summaryrefslogtreecommitdiff
path: root/Qwen2.5-Eval/evaluation/latex2sympy/description.txt
blob: 0064c1fc40ca353f03b55759cc8c4b6dddca3441 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
latex2sympy2: https://github.com/OrangeX4/latex2sympy

About

`latex2sympy2` parses **LaTeX math expressions** and converts it into the equivalent **SymPy form**. The latex2sympy2 is adapted from [augustt198/latex2sympy](https://github.com/augustt198/latex2sympy) and [purdue-tlt / latex2sympy](https://github.com/purdue-tlt/latex2sympy).

[ANTLR](http://www.antlr.org/) is used to generate the parser.

Features

* **Arithmetic:** Add (+), Sub (-), Dot Mul (·), Cross Mul (×), Frac (/), Power (^), Abs (|x|), Sqrt (√), etc...
* **Alphabet:** a - z, A - Z, α - ω, Subscript (x_1), Accent Bar(ā), etc...
* **Common Functions:** gcd, lcm, floor, ceil, max, min, log, ln, exp, sin, cos, tan, csc, sec, cot, arcsin, sinh, arsinh, etc...
* **Calculous:** Limit ($lim_{n\to\infty}$), Derivation ($\frac{d}{dx}(x^2+x)$), Integration ($\int xdx$), etc...
* **Linear Algebra:** Matrix, Determinant, Transpose, Inverse, Elementary Transformation, etc...
* **Other:** Binomial...

**NOTICE:** It will do some irreversible calculations when converting determinants, transposed matrixes and elementary transformations...

Installation

```
pip install latex2sympy2
```

**Requirements:** `sympy` and `antlr4-python3-runtime` packages.

Usage

 Basic

In Python:

```python
from latex2sympy2 import latex2sympy, latex2latex

tex = r"\frac{d}{dx}(x^{2}+x)"
# Or you can use '\mathrm{d}' to replace 'd'
latex2sympy(tex)
# => "Derivative(x**2 + x, x)"
latex2latex(tex)
# => "2 x + 1"
```

 Examples

|LaTeX|Converted SymPy|Calculated Latex|
|-----|-----|---------------|
|`x^{3}` $x^{3}$| `x**3`|`x^{3}` $x^{3}$|
|`\frac{d}{dx} tx` $\frac{d}{dx}tx$|`Derivative(x*t, x)`|`t` $t$|
|`\sum_{i = 1}^{n} i` $\sum_{i = 1}^{n} i$|`Sum(i, (i, 1, n))`|`\frac{n \left(n + 1\right)}{2}` $\frac{n \left(n + 1\right)}{2}$|
|`\int_{a}^{b} \frac{dt}{t}`|`Integral(1/t, (t, a, b))`|`-\log{(a)} + \log{(b)}` $-\log{(a)} + \log{(b)}$|
|`(2x^3 - x + z)|_{x=3}` $(2x^3 - x + z)\|_{x=3}$|`z + 51`| `z + 51` $z + 51$ |

If you want to read the math formula, you can click [GitNotes](https://notes.orangex4.cool/?git=github&github=OrangeX4/latex2sympy).

 Matrix

Determinant

``` python
from latex2sympy2 import latex2sympy

tex = r"\begin{vmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}"
latex2sympy(tex)
# => "x^{3}"
```

Transpose

``` python
from latex2sympy2 import latex2sympy

tex = r"\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T"
# Or you can use "\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}'"
latex2sympy(tex)
# => "Matrix([[1, 4, 7], [2, 5, 8], [3, 6, 9]])"
```

Elementary Transformation

``` python
from latex2sympy2 import latex2sympy

matrix = r'''
    \begin{pmatrix}
        1 & 2 & 3 \\ 
        4 & 5 & 6 \\
        7 & 8 & 9 \\ 
    \end{pmatrix}
'''

# Scale the row with grammar "\xrightarrow{kr_n}"
tex = matrix + r'\xrightarrow{3r_1}'
latex2sympy(tex)
# => "Matrix([[3, 6, 9], [4, 5, 6], [7, 8, 9]])"

# Swap the cols with grammar "\xrightarrow{c_1<=>c_2}"
# Of course, you can use "\leftrightarrow" to replace "<=>" 
tex = matrix + r'\xrightarrow{c_1<=>c_2}'
latex2sympy(tex)
# => "Matrix([[2, 1, 3], [5, 4, 6], [8, 7, 9]])"

# Scale the second row and add it to the first row
# with grammar "\xrightarrow{r_1+kr_2}"
tex = matrix + r'\xrightarrow{r_1+kr_2}'
latex2sympy(tex)
# => "Matrix([[4*k + 1, 5*k + 2, 6*k + 3], [4, 5, 6], [7, 8, 9]])"

# You can compose the transform with comma ","
# and grammar "\xrightarrow[4r_3]{2r_1, 3r_2}"
# Remember the priority of "{}" is higher than "[]"
tex = matrix + r'\xrightarrow[4r_3]{2r_1, 3r_2}'
latex2sympy(tex)
# => "Matrix([[2, 4, 6], [12, 15, 18], [28, 32, 36]])"
```

 Variances

``` python
from latex2sympy2 import latex2sympy, variances, var, set_variances

# Assign x a value of 1
latex2sympy(r"x = 1")

# Calculate x + y
latex2sympy(r"x + y")
# => "y + 1"

# Get all variances
print(variances)
# => "{x: 1}"

# Get variance of "x"
print(var["x"])
# => "1"

# Reset all variances
set_variances({})
latex2sympy(r"x + y")
# => "x + y"
```


Contributing

If you want to add a new grammar, you can fork the code from [OrangeX4/latex2sympy](https://github.com/OrangeX4/latex2sympy).

* To modify parser grammar, view the existing structure in `PS.g4`.
* To modify the action associated with each grammar, look into `latex2sympy.py`.

Contributors are welcome! Feel free to open a pull request or an issue.