summaryrefslogtreecommitdiff
path: root/test_gee_training.py
blob: 82cce047611e64aa23363d52bc796d68513696d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python3
"""
GEE训练逻辑测试脚本
模拟训练过程而不需要真实模型
"""

import sys
import os
import torch
import numpy as np
from pathlib import Path

# 添加项目路径
sys.path.append('.')

from dataset.gee_processor import GEEProcessor
from losses.gee_loss import GEELoss, gender_to_label

class MockTokenizer:
    def __init__(self):
        self.pad_token_id = 0
        self.eos_token = '<|endoftext|>'
        self.pad_token = self.eos_token
        
    def apply_chat_template(self, messages, tokenize=False, add_generation_prompt=True):
        return messages[0]["content"]
    
    def __call__(self, texts, return_tensors=None, padding=None, truncation=None, max_length=None):
        # 模拟tokenization
        batch_size = len(texts)
        seq_len = 50  # 固定序列长度用于测试
        
        return {
            'input_ids': torch.randint(1, 1000, (batch_size, seq_len)),
            'attention_mask': torch.ones(batch_size, seq_len)
        }

class MockModel:
    def __init__(self):
        self.device = 'cpu'
    
    def __call__(self, input_ids, attention_mask=None):
        batch_size, seq_len = input_ids.shape
        vocab_size = 1000
        
        # 模拟logits输出
        logits = torch.randn(batch_size, seq_len, vocab_size)
        
        class MockOutput:
            def __init__(self, logits):
                self.logits = logits
        
        return MockOutput(logits)
    
    def generate(self, input_ids, attention_mask=None, max_new_tokens=50, **kwargs):
        batch_size, prompt_len = input_ids.shape
        # 模拟生成新的token
        new_tokens = torch.randint(1, 1000, (batch_size, max_new_tokens))
        return torch.cat([input_ids, new_tokens], dim=1)

def test_gee_training_logic():
    """测试GEE训练逻辑"""
    print("="*60)
    print("测试GEE训练逻辑")
    print("="*60)
    
    # 初始化组件
    tokenizer = MockTokenizer()
    model = MockModel()
    gee_processor = GEEProcessor(tokenizer)
    gee_loss_fn = GEELoss(lambda_weight=3.0, use_l1=False)
    
    # 生成测试数据
    train_data = gee_processor.create_test_data(num_samples=20)
    print(f"生成训练数据: {len(train_data)} 条")
    
    # 模拟训练循环
    batch_size = 4
    num_steps = 5
    
    print(f"\n开始模拟训练 ({num_steps} 步)...")
    
    for step in range(1, num_steps + 1):
        # 创建batch
        batch_data = train_data[(step-1)*batch_size:step*batch_size]
        if len(batch_data) < batch_size:
            # 循环使用数据
            batch_data = train_data[:batch_size]
        
        batch = {
            "input": [item["input"] for item in batch_data],
            "gender": [item["gender"] for item in batch_data]
        }
        
        # 模拟tokenization
        inputs = tokenizer(batch["input"])
        
        # 模拟生成
        gen_ids = model.generate(**inputs, max_new_tokens=20)
        
        # 准备完整序列
        seq = gen_ids[:, :100]  # 限制长度用于测试
        prompt_lengths = torch.tensor([inputs['input_ids'].shape[1]] * batch_size)
        
        # 计算logits和熵
        mock_output = model(seq)
        logits = mock_output.logits
        
        # 计算GEE损失
        H_tok = gee_loss_fn.compute_token_entropy(logits)
        H_i = gee_loss_fn.compute_sample_entropy(H_tok, prompt_lengths)
        
        # 准备性别标签
        gender_labels = torch.tensor([gender_to_label(g) for g in batch["gender"]])
        
        # 计算损失
        loss, metrics = gee_loss_fn.compute_gee_loss(H_i, gender_labels)
        
        # 打印训练日志
        print(f"Step {step} | loss={loss.item():.6f} | "
              f"entropy_gap={metrics['entropy_gap']:.6f} | "
              f"H_male={metrics['H_male']:.6f} | "
              f"H_female={metrics['H_female']:.6f}")
        
        # 验证损失计算
        assert not torch.isnan(loss), "损失为NaN"
        assert loss.item() > 0, "损失应该为正值"
        assert 'entropy_gap' in metrics, "缺少entropy_gap指标"
    
    print("✓ GEE训练逻辑测试通过")

def test_different_lambdas():
    """测试不同lambda值的影响"""
    print("\n" + "="*60)
    print("测试不同lambda值的影响")
    print("="*60)
    
    tokenizer = MockTokenizer()
    model = MockModel()
    gee_processor = GEEProcessor(tokenizer)
    
    # 测试不同的lambda值
    lambda_values = [0.0, 1.0, 3.0, 5.0]
    
    # 创建固定的测试数据
    batch_size = 4
    seq_len = 50
    vocab_size = 1000
    
    logits = torch.randn(batch_size, seq_len, vocab_size)
    prompt_lengths = torch.tensor([20, 20, 20, 20])
    gender_labels = torch.tensor([0, 1, 0, 1])  # male, female, male, female
    
    print("Lambda值对损失的影响:")
    print("Lambda\tEM Loss\tBias Loss\tTotal Loss\tEntropy Gap")
    print("-" * 60)
    
    for lambda_val in lambda_values:
        gee_loss_fn = GEELoss(lambda_weight=lambda_val, use_l1=False)
        
        H_tok = gee_loss_fn.compute_token_entropy(logits)
        H_i = gee_loss_fn.compute_sample_entropy(H_tok, prompt_lengths)
        loss, metrics = gee_loss_fn.compute_gee_loss(H_i, gender_labels)
        
        print(f"{lambda_val:.1f}\t{metrics['loss_em']:.4f}\t"
              f"{metrics['loss_bias']:.4f}\t{metrics['loss_total']:.4f}\t"
              f"{metrics['entropy_gap']:.4f}")
    
    print("✓ Lambda值测试通过")

def test_l1_vs_l2():
    """测试L1和L2损失的差异"""
    print("\n" + "="*60)
    print("测试L1和L2损失的差异")
    print("="*60)
    
    # 创建固定的测试数据
    batch_size = 4
    seq_len = 50
    vocab_size = 1000
    
    logits = torch.randn(batch_size, seq_len, vocab_size)
    prompt_lengths = torch.tensor([20, 20, 20, 20])
    gender_labels = torch.tensor([0, 1, 0, 1])
    
    # 测试L2版本
    gee_loss_l2 = GEELoss(lambda_weight=3.0, use_l1=False)
    H_tok = gee_loss_l2.compute_token_entropy(logits)
    H_i = gee_loss_l2.compute_sample_entropy(H_tok, prompt_lengths)
    loss_l2, metrics_l2 = gee_loss_l2.compute_gee_loss(H_i, gender_labels)
    
    # 测试L1版本
    gee_loss_l1 = GEELoss(lambda_weight=3.0, use_l1=True)
    loss_l1, metrics_l1 = gee_loss_l1.compute_gee_loss(H_i, gender_labels)
    
    print(f"L2损失: {metrics_l2['loss_total']:.6f} (bias: {metrics_l2['loss_bias']:.6f})")
    print(f"L1损失: {metrics_l1['loss_total']:.6f} (bias: {metrics_l1['loss_bias']:.6f})")
    print(f"熵差距: {metrics_l2['entropy_gap']:.6f}")
    
    print("✓ L1 vs L2测试通过")

def main():
    """主测试函数"""
    print("开始GEE训练逻辑测试...")
    
    try:
        test_gee_training_logic()
        test_different_lambdas()
        test_l1_vs_l2()
        
        print("\n" + "="*60)
        print("所有训练逻辑测试通过!✓")
        print("="*60)
        print("\n核心功能验证:")
        print("✅ 数据处理流程正常")
        print("✅ 损失函数计算正确")
        print("✅ 训练循环逻辑正确")
        print("✅ 不同参数配置有效")
        print("\n🎯 准备就绪,可以进行真实模型训练!")
        
    except Exception as e:
        print(f"\n测试失败: {e}")
        import traceback
        traceback.print_exc()
        return False
    
    return True

if __name__ == "__main__":
    success = main()
    sys.exit(0 if success else 1)