if beta_kl > 0.0 and ref_probs is not None:
eps = 1e-12
p = probs.clamp_min(eps)
q = ref_probs.clamp_min(eps)
KL = (p * (p.log() - q.log())).sum(dim=-1) # [B,T]
L_kl = reduce_steps(KL, step_mask)
loss = L_core + lambda_mass * L_mass + beta_kl * L_kl
extras = {
"L_core": float(L_core.item()),
"L_mass": float(L_mass.item()),
"L_kl": float(L_kl.item()) if isinstance(L_kl, torch.Tensor) else float(L_kl),
"piF_mean": float(reduce_steps(piF, step_mask).item()),
"piM_mean": float(reduce_steps(piM, step_mask).item()),
"HF_mean": float(reduce_steps(HF, step_mask).item()),
"HM_mean": float(reduce_steps(HM, step_mask).item()),
}
return loss, extras
# --------------- JSD ---------------
def _jsd_full(p: torch.Tensor, q: torch.Tensor, eps: float = 1e-12) -> torch.Tensor:
m = 0.5 * (p + q)
return 0.5 * (p * (p.clamp_min(eps).log() - m.clamp_min(eps).log())).sum(dim=-1) + \
0.5 * (q * (q.clamp_min(eps).log() - m.clamp_min(eps).log())).sum(dim=-1)
def _jsd_topk(p: torch.Tensor, q: torch.Tensor, K: int) -> torch.Tensor:
V = p.size(-1)
K = min(K, V)
idx_p = torch.topk(p, k=K, dim=-1).indices
idx_q = torch.topk(q, k=K, dim=-1).indices
idx = torch.cat([idx_p, idx_q], dim=-1).unique(dim=-1) # union
pK = p.gather(-1, idx); qK = q.gather(-1, idx)
mK = 0.5 * (pK + qK)
eps = 1e-12
return 0.5 * (pK * (pK.clamp_min(eps).log() - mK.clamp_min(eps).log())).sum(dim=-1) + \
0.5 * (qK * (qK.clamp_min(eps).log() - mK.clamp_min(eps).log())).sum(dim=-1)
def loss_jsd(
logits_f: torch.Tensor, # [B,T,V]
logits_c: torch.Tensor, # [B,T,V]
gen_mask: torch.Tensor, # [B,T]
fem_ids: List[int],
male_ids: List[int],
gate_mask_f: Optional[torch.Tensor] = None,
gate_mask_c: Optional[torch.Tensor] = None,
lambda_mass: float = 0.0,
beta_kl: float = 0.0,
ref_probs_f: Optional[torch.Tensor] = None,
topk_jsd: int = 0
) -> Tuple[torch.Tensor, Dict]:
"""
JSD(p||q) averaged over steps with gating (factual and counterfactual separately gated).
Also includes mass parity on both branches and optional stability to base on factual branch.
"""
p = probs_from_logits(logits_f) # [B,T,V]
q = probs_from_logits(logits_c) # [B,T,V]
if topk_jsd and topk_jsd > 0:
J = _jsd_topk(p, q, K=topk_jsd) # [B,T]
else:
J = _jsd_full(p, q) # [B,T]
# step mask: require gate on factual (and optionally also on counterfactual)
if gate_mask_f is None:
step_mask = gen_mask
else:
step_mask = (gen_mask * gate_mask_f).float()
L_jsd = reduce_steps(J, step_mask)
# mass parity on each branch
piF_f, piM_f = group_masses(p, fem_ids, male_ids)
piF_c, piM_c = group_masses(q, fem_ids, male_ids)
L_mass = reduce_steps((piF_f - piM_f)**2, step_mask) + reduce_steps((piF_c - piM_c)**2, step_mask)
# stability to base (factual branch)
L_kl = torch.tensor(0.0, device=logits_f.device)
if beta_kl > 0.0 and ref_probs_f is not None:
eps = 1e-12
p0 = ref_probs_f.clamp_min(eps)
L_kl = reduce_steps((p.clamp_min(eps) * (p.clamp_min(eps).log() - p0.log())).sum(dim=-1), step_mask)
loss = L_jsd + lambda_mass * L_mass + beta_kl * L_kl
extras = {
"L_jsd": float(L_jsd.item()),
"L_mass": float(L_mass.item()),
"L_kl": float(L_kl.item()) if isinstance(L_kl, torch.Tensor) else float(L_kl),
"piF_f": float(reduce_steps(piF_f, step_mask).item()),
"piM_f": float(reduce_steps(piM_f, step_mask).item()),
"piF_c": float(reduce_steps(piF_c, step_mask).item()),
"piM_c": float(reduce_steps(piM_c, step_mask).item()),
}
return loss, extras
|