summaryrefslogtreecommitdiff
path: root/train_debiasing.py
diff options
context:
space:
mode:
Diffstat (limited to 'train_debiasing.py')
-rw-r--r--train_debiasing.py273
1 files changed, 273 insertions, 0 deletions
diff --git a/train_debiasing.py b/train_debiasing.py
new file mode 100644
index 0000000..8bbb8b0
--- /dev/null
+++ b/train_debiasing.py
@@ -0,0 +1,273 @@
+#!/usr/bin/env python3
+"""
+纯偏见减少训练脚本
+目标:只最小化男女间熵差,不进行整体熵最小化
+"""
+import argparse
+import os
+import torch
+import torch.nn.functional as F
+from torch.optim import AdamW
+import pandas as pd
+import numpy as np
+from pathlib import Path
+
+import wandb
+from accelerate import Accelerator, DeepSpeedPlugin
+from accelerate.utils import set_seed
+from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
+
+# 导入自定义模块
+import sys
+sys.path.append('.')
+from dataset.gee_processor import GEEProcessor
+from losses.debiasing_loss import DebiasingLoss, gender_to_label
+from smart_balanced_dataloader import create_smart_balanced_dataloader
+
+os.environ.setdefault("NCCL_TIMEOUT", "2700")
+os.environ.setdefault("TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC", "2700")
+
+def parse_args():
+ parser = argparse.ArgumentParser()
+ # Debiasing相关参数
+ parser.add_argument('--scale_factor', type=float, default=1.0, help='Debiasing loss scale factor')
+ parser.add_argument('--use_l1', action='store_true', help='Use L1 loss instead of L2')
+ parser.add_argument('--target_gap', type=float, default=0.01, help='Target entropy gap for early stopping')
+
+ # 模型参数
+ parser.add_argument('--model_name', type=str, default='Qwen2.5-Math-1.5B-Instruct', help='Model name')
+ parser.add_argument('--model_path', type=str, required=True, help='Model path')
+ parser.add_argument('--effective_batch', type=int, default=4, help='Global batch size')
+ parser.add_argument('--micro_batch_size', type=int, default=2, help='Micro batch size (must >=2 for balance)')
+ parser.add_argument('--learning_rate', type=float, default=1e-5, help='Learning rate (lower for debiasing)')
+ parser.add_argument('--max_steps', type=int, default=20, help='Maximum training steps')
+ parser.add_argument('--sample_temp', type=float, default=0.7, help='Generation temperature')
+
+ # 运行参数
+ parser.add_argument('--run_name', type=str, default='pure_debiasing', help='Run name')
+ parser.add_argument('--wandb_project', type=str, default='debiasing-only', help='W&B project name')
+ parser.add_argument('--use_test_data', action='store_true', help='Use synthetic test data')
+ parser.add_argument('--seed', type=int, default=42, help='Random seed')
+ parser.add_argument('--log_steps', type=int, default=1, help='Logging frequency')
+ parser.add_argument('--save_steps', type=int, default=10, help='Save frequency')
+
+ return parser.parse_args()
+
+def main():
+ args = parse_args()
+ set_seed(args.seed)
+
+ # 强制检查batch_size
+ if args.micro_batch_size < 2:
+ print("❌ 错误: micro_batch_size必须>=2才能保证性别平衡!")
+ print("请使用: --micro_batch_size 2 或更大")
+ return
+
+ # DeepSpeed配置
+ ds_config = {
+ "train_micro_batch_size_per_gpu": args.micro_batch_size,
+ "train_batch_size": args.effective_batch,
+ "gradient_accumulation_steps": max(1, args.effective_batch // args.micro_batch_size),
+ "bf16": {"enabled": True},
+ "zero_optimization": {
+ "stage": 2,
+ "offload_optimizer": {"device": "cpu"},
+ "offload_param": {"device": "none"}
+ },
+ "gradient_clipping": 1.0,
+ }
+
+ accelerator = Accelerator(
+ mixed_precision="bf16",
+ gradient_accumulation_steps=max(1, args.effective_batch // args.micro_batch_size),
+ deepspeed_plugin=DeepSpeedPlugin(hf_ds_config=ds_config)
+ )
+
+ print = accelerator.print
+ print(f"🎯 开始纯偏见减少训练 - {args.run_name}")
+ print(f"📊 配置信息:")
+ print(f" 批次大小: micro={args.micro_batch_size}, effective={args.effective_batch}")
+ print(f" 缩放因子: {args.scale_factor}")
+ print(f" 目标熵差: {args.target_gap}")
+ print(f" 学习率: {args.learning_rate}")
+ print(f" ⚠️ 注意: 只进行偏见减少,不进行熵最小化")
+
+ # 加载模型
+ model_path = args.model_path
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
+ config.use_cache = False
+ model = AutoModelForCausalLM.from_pretrained(model_path, config=config, trust_remote_code=True)
+ model.gradient_checkpointing_enable()
+
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+ if tokenizer.pad_token is None:
+ tokenizer.pad_token = tokenizer.eos_token
+
+ # 初始化纯偏见减少损失函数
+ gee_processor = GEEProcessor(tokenizer)
+ debiasing_loss_fn = DebiasingLoss(use_l1=args.use_l1, scale_factor=args.scale_factor)
+
+ if accelerator.is_main_process:
+ wandb.init(project=args.wandb_project, name=args.run_name, config=vars(args))
+
+ # 准备数据
+ if args.use_test_data:
+ print("📊 使用合成测试数据...")
+ train_data = gee_processor.create_test_data(num_samples=100)
+
+ # 检查数据平衡性
+ male_count = sum(1 for item in train_data if item['gender'] == 'male')
+ female_count = sum(1 for item in train_data if item['gender'] == 'female')
+ print(f"原始数据: male={male_count}, female={female_count}")
+
+ # 创建智能平衡的数据加载器
+ train_loader = create_smart_balanced_dataloader(
+ train_data,
+ batch_size=args.micro_batch_size,
+ num_batches=args.max_steps + 5
+ )
+ else:
+ print("❌ 请使用 --use_test_data 进行测试")
+ return
+
+ optimizer = AdamW(model.parameters(), lr=args.learning_rate)
+ model, optimizer = accelerator.prepare(model, optimizer)
+
+ print(f"🎯 开始训练...")
+ print(f" 目标: 最小化 |H_female - H_male|")
+ print(f" 理想结果: entropy_gap → {args.target_gap}")
+
+ # 开始训练
+ model.train()
+ best_gap = float('inf')
+ converged_steps = 0
+
+ for step, batch in enumerate(train_loader, start=1):
+ if step > args.max_steps:
+ print(f"🛑 达到最大步数 {args.max_steps},训练结束")
+ break
+
+ with accelerator.accumulate(model):
+ try:
+ # 验证批次平衡性
+ male_count = sum(1 for g in batch["gender"] if g == 'male')
+ female_count = sum(1 for g in batch["gender"] if g == 'female')
+
+ if male_count == 0 or female_count == 0:
+ print(f"💥 Step {step}: 批次不平衡!male={male_count}, female={female_count}")
+ continue
+
+ # 准备输入
+ inputs = tokenizer(
+ batch["input"],
+ return_tensors="pt",
+ padding="longest",
+ truncation=True,
+ max_length=1024
+ ).to(accelerator.device)
+
+ # 生成回答
+ with torch.no_grad():
+ gen_ids = accelerator.unwrap_model(model).generate(
+ **inputs,
+ max_new_tokens=128,
+ do_sample=True,
+ top_p=0.95,
+ temperature=args.sample_temp,
+ synced_gpus=True,
+ repetition_penalty=1.15,
+ pad_token_id=tokenizer.pad_token_id,
+ use_cache=False
+ )
+
+ # 准备完整序列
+ seq = torch.cat([inputs.input_ids, gen_ids[:, inputs.input_ids.shape[1]:]], dim=1)
+ pad_mask = seq.ne(tokenizer.pad_token_id)
+ prompt_lengths = pad_mask[:, :inputs.input_ids.shape[1]].sum(-1)
+
+ # 计算logits和熵
+ logits = model(seq, attention_mask=pad_mask).logits
+ H_tok = debiasing_loss_fn.compute_token_entropy(logits, pad_mask)
+ H_i = debiasing_loss_fn.compute_sample_entropy(H_tok, prompt_lengths)
+
+ # 准备性别标签
+ gender_labels = torch.tensor([
+ gender_to_label(g) for g in batch["gender"]
+ ], device=accelerator.device)
+
+ # 计算纯偏见减少损失
+ loss, metrics = debiasing_loss_fn.compute_debiasing_loss(H_i, gender_labels)
+
+ # 反向传播
+ accelerator.backward(loss)
+ accelerator.clip_grad_norm_(model.parameters(), 1.0)
+ optimizer.step()
+ optimizer.zero_grad()
+
+ # 检查收敛
+ current_gap = metrics['entropy_gap']
+ if current_gap < best_gap:
+ best_gap = current_gap
+ converged_steps = 0
+ else:
+ converged_steps += 1
+
+ # 早停检查
+ if current_gap <= args.target_gap:
+ print(f"🎉 达到目标熵差 {args.target_gap}!当前: {current_gap:.6f}")
+ print(f"在第 {step} 步实现目标")
+ break
+
+ # 日志记录
+ if accelerator.is_main_process:
+ if step % args.log_steps == 0:
+ gap_direction = "📉" if current_gap <= best_gap else "📈"
+ print(f"{gap_direction} Step {step} | loss={loss.item():.6f} | "
+ f"gap={current_gap:.6f} | "
+ f"H_male={metrics['H_male']:.6f} | "
+ f"H_female={metrics['H_female']:.6f} | "
+ f"批次[{male_count}M,{female_count}F]")
+
+ # 添加进度指标
+ progress = max(0, min(1, (0.1 - current_gap) / 0.1)) * 100 # 假设从0.1开始
+ metrics['progress_percent'] = progress
+ metrics['best_gap'] = best_gap
+
+ wandb.log({"step": step, **metrics})
+
+ # 保存检查点
+ if accelerator.is_main_process and step % args.save_steps == 0:
+ ckpt = Path(f"checkpoints/{args.model_name}/{args.run_name}") / f"step_{step}"
+ ckpt.mkdir(parents=True, exist_ok=True)
+ accelerator.unwrap_model(model).save_pretrained(ckpt, safe_serialization=True)
+ tokenizer.save_pretrained(ckpt)
+ print(f"💾 检查点已保存: {ckpt}")
+
+ except Exception as e:
+ print(f"❌ 训练步骤 {step} 出错: {e}")
+ continue
+
+ if accelerator.is_main_process:
+ print(f"\n🎉 纯偏见减少训练完成!")
+ print(f"📊 最终结果:")
+ print(f" 最佳熵差: {best_gap:.6f}")
+ print(f" 目标熵差: {args.target_gap}")
+
+ if best_gap <= args.target_gap:
+ print("✅ 成功达到偏见减少目标!")
+ elif best_gap <= 0.05:
+ print("⚠️ 偏见显著减少,接近目标")
+ else:
+ print("❌ 偏见减少效果有限,可能需要更多训练步数或调整参数")
+
+ # 保存最终模型
+ final = Path(f"checkpoints/{args.model_name}/{args.run_name}") / "final"
+ final.mkdir(parents=True, exist_ok=True)
+ accelerator.unwrap_model(model).save_pretrained(final, safe_serialization=True)
+ tokenizer.save_pretrained(final)
+ print(f"💾 最终模型已保存: {final}")
+
+ wandb.finish()
+
+if __name__ == "__main__":
+ main() \ No newline at end of file