1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
#!/usr/bin/env python3
"""
智能平衡数据加载器 - 自动检测并重新生成不平衡批次
"""
import torch
from torch.utils.data import Dataset, DataLoader
import random
from typing import List, Dict
import warnings
class SmartBalancedGEEDataset(Dataset):
def __init__(self, data: List[Dict]):
self.data = data
# 按性别分组
self.male_data = [item for item in data if item['gender'] == 'male']
self.female_data = [item for item in data if item['gender'] == 'female']
print(f"📊 数据分布: male={len(self.male_data)}, female={len(self.female_data)}")
# 确保有足够的数据
if len(self.male_data) == 0 or len(self.female_data) == 0:
raise ValueError("数据中必须包含男性和女性样本")
# 确保有足够的样本进行重新生成
min_samples = min(len(self.male_data), len(self.female_data))
if min_samples < 10:
warnings.warn(f"样本数量较少 (min={min_samples}),可能影响批次生成质量")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def generate_balanced_batch(self, batch_size: int, max_retries: int = 10):
"""生成一个平衡的批次,如果失败会重试"""
if batch_size < 2:
raise ValueError("batch_size必须>=2才能保证性别平衡")
# 计算每个性别需要的样本数
male_per_batch = batch_size // 2
female_per_batch = batch_size - male_per_batch
for attempt in range(max_retries):
try:
batch = []
# 🔧 修复: 使用更好的随机策略确保平衡
# 强制选择所需数量的男性样本
if len(self.male_data) >= male_per_batch:
male_samples = random.sample(self.male_data, male_per_batch)
else:
# 如果男性样本不够,用替换的方式采样
male_samples = random.choices(self.male_data, k=male_per_batch)
batch.extend(male_samples)
# 强制选择所需数量的女性样本
if len(self.female_data) >= female_per_batch:
female_samples = random.sample(self.female_data, female_per_batch)
else:
# 如果女性样本不够,用替换的方式采样
female_samples = random.choices(self.female_data, k=female_per_batch)
batch.extend(female_samples)
# 打乱批次内的顺序
random.shuffle(batch)
# 最终验证批次平衡性
male_count = sum(1 for item in batch if item['gender'] == 'male')
female_count = sum(1 for item in batch if item['gender'] == 'female')
if male_count > 0 and female_count > 0:
return batch
else:
print(f"❌ 尝试 {attempt+1}: 批次不平衡 (male={male_count}, female={female_count}),重新生成...")
except Exception as e:
print(f"⚠️ 尝试 {attempt+1} 失败: {e}")
continue
# 如果所有尝试都失败,返回一个强制平衡的批次
print(f"❌ {max_retries} 次尝试后仍然失败,强制生成平衡批次")
return self._force_balanced_batch(batch_size)
def _force_balanced_batch(self, batch_size: int):
"""强制生成一个平衡批次"""
batch = []
male_per_batch = batch_size // 2
female_per_batch = batch_size - male_per_batch
# 强制添加男性样本(允许重复)
for _ in range(male_per_batch):
batch.append(random.choice(self.male_data))
# 强制添加女性样本(允许重复)
for _ in range(female_per_batch):
batch.append(random.choice(self.female_data))
random.shuffle(batch)
return batch
class SmartBalancedDataLoader:
"""智能平衡数据加载器"""
def __init__(self, dataset: SmartBalancedGEEDataset, batch_size: int, num_batches: int):
self.dataset = dataset
self.batch_size = batch_size
self.num_batches = num_batches
self.current_idx = 0
print(f"🧠 智能数据加载器初始化: batch_size={batch_size}, num_batches={num_batches}")
def __iter__(self):
self.current_idx = 0
return self
def __next__(self):
if self.current_idx >= self.num_batches:
raise StopIteration
# 🔧 特殊处理第一个批次,确保绝对平衡
if self.current_idx == 0:
print(f"🎯 特殊处理第一个批次")
batch = self._generate_guaranteed_balanced_batch()
else:
# 其他批次使用标准方法
batch = self.dataset.generate_balanced_batch(self.batch_size)
self.current_idx += 1
# 应用collate函数并验证
return self._smart_collate(batch)
def _generate_guaranteed_balanced_batch(self):
"""保证生成平衡的第一个批次"""
batch_size = self.batch_size
male_per_batch = batch_size // 2
female_per_batch = batch_size - male_per_batch
batch = []
# 强制选择男性样本(取前N个或轮换选择)
if len(self.dataset.male_data) >= male_per_batch:
# 不使用随机,而是轮换选择
male_samples = self.dataset.male_data[:male_per_batch]
else:
# 重复选择
male_samples = (self.dataset.male_data * ((male_per_batch // len(self.dataset.male_data)) + 1))[:male_per_batch]
batch.extend(male_samples)
# 强制选择女性样本(取前N个或轮换选择)
if len(self.dataset.female_data) >= female_per_batch:
# 不使用随机,而是轮换选择
female_samples = self.dataset.female_data[:female_per_batch]
else:
# 重复选择
female_samples = (self.dataset.female_data * ((female_per_batch // len(self.dataset.female_data)) + 1))[:female_per_batch]
batch.extend(female_samples)
# 验证
male_count = sum(1 for item in batch if item['gender'] == 'male')
female_count = sum(1 for item in batch if item['gender'] == 'female')
print(f"🎯 第一批次: male={male_count}, female={female_count} (强制平衡)")
# 打乱顺序
random.shuffle(batch)
return batch
def _smart_collate(self, batch, max_regenerate: int = 3):
"""智能collate函数,如果检测到不平衡会重新生成"""
inputs = [item["input"] for item in batch]
genders = [item["gender"] for item in batch]
# 检查批次平衡性
male_count = sum(1 for g in genders if g == 'male')
female_count = sum(1 for g in genders if g == 'female')
# 如果不平衡,尝试重新生成
regenerate_count = 0
while (male_count == 0 or female_count == 0) and regenerate_count < max_regenerate:
print(f"🔄 检测到不平衡批次 (male={male_count}, female={female_count}),重新生成...")
# 重新生成批次
batch = self.dataset.generate_balanced_batch(self.batch_size)
inputs = [item["input"] for item in batch]
genders = [item["gender"] for item in batch]
# 重新检查
male_count = sum(1 for g in genders if g == 'male')
female_count = sum(1 for g in genders if g == 'female')
regenerate_count += 1
# 最终检查
if male_count == 0:
print("❌ 最终警告: 批次中没有男性样本!")
if female_count == 0:
print("❌ 最终警告: 批次中没有女性样本!")
if male_count > 0 and female_count > 0:
print(f"✅ 平衡批次: male={male_count}, female={female_count}")
return {
"input": inputs,
"gender": genders
}
def create_smart_balanced_dataloader(data: List[Dict], batch_size: int, num_batches: int = 10):
"""创建智能平衡数据加载器"""
if batch_size < 2:
print("⚠️ 警告: batch_size < 2,无法保证性别平衡")
# 回退到普通DataLoader
dataset = SmartBalancedGEEDataset(data)
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
dataset = SmartBalancedGEEDataset(data)
print(f"🧠 创建智能平衡数据加载器")
print(f" 批次大小: {batch_size}")
print(f" 批次数量: {num_batches}")
print(f" 每批次配置: male={batch_size//2}, female={batch_size-batch_size//2}")
return SmartBalancedDataLoader(dataset, batch_size, num_batches)
# 测试函数
if __name__ == "__main__":
# 测试智能平衡数据加载器
import sys
sys.path.append('.')
from dataset.gee_processor import GEEProcessor
class MockTokenizer:
def apply_chat_template(self, messages, tokenize=False, add_generation_prompt=True):
return messages[0]["content"]
processor = GEEProcessor(MockTokenizer())
test_data = processor.create_test_data(num_samples=20)
print("🧪 测试智能平衡数据加载器")
dataloader = create_smart_balanced_dataloader(test_data, batch_size=4, num_batches=5)
for i, batch in enumerate(dataloader):
print(f"\n=== 批次 {i+1} ===")
print(f"输入数量: {len(batch['input'])}")
print(f"性别分布: {batch['gender']}")
# 验证平衡性
male_count = sum(1 for g in batch['gender'] if g == 'male')
female_count = sum(1 for g in batch['gender'] if g == 'female')
if male_count > 0 and female_count > 0:
print(f"✅ 批次完美平衡: male={male_count}, female={female_count}")
else:
print(f"❌ 批次仍然不平衡: male={male_count}, female={female_count}")
if i >= 4: # 测试5个批次
break
print("\n�� 智能平衡数据加载器测试完成!")
|