summaryrefslogtreecommitdiff
path: root/src/personalization/config/settings.py
diff options
context:
space:
mode:
authorYurenHao0426 <blackhao0426@gmail.com>2025-12-17 04:29:37 -0600
committerYurenHao0426 <blackhao0426@gmail.com>2025-12-17 04:29:37 -0600
commite43b3f8aa36c198b95c1e46bea2eaf3893b13dc3 (patch)
tree6ce8a00d2f8b9ebd83c894a27ea01ac50cfb2ff5 /src/personalization/config/settings.py
Initial commit (clean history)HEADmain
Diffstat (limited to 'src/personalization/config/settings.py')
-rw-r--r--src/personalization/config/settings.py73
1 files changed, 73 insertions, 0 deletions
diff --git a/src/personalization/config/settings.py b/src/personalization/config/settings.py
new file mode 100644
index 0000000..1bb1bbe
--- /dev/null
+++ b/src/personalization/config/settings.py
@@ -0,0 +1,73 @@
+from __future__ import annotations
+
+import os
+from pathlib import Path
+from typing import Optional, Any, Dict
+
+import yaml
+from pydantic import BaseModel, Field
+
+
+class ModelSpec(BaseModel):
+ hf_id: str = Field(..., description="Hugging Face repository id")
+ local_path: str = Field(..., description="Local directory for model weights")
+ dtype: Optional[str] = Field(
+ default="bfloat16", description="Preferred torch dtype: bfloat16|float16|float32"
+ )
+ device_map: Optional[str] = Field(default="auto", description="Device map policy")
+
+
+class EmbeddingModelsConfig(BaseModel):
+ qwen3: Optional[ModelSpec] = None
+ nemotron: Optional[ModelSpec] = None
+
+
+class RerankerModelsConfig(BaseModel):
+ qwen3_8b: Optional[ModelSpec] = None
+
+
+class LocalModelsConfig(BaseModel):
+ llm: ModelSpec
+ preference_extractor: Any # Allow flexible dict or ModelSpec for now to support map
+ embedding: Optional[EmbeddingModelsConfig] = None
+ reranker: Optional[RerankerModelsConfig] = None
+
+
+def _resolve_config_path(env_key: str, default_rel: str) -> Path:
+ value = os.getenv(env_key)
+ if value:
+ return Path(value).expanduser().resolve()
+ return (Path.cwd() / default_rel).resolve()
+
+
+def load_local_models_config(path: Optional[str] = None) -> LocalModelsConfig:
+ config_path = Path(path) if path else _resolve_config_path(
+ "LOCAL_MODELS_CONFIG", "configs/local_models.yaml"
+ )
+ with open(config_path, "r", encoding="utf-8") as f:
+ raw = yaml.safe_load(f) or {}
+ models = raw.get("models", {})
+ embedding_cfg = None
+ if "embedding" in models:
+ emb = models["embedding"] or {}
+ # dtype/device_map are not necessary for embedders; ModelSpec still accepts them
+ embedding_cfg = EmbeddingModelsConfig(
+ qwen3=ModelSpec(**emb["qwen3"]) if "qwen3" in emb else None,
+ nemotron=ModelSpec(**emb["nemotron"]) if "nemotron" in emb else None,
+ )
+
+ reranker_cfg = None
+ if "reranker" in models:
+ rer = models["reranker"] or {}
+ reranker_cfg = RerankerModelsConfig(
+ qwen3_8b=ModelSpec(**rer["qwen3_8b"]) if "qwen3_8b" in rer else None
+ )
+
+ return LocalModelsConfig(
+ llm=ModelSpec(**models["llm"]),
+ preference_extractor=models["preference_extractor"], # Pass raw dict/value
+ embedding=embedding_cfg,
+ reranker=reranker_cfg,
+ )
+
+