summaryrefslogtreecommitdiff
path: root/backend
diff options
context:
space:
mode:
Diffstat (limited to 'backend')
-rw-r--r--backend/config.py6
-rw-r--r--backend/council.py56
-rw-r--r--backend/main.py40
3 files changed, 76 insertions, 26 deletions
diff --git a/backend/config.py b/backend/config.py
index a9cf7c4..cf8fcb4 100644
--- a/backend/config.py
+++ b/backend/config.py
@@ -10,14 +10,14 @@ OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
# Council members - list of OpenRouter model identifiers
COUNCIL_MODELS = [
- "openai/gpt-5.1",
+ "openai/gpt-5.2",
"google/gemini-3-pro-preview",
- "anthropic/claude-sonnet-4.5",
+ "anthropic/claude-opus-4.6",
"x-ai/grok-4",
]
# Chairman model - synthesizes final response
-CHAIRMAN_MODEL = "google/gemini-3-pro-preview"
+CHAIRMAN_MODEL = "anthropic/claude-opus-4.6"
# OpenRouter API endpoint
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
diff --git a/backend/council.py b/backend/council.py
index 5069abe..6facbd8 100644
--- a/backend/council.py
+++ b/backend/council.py
@@ -1,21 +1,46 @@
"""3-stage LLM Council orchestration."""
-from typing import List, Dict, Any, Tuple
+from typing import List, Dict, Any, Tuple, Optional
from .openrouter import query_models_parallel, query_model
from .config import COUNCIL_MODELS, CHAIRMAN_MODEL
-async def stage1_collect_responses(user_query: str) -> List[Dict[str, Any]]:
+def _build_messages(
+ conversation_history: Optional[List[Dict[str, str]]],
+ current_content: str
+) -> List[Dict[str, str]]:
+ """
+ Build a messages list with conversation history + current user message.
+
+ Args:
+ conversation_history: List of {"role": "user"/"assistant", "content": ...} dicts
+ current_content: The current message content to append as user
+
+ Returns:
+ Messages list for the OpenRouter API
+ """
+ messages = []
+ if conversation_history:
+ messages.extend(conversation_history)
+ messages.append({"role": "user", "content": current_content})
+ return messages
+
+
+async def stage1_collect_responses(
+ user_query: str,
+ conversation_history: Optional[List[Dict[str, str]]] = None
+) -> List[Dict[str, Any]]:
"""
Stage 1: Collect individual responses from all council models.
Args:
user_query: The user's question
+ conversation_history: Optional list of prior conversation messages
Returns:
List of dicts with 'model' and 'response' keys
"""
- messages = [{"role": "user", "content": user_query}]
+ messages = _build_messages(conversation_history, user_query)
# Query all models in parallel
responses = await query_models_parallel(COUNCIL_MODELS, messages)
@@ -34,7 +59,8 @@ async def stage1_collect_responses(user_query: str) -> List[Dict[str, Any]]:
async def stage2_collect_rankings(
user_query: str,
- stage1_results: List[Dict[str, Any]]
+ stage1_results: List[Dict[str, Any]],
+ conversation_history: Optional[List[Dict[str, str]]] = None
) -> Tuple[List[Dict[str, Any]], Dict[str, str]]:
"""
Stage 2: Each model ranks the anonymized responses.
@@ -42,6 +68,7 @@ async def stage2_collect_rankings(
Args:
user_query: The original user query
stage1_results: Results from Stage 1
+ conversation_history: Optional list of prior conversation messages
Returns:
Tuple of (rankings list, label_to_model mapping)
@@ -92,7 +119,7 @@ FINAL RANKING:
Now provide your evaluation and ranking:"""
- messages = [{"role": "user", "content": ranking_prompt}]
+ messages = _build_messages(conversation_history, ranking_prompt)
# Get rankings from all council models in parallel
responses = await query_models_parallel(COUNCIL_MODELS, messages)
@@ -115,7 +142,8 @@ Now provide your evaluation and ranking:"""
async def stage3_synthesize_final(
user_query: str,
stage1_results: List[Dict[str, Any]],
- stage2_results: List[Dict[str, Any]]
+ stage2_results: List[Dict[str, Any]],
+ conversation_history: Optional[List[Dict[str, str]]] = None
) -> Dict[str, Any]:
"""
Stage 3: Chairman synthesizes final response.
@@ -124,6 +152,7 @@ async def stage3_synthesize_final(
user_query: The original user query
stage1_results: Individual model responses from Stage 1
stage2_results: Rankings from Stage 2
+ conversation_history: Optional list of prior conversation messages
Returns:
Dict with 'model' and 'response' keys
@@ -156,7 +185,7 @@ Your task as Chairman is to synthesize all of this information into a single, co
Provide a clear, well-reasoned final answer that represents the council's collective wisdom:"""
- messages = [{"role": "user", "content": chairman_prompt}]
+ messages = _build_messages(conversation_history, chairman_prompt)
# Query the chairman model
response = await query_model(CHAIRMAN_MODEL, messages)
@@ -293,18 +322,22 @@ Title:"""
return title
-async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
+async def run_full_council(
+ user_query: str,
+ conversation_history: Optional[List[Dict[str, str]]] = None
+) -> Tuple[List, List, Dict, Dict]:
"""
Run the complete 3-stage council process.
Args:
user_query: The user's question
+ conversation_history: Optional list of prior conversation messages
Returns:
Tuple of (stage1_results, stage2_results, stage3_result, metadata)
"""
# Stage 1: Collect individual responses
- stage1_results = await stage1_collect_responses(user_query)
+ stage1_results = await stage1_collect_responses(user_query, conversation_history)
# If no models responded successfully, return error
if not stage1_results:
@@ -314,7 +347,7 @@ async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
}, {}
# Stage 2: Collect rankings
- stage2_results, label_to_model = await stage2_collect_rankings(user_query, stage1_results)
+ stage2_results, label_to_model = await stage2_collect_rankings(user_query, stage1_results, conversation_history)
# Calculate aggregate rankings
aggregate_rankings = calculate_aggregate_rankings(stage2_results, label_to_model)
@@ -323,7 +356,8 @@ async def run_full_council(user_query: str) -> Tuple[List, List, Dict, Dict]:
stage3_result = await stage3_synthesize_final(
user_query,
stage1_results,
- stage2_results
+ stage2_results,
+ conversation_history
)
# Prepare metadata
diff --git a/backend/main.py b/backend/main.py
index e33ce59..40353dd 100644
--- a/backend/main.py
+++ b/backend/main.py
@@ -14,6 +14,20 @@ from .council import run_full_council, generate_conversation_title, stage1_colle
app = FastAPI(title="LLM Council API")
+
+def _extract_conversation_history(conversation: Dict[str, Any]) -> List[Dict[str, str]]:
+ """
+ Extract conversation history as a flat messages list for multi-turn context.
+ User messages use their content; assistant messages use the Stage 3 (chairman) response.
+ """
+ history = []
+ for msg in conversation["messages"]:
+ if msg["role"] == "user":
+ history.append({"role": "user", "content": msg["content"]})
+ elif msg["role"] == "assistant" and msg.get("stage3"):
+ history.append({"role": "assistant", "content": msg["stage3"].get("response", "")})
+ return history
+
# Enable CORS for local development
app.add_middleware(
CORSMiddleware,
@@ -93,20 +107,21 @@ async def send_message(conversation_id: str, request: SendMessageRequest):
# Check if this is the first message
is_first_message = len(conversation["messages"]) == 0
- # Add user message
- storage.add_user_message(conversation_id, request.content)
-
# If this is the first message, generate a title
if is_first_message:
title = await generate_conversation_title(request.content)
storage.update_conversation_title(conversation_id, title)
+ # Build conversation history for multi-turn context
+ conversation_history = _extract_conversation_history(conversation)
+
# Run the 3-stage council process
stage1_results, stage2_results, stage3_result, metadata = await run_full_council(
- request.content
+ request.content, conversation_history
)
- # Add assistant message with all stages
+ # Save user + assistant messages together only after full completion
+ storage.add_user_message(conversation_id, request.content)
storage.add_assistant_message(
conversation_id,
stage1_results,
@@ -137,11 +152,11 @@ async def send_message_stream(conversation_id: str, request: SendMessageRequest)
# Check if this is the first message
is_first_message = len(conversation["messages"]) == 0
+ # Build conversation history for multi-turn context
+ conversation_history = _extract_conversation_history(conversation)
+
async def event_generator():
try:
- # Add user message
- storage.add_user_message(conversation_id, request.content)
-
# Start title generation in parallel (don't await yet)
title_task = None
if is_first_message:
@@ -149,18 +164,18 @@ async def send_message_stream(conversation_id: str, request: SendMessageRequest)
# Stage 1: Collect responses
yield f"data: {json.dumps({'type': 'stage1_start'})}\n\n"
- stage1_results = await stage1_collect_responses(request.content)
+ stage1_results = await stage1_collect_responses(request.content, conversation_history)
yield f"data: {json.dumps({'type': 'stage1_complete', 'data': stage1_results})}\n\n"
# Stage 2: Collect rankings
yield f"data: {json.dumps({'type': 'stage2_start'})}\n\n"
- stage2_results, label_to_model = await stage2_collect_rankings(request.content, stage1_results)
+ stage2_results, label_to_model = await stage2_collect_rankings(request.content, stage1_results, conversation_history)
aggregate_rankings = calculate_aggregate_rankings(stage2_results, label_to_model)
yield f"data: {json.dumps({'type': 'stage2_complete', 'data': stage2_results, 'metadata': {'label_to_model': label_to_model, 'aggregate_rankings': aggregate_rankings}})}\n\n"
# Stage 3: Synthesize final answer
yield f"data: {json.dumps({'type': 'stage3_start'})}\n\n"
- stage3_result = await stage3_synthesize_final(request.content, stage1_results, stage2_results)
+ stage3_result = await stage3_synthesize_final(request.content, stage1_results, stage2_results, conversation_history)
yield f"data: {json.dumps({'type': 'stage3_complete', 'data': stage3_result})}\n\n"
# Wait for title generation if it was started
@@ -169,7 +184,8 @@ async def send_message_stream(conversation_id: str, request: SendMessageRequest)
storage.update_conversation_title(conversation_id, title)
yield f"data: {json.dumps({'type': 'title_complete', 'data': {'title': title}})}\n\n"
- # Save complete assistant message
+ # Save user + assistant messages together only after full completion
+ storage.add_user_message(conversation_id, request.content)
storage.add_assistant_message(
conversation_id,
stage1_results,