summaryrefslogtreecommitdiff
path: root/backend/council.py
diff options
context:
space:
mode:
authorhaoyuren <13851610112@163.com>2026-02-12 12:45:24 -0600
committerhaoyuren <13851610112@163.com>2026-02-12 12:45:24 -0600
commitc8fae0256c91a0ebe495270aa15baa2f27211268 (patch)
treeefc908a9fb259a18809ab5151a15fc0f1e10fdf1 /backend/council.py
parent92e1fccb1bdcf1bab7221aa9ed90f9dc72529131 (diff)
Multi-turn conversation, stop generation, SSE fix, and UI improvements
- Multi-turn context: all council stages now receive conversation history (user messages + Stage 3 chairman responses) for coherent follow-ups - Stop generation: abort streaming mid-request, recover query to input box - SSE parsing: buffer-based chunking to prevent JSON split across packets - Atomic storage: user + assistant messages saved together after completion, preventing dangling messages on abort - GFM markdown: tables, strikethrough via remark-gfm plugin + table styles - Performance: memo user messages and completed assistant messages, only re-render the active streaming message - Model config: gpt-5.2, claude-opus-4.6 as chairman - Always show input box for multi-turn conversations Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
Diffstat (limited to 'backend/council.py')
-rw-r--r--backend/council.py56
1 files changed, 45 insertions, 11 deletions
diff --git a/backend/council.py b/backend/council.py
index 5069abe..6facbd8 100644
--- a/backend/council.py
+++ b/backend/council.py
@@ -1,21 +1,46 @@
"""3-stage LLM Council orchestration."""
-from typing import List, Dict, Any, Tuple
+from typing import List, Dict, Any, Tuple, Optional
from .openrouter import query_models_parallel, query_model
from .config import COUNCIL_MODELS, CHAIRMAN_MODEL
-async def stage1_collect_responses(user_query: str) -> List[Dict[str, Any]]:
+def _build_messages(
+ conversation_history: Optional[List[Dict[str, str]]],
+ current_content: str
+) -> List[Dict[str, str]]:
+ """
+ Build a messages list with conversation history + current user message.
+
+ Args:
+ conversation_history: List of {"role": "user"/"assistant", "content": ...} dicts
+ current_content: The current message content to append as user
+
+ Returns:
+ Messages list for the OpenRouter API
+ """
+ messages = []
+ if conversation_history:
+ messages.extend(conversation_history)
+ messages.append({"role": "user", "content": current_content})
+ return messages
+
+
+async def stage1_collect_responses(
+ user_query: str,
+ conversation_history: Optional[List[Dict[str, str]]] = None
+) -> List[Dict[str, Any]]:
"""
Stage 1: Collect individual responses from all council models.
Args:
user_query: The user's question
+ conversation_history: Optional list of prior conversation messages
Returns:
List of dicts with 'model' and 'response' keys
"""
- messages = [{"role": "user", "content": user_query}]
+ messages = _build_messages(conversation_history, user_query)
# Query all models in parallel
responses = await query_models_parallel(COUNCIL_MODELS, messages)
@@ -34,7 +59,8 @@ async def stage1_collect_responses(user_query: str) -> List[Dict[str, Any]]:
async def stage2_collect_rankings(
user_query: str,
- stage1_results: List[Dict[str, Any]]
+ stage1_results: List[Dict[str, Any]],
+ conversation_history: Optional[List[Dict[str, str]]] = None
) -> Tuple[List[Dict[str, Any]], Dict[str, str]]:
"""
Stage 2: Each model ranks the anonymized responses.
@@ -42,6 +68,7 @@ async def stage2_collect_rankings(
Args:
user_query: The original user query
stage1_results: Results from Stage 1
+ conversation_history: Optional list of prior conversation messages
Returns:
Tuple of (rankings list, label_to_model mapping)
@@ -92,7 +119,7 @@ FINAL RANKING:
Now provide your evaluation and ranking:"""
- messages = [{"role": "user", "content": ranking_prompt}]
+ messages = _build_messages(conversation_history, ranking_prompt)
# Get rankings from all council models in parallel
responses = await query_models_parallel(COUNCIL_MODELS, messages)
@@ -115,7 +142,8 @@ Now provide your evaluation and ranking:"""
async def stage3_synthesize_final(
user_query: str,
stage1_results: List[Dict[str, Any]],
- stage2_results: List[Dict[str, Any]]
+ stage2_results: List[Dict[str, Any]],
+ conversation_history: Optional[List[Dict[str, str]]] = None
) -> Dict[str, Any]:
"""
Stage 3: Chairman synthesizes final response.
@@ -124,6 +152,7 @@ async def stage3_synthesize_final(
user_query: The original user query
stage1_results: Individual model responses from Stage 1
stage2_results: Rankings from Stage 2
+ conversation_history: Optional list of prior conversation messages
Returns:
Dict with 'model' and 'response' keys
@@ -156,7 +185,7 @@ Your task as Chairman is to synthesize all of this information into a single, co
Provide a clear, well-reasoned final answer that represents the council's collective wisdom:"""
- messages = [{"role": "user", "content": chairman_prompt}]
+ messages = _build_messages(conversation_history, chairman_prompt)
# Query the chairman model
response = await query_model(CHAIRMAN_MODEL, messages)
@@ -293,18 +322,22 @@ Title:"""
return title
-async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
+async def run_full_council(
+ user_query: str,
+ conversation_history: Optional[List[Dict[str, str]]] = None
+) -> Tuple[List, List, Dict, Dict]:
"""
Run the complete 3-stage council process.
Args:
user_query: The user's question
+ conversation_history: Optional list of prior conversation messages
Returns:
Tuple of (stage1_results, stage2_results, stage3_result, metadata)
"""
# Stage 1: Collect individual responses
- stage1_results = await stage1_collect_responses(user_query)
+ stage1_results = await stage1_collect_responses(user_query, conversation_history)
# If no models responded successfully, return error
if not stage1_results:
@@ -314,7 +347,7 @@ async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
}, {}
# Stage 2: Collect rankings
- stage2_results, label_to_model = await stage2_collect_rankings(user_query, stage1_results)
+ stage2_results, label_to_model = await stage2_collect_rankings(user_query, stage1_results, conversation_history)
# Calculate aggregate rankings
aggregate_rankings = calculate_aggregate_rankings(stage2_results, label_to_model)
@@ -323,7 +356,8 @@ async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
stage3_result = await stage3_synthesize_final(
user_query,
stage1_results,
- stage2_results
+ stage2_results,
+ conversation_history
)
# Prepare metadata