summaryrefslogtreecommitdiff
path: root/scripts/init_user_states.py
diff options
context:
space:
mode:
Diffstat (limited to 'scripts/init_user_states.py')
-rw-r--r--scripts/init_user_states.py86
1 files changed, 86 insertions, 0 deletions
diff --git a/scripts/init_user_states.py b/scripts/init_user_states.py
new file mode 100644
index 0000000..73c7435
--- /dev/null
+++ b/scripts/init_user_states.py
@@ -0,0 +1,86 @@
+#!/usr/bin/env python3
+"""
+Script to initialize User States (z_long) from Memory Embeddings.
+"""
+
+import sys
+import os
+import numpy as np
+import json
+from collections import defaultdict
+
+# Add src to sys.path
+sys.path.append(os.path.join(os.path.dirname(__file__), "../src"))
+
+from personalization.user_model.tensor_store import UserTensorStore, UserState
+from personalization.retrieval.preference_store.schemas import MemoryCard
+
+def main():
+ cards_path = "data/corpora/memory_cards.jsonl"
+ item_proj_path = "data/corpora/item_projection.npz"
+ user_store_path = "data/users/user_store.npz"
+
+ # Ensure user dir
+ os.makedirs(os.path.dirname(user_store_path), exist_ok=True)
+
+ # 1. Load data
+ print("Loading memory cards...")
+ cards = []
+ if os.path.exists(cards_path):
+ with open(cards_path, "r") as f:
+ for line in f:
+ cards.append(MemoryCard.model_validate_json(line))
+ else:
+ print("No memory cards found. Exiting.")
+ return
+
+ print("Loading item projection V...")
+ if not os.path.exists(item_proj_path):
+ print("Item projection not found. Run build_item_space.py first.")
+ return
+
+ proj_data = np.load(item_proj_path)
+ V = proj_data["V"] # [M, k]
+
+ if len(cards) != V.shape[0]:
+ print(f"Warning: Number of cards ({len(cards)}) != V rows ({V.shape[0]}). Mismatch?")
+ # If mismatch, we might need to be careful. For now assume aligned.
+
+ k = V.shape[1]
+
+ # 2. Group by user
+ user_indices = defaultdict(list)
+ for idx, card in enumerate(cards):
+ user_indices[card.user_id].append(idx)
+
+ # 3. Initialize Store
+ print(f"Initializing UserStore at {user_store_path}...")
+ store = UserTensorStore(k=k, path=user_store_path)
+
+ # 4. Compute z_long and save
+ print(f"Processing {len(user_indices)} users...")
+ for uid, indices in user_indices.items():
+ if not indices:
+ continue
+
+ # Get item vectors for this user
+ # indices is list of int, V is numpy array
+ user_items = V[indices]
+
+ # Mean pooling
+ z_long = np.mean(user_items, axis=0)
+
+ # Get/Create state
+ state = store.get_state(uid)
+ state.z_long = z_long
+ state.z_short = np.zeros(k, dtype=np.float32)
+ state.reward_ma = 0.0
+
+ store.save_state(state)
+
+ store.persist()
+ print("Done. User states initialized.")
+
+if __name__ == "__main__":
+ main()
+