diff options
Diffstat (limited to 'src/personalization/serving')
| -rw-r--r-- | src/personalization/serving/__init__.py | 22 | ||||
| -rw-r--r-- | src/personalization/serving/api/__init__.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/api/main.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/api/routes/__init__.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/api/routes/feedback.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/api/routes/query.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/api/routes/users.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/api/schemas.py | 0 | ||||
| -rw-r--r-- | src/personalization/serving/personalized_llm.py | 837 |
9 files changed, 859 insertions, 0 deletions
diff --git a/src/personalization/serving/__init__.py b/src/personalization/serving/__init__.py new file mode 100644 index 0000000..11adcf8 --- /dev/null +++ b/src/personalization/serving/__init__.py @@ -0,0 +1,22 @@ +# Personalization Serving Module +# +# This module provides the interface layer for the personalization system. + +from personalization.serving.personalized_llm import ( + PersonalizedLLM, + AssistantResponse, + UsageStats, + DebugInfo, + Feedback, + create_personalized_llm, +) + +__all__ = [ + "PersonalizedLLM", + "AssistantResponse", + "UsageStats", + "DebugInfo", + "Feedback", + "create_personalized_llm", +] + diff --git a/src/personalization/serving/api/__init__.py b/src/personalization/serving/api/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/__init__.py diff --git a/src/personalization/serving/api/main.py b/src/personalization/serving/api/main.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/main.py diff --git a/src/personalization/serving/api/routes/__init__.py b/src/personalization/serving/api/routes/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/routes/__init__.py diff --git a/src/personalization/serving/api/routes/feedback.py b/src/personalization/serving/api/routes/feedback.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/routes/feedback.py diff --git a/src/personalization/serving/api/routes/query.py b/src/personalization/serving/api/routes/query.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/routes/query.py diff --git a/src/personalization/serving/api/routes/users.py b/src/personalization/serving/api/routes/users.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/routes/users.py diff --git a/src/personalization/serving/api/schemas.py b/src/personalization/serving/api/schemas.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/src/personalization/serving/api/schemas.py diff --git a/src/personalization/serving/personalized_llm.py b/src/personalization/serving/personalized_llm.py new file mode 100644 index 0000000..2c4d5a8 --- /dev/null +++ b/src/personalization/serving/personalized_llm.py @@ -0,0 +1,837 @@ +#!/usr/bin/env python3 +""" +Personalized LLM Interface for Evaluation. + +This module provides the `PersonalizedLLM` class that wraps the entire +personalization system into a clean interface for evaluation frameworks +and user simulators. + +Interface contract: +- chat(user_id, query) -> AssistantResponse: Main online interface +- reset_session(user_id): Clear session history and short-term state +- reset_user(user_id): Completely reset user (long-term, short-term, memories) +- apply_feedback(feedback): Apply external feedback for RL updates +""" + +from __future__ import annotations + +import os +import sys +import uuid +from dataclasses import dataclass, field +from typing import Any, Dict, List, Optional + +import numpy as np +import yaml + +# Ensure src is in path for standalone usage +_src_path = os.path.join(os.path.dirname(__file__), "../../..") +if _src_path not in sys.path: + sys.path.insert(0, _src_path) + +from personalization.config.settings import load_local_models_config +from personalization.config.registry import get_preference_extractor, get_chat_model +from personalization.models.embedding.qwen3_8b import Qwen3Embedding8B +from personalization.models.reranker.qwen3_reranker import Qwen3Reranker +from personalization.user_model.tensor_store import UserTensorStore, UserState +from personalization.user_model.session_state import OnlineSessionState +from personalization.user_model.features import ItemProjection +from personalization.retrieval.preference_store.schemas import ( + MemoryCard, ChatTurn, PreferenceList, Preference +) +from personalization.retrieval.pipeline import retrieve_with_policy, retrieve_no_policy +from personalization.feedback.handlers import eval_step +from personalization.user_model.policy.reinforce import reinforce_update_user_state + + +# ============================================================================= +# Data Classes for Interface +# ============================================================================= + +@dataclass +class UsageStats: + """Token usage statistics from a chat completion.""" + prompt_tokens: int + completion_tokens: int + total_tokens: int + model: str + + +@dataclass +class DebugInfo: + """ + Debug information for analysis and ablation studies. + All fields are optional - fill what you have, leave empty what you don't. + """ + selected_memory_ids: List[str] = field(default_factory=list) + selected_memory_notes: List[str] = field(default_factory=list) + selected_memory_scores: List[float] = field(default_factory=list) + user_vector_before: Optional[List[float]] = None + user_vector_after: Optional[List[float]] = None + extracted_preferences: List[Dict[str, Any]] = field(default_factory=list) + extra: Dict[str, Any] = field(default_factory=dict) + + +@dataclass +class AssistantResponse: + """Response from the personalized LLM chat interface.""" + answer: str + usage: UsageStats + debug: Optional[DebugInfo] = None + + +@dataclass +class Feedback: + """ + Feedback data structure for RL updates from user simulator or judge. + + Attributes: + user_id: The user this feedback is for. + turn_id: The turn this feedback refers to (from the previous turn). + reward: Reward scalar computed by user simulator / judge. + gating: Gating flag (1=valid learning signal, 0=skip update). + meta: Additional metadata for training/analysis. + """ + user_id: str + turn_id: int + reward: float + gating: float # Can be 0.0 or 1.0, or continuous + meta: Dict[str, Any] = field(default_factory=dict) + + +# ============================================================================= +# Internal Session State Extended +# ============================================================================= + +@dataclass +class _SessionContext: + """Extended session context for evaluation tracking.""" + session_state: OnlineSessionState + turn_counter: int = 0 + # Store info needed for apply_feedback + pending_rl_update: Optional[Dict[str, Any]] = None + + +# ============================================================================= +# PersonalizedLLM Class +# ============================================================================= + +class PersonalizedLLM: + """ + Personalized LLM wrapper for evaluation frameworks. + + This class provides a clean interface that accepts only (user_id, query) + for the main chat function, while internally managing: + - User state vectors (z_long, z_short) + - Session history + - Memory retrieval and policy + - Preference extraction and storage + - RL updates + + Example usage: + llm = PersonalizedLLM() + + # Reset user for fresh experiment + llm.reset_user("user_123") + + # Start a session + llm.reset_session("user_123") + + # Chat + response = llm.chat("user_123", "What's a good recipe for dinner?") + print(response.answer) + + # Apply feedback from previous turn (from turn 2 onwards) + llm.apply_feedback(Feedback( + user_id="user_123", + turn_id=0, + reward=0.8, + gating=1.0 + )) + """ + + def __init__( + self, + config_path: Optional[str] = None, + user_store_path: str = "data/users/user_store_eval.npz", + memory_cards_path: str = "data/corpora/memory_cards.jsonl", + memory_embeddings_path: str = "data/corpora/memory_embeddings.npy", + item_projection_path: str = "data/corpora/item_projection.npz", + only_own_memories: bool = True, + enable_preference_extraction: bool = True, + enable_rl_updates: bool = True, + mode: str = "full", # "full", "nopersonal", or "vanilla" + eval_mode: bool = True, # True = greedy selection, False = stochastic sampling + device_assignment: Optional[Dict[str, str]] = None, # Multi-GPU support + ): + """ + Initialize the PersonalizedLLM. + + Args: + config_path: Path to config file. If None, uses default locations. + user_store_path: Path to persist user state vectors. + memory_cards_path: Path to memory cards JSONL file. + memory_embeddings_path: Path to memory embeddings numpy file. + item_projection_path: Path to item projection (PCA) file. + only_own_memories: If True, only retrieve user's own memories (strict privacy). + enable_preference_extraction: If True, extract preferences from user turns. + enable_rl_updates: If True, apply RL updates via apply_feedback. + mode: "full" for full personalization, "nopersonal" for baseline (no user vector influence), + "vanilla" for pure LLM without any memory retrieval or preference extraction. + eval_mode: If True, use greedy/deterministic selection (for evaluation). + If False, use stochastic sampling (for training/exploration). + device_assignment: Optional dict to assign models to specific GPUs. + Example: {"embed": "cuda:0", "reranker": "cuda:1", "chat": "cuda:2", "extractor": "cuda:3"} + If None, uses "auto" for all models. + """ + self.only_own_memories = only_own_memories + self.enable_preference_extraction = enable_preference_extraction + self.enable_rl_updates = enable_rl_updates + self.mode = mode # "full" or "nopersonal" + self.eval_mode = eval_mode # True = greedy, False = sample + + # Multi-GPU device assignment + self._device_assignment = device_assignment or { + "embed": "auto", + "reranker": "auto", + "chat": "auto", + "extractor": "auto", + } + + # Paths + self._memory_cards_path = memory_cards_path + self._memory_embeddings_path = memory_embeddings_path + self._item_projection_path = item_projection_path + + # RL Configuration + # Note: beta/eta increased for more significant z_u updates + self._rl_cfg = { + "item_dim": 256, + "beta_long": 2.0, # Increased from 0.1 for stronger personalization + "beta_short": 5.0, # Increased from 0.3 + "tau": 1.0, + "eta_long": 0.01, # Increased from 1e-3 for faster learning + "eta_short": 0.05, # Increased from 5e-3 + "ema_alpha": 0.05, + "short_decay": 0.1, + "dense_topk": 64, + "rerank_topk": 3, + "max_new_tokens": 512, + } + + # Load config and override RL params if available + self._load_config(config_path) + + # Load models + print("[PersonalizedLLM] Loading models...") + self._load_models() + + # Load memory store + print("[PersonalizedLLM] Loading memory store...") + self._load_memory_store() + + # Initialize user store + self._user_store = UserTensorStore( + k=self._rl_cfg["item_dim"], + path=user_store_path, + ) + + # Session contexts per user (in-memory) + self._sessions: Dict[str, _SessionContext] = {} + + print("[PersonalizedLLM] Initialization complete.") + + def _load_config(self, config_path: Optional[str]): + """Load configuration from yaml files.""" + self._cfg = load_local_models_config() + + # Try to load user_model.yaml for RL params + if config_path is None: + config_path = "configs/user_model.yaml" + + self._llm_name = "qwen_1_5b" # Default + + try: + if os.path.exists(config_path): + with open(config_path, "r") as f: + user_cfg = yaml.safe_load(f) + if user_cfg: + # Override RL params if present + for key in self._rl_cfg: + if key in user_cfg: + self._rl_cfg[key] = user_cfg[key] + # LLM name + if "llm_name" in user_cfg: + self._llm_name = user_cfg["llm_name"] + except Exception as e: + print(f"[PersonalizedLLM] Warning: Failed to load config: {e}") + + def _load_models(self): + """Load all ML models with optional multi-GPU assignment.""" + import torch + + # Report GPU availability + num_gpus = torch.cuda.device_count() + print(f"[PersonalizedLLM] Available GPUs: {num_gpus}") + for i in range(num_gpus): + mem = torch.cuda.get_device_properties(i).total_memory / 1e9 + print(f" GPU {i}: {torch.cuda.get_device_name(i)} ({mem:.1f}GB)") + + embed_device = self._device_assignment.get("embed", "auto") + reranker_device = self._device_assignment.get("reranker", "auto") + chat_device = self._device_assignment.get("chat", "auto") + extractor_device = self._device_assignment.get("extractor", "auto") + + # Embedding model + print(f"[PersonalizedLLM] Loading Embedding model on {embed_device}...") + self._embed_model = Qwen3Embedding8B( + model_path=self._cfg.embedding.qwen3.local_path, + dtype=torch.bfloat16, + device_map=embed_device, + ) + + # Reranker + print(f"[PersonalizedLLM] Loading Reranker on {reranker_device}...") + self._reranker = Qwen3Reranker( + model_path=self._cfg.reranker.qwen3_8b.local_path, + device_map=reranker_device, + dtype=torch.bfloat16, + ) + + # Chat model (via registry for backend switching) + print(f"[PersonalizedLLM] Loading ChatModel: {self._llm_name} on {chat_device}...") + # Pass device override if specified (not "auto") + device_for_chat = chat_device if chat_device != "auto" else None + self._chat_model = get_chat_model(self._llm_name, device_override=device_for_chat) + + # Preference extractor + if self.enable_preference_extraction: + extractor_name = "qwen3_0_6b_sft" + print(f"[PersonalizedLLM] Loading extractor: {extractor_name} on {extractor_device}...") + try: + self._extractor = get_preference_extractor(extractor_name) + except Exception as e: + print(f"[PersonalizedLLM] Warning: Failed to load {extractor_name}: {e}. Using rule-based.") + self._extractor = get_preference_extractor("rule") + else: + print("[PersonalizedLLM] Preference extraction disabled, using rule-based extractor.") + self._extractor = get_preference_extractor("rule") + + def _load_memory_store(self): + """Load memory cards and embeddings.""" + if not os.path.exists(self._memory_cards_path): + print(f"[PersonalizedLLM] Warning: Memory cards not found at {self._memory_cards_path}") + self._memory_cards: List[MemoryCard] = [] + self._memory_embeddings = np.zeros((0, 4096), dtype=np.float32) + self._item_vectors = np.zeros((0, self._rl_cfg["item_dim"]), dtype=np.float32) + self._projection = None + return + + # Load cards + self._memory_cards = [] + with open(self._memory_cards_path, "r") as f: + for line in f: + line = line.strip() + if line: + self._memory_cards.append(MemoryCard.model_validate_json(line)) + + # Load embeddings + if os.path.exists(self._memory_embeddings_path): + self._memory_embeddings = np.load(self._memory_embeddings_path) + else: + self._memory_embeddings = np.zeros((len(self._memory_cards), 4096), dtype=np.float32) + + # Load projection + if os.path.exists(self._item_projection_path): + proj_data = np.load(self._item_projection_path) + self._projection = ItemProjection(P=proj_data["P"], mean=proj_data["mean"]) + self._item_vectors = proj_data["V"] + else: + self._projection = None + self._item_vectors = np.zeros((len(self._memory_cards), self._rl_cfg["item_dim"]), dtype=np.float32) + + print(f"[PersonalizedLLM] Loaded {len(self._memory_cards)} memory cards.") + + def _get_or_create_session(self, user_id: str) -> _SessionContext: + """Get or create session context for a user.""" + if user_id not in self._sessions: + self._sessions[user_id] = _SessionContext( + session_state=OnlineSessionState(user_id=user_id), + turn_counter=0, + ) + return self._sessions[user_id] + + def _build_chat_turn(self, user_id: str, text: str, role: str, turn_id: int) -> ChatTurn: + """Build a ChatTurn object.""" + return ChatTurn( + user_id=user_id, + session_id=f"eval_session_{user_id}", + turn_id=turn_id, + role=role, + text=text, + meta={"source": "eval"} + ) + + def _count_tokens(self, text: str) -> int: + """Estimate token count using the tokenizer.""" + try: + # Use the chat model's tokenizer if available + if hasattr(self._chat_model, 'tokenizer'): + return len(self._chat_model.tokenizer.encode(text)) + else: + # Rough estimate: ~4 chars per token + return len(text) // 4 + except Exception: + return len(text) // 4 + + def _add_preferences_as_memory( + self, + prefs: PreferenceList, + query: str, + user_id: str, + turn_id: int, + ) -> List[Dict[str, Any]]: + """ + Add extracted preferences as new memory cards. + Returns list of preference dicts for debug info. + """ + extracted = [] + + if not prefs.preferences or self._projection is None: + return extracted + + # Compute embedding for the query + e_q = self._embed_model.encode([query], return_tensor=False)[0] + v_q = self._projection.transform_vector(np.array(e_q)) + + for pref in prefs.preferences: + note_text = f"When {pref.condition}, {pref.action}." + + # Record for debug + extracted.append({ + "condition": pref.condition, + "action": pref.action, + "confidence": pref.confidence, + }) + + # Deduplication check + is_duplicate = any( + card.user_id == user_id and card.note_text == note_text + for card in self._memory_cards + ) + + if is_duplicate: + continue + + # Create new memory card + card = MemoryCard( + card_id=str(uuid.uuid4()), + user_id=user_id, + source_session_id=f"eval_session_{user_id}", + source_turn_ids=[turn_id], + raw_queries=[query], + preference_list=PreferenceList(preferences=[pref]), + note_text=note_text, + embedding_e=list(e_q), + kind="pref", + ) + + # Add to memory store + self._memory_cards.append(card) + self._memory_embeddings = np.vstack([self._memory_embeddings, np.array([e_q])]) + self._item_vectors = np.vstack([self._item_vectors, np.array([v_q])]) + + return extracted + + # ========================================================================= + # Public Interface + # ========================================================================= + + def chat(self, user_id: str, query: str) -> AssistantResponse: + """ + Main online chat interface. + + Args: + user_id: Unique identifier for the user. + query: Current user query/message. + + Returns: + AssistantResponse containing the answer, usage stats, and debug info. + + Notes: + - Internally manages user state, session history, memory retrieval + - After this call, you can call apply_feedback() with the turn's feedback + """ + ctx = self._get_or_create_session(user_id) + session = ctx.session_state + user_state = self._user_store.get_state(user_id) + + # Record user vector before for debug + z_long_before = user_state.z_long.copy().tolist() + z_short_before = user_state.z_short.copy().tolist() + + # Compute query embedding + e_q_t = np.array(self._embed_model.encode([query], return_tensor=False)[0]) + + # Store pending RL update info from last turn (for apply_feedback) + if session.last_query is not None and self.enable_rl_updates: + ctx.pending_rl_update = { + "last_query": session.last_query, + "last_answer": session.last_answer, + "last_memories": session.last_memories, + "last_query_embedding": session.last_query_embedding, + "current_query_embedding": e_q_t, + "last_candidate_item_vectors": session.last_candidate_item_vectors, + "last_policy_probs": session.last_policy_probs, + "last_chosen_indices": session.last_chosen_indices, + } + + # Add user turn to history + user_turn = self._build_chat_turn(user_id, query, "user", ctx.turn_counter) + session.history.append(user_turn) + + # Vanilla mode: pure LLM without any memory or preference extraction + if self.mode == "vanilla": + # Skip preference extraction and memory retrieval entirely + extracted_prefs = [] + candidates = [] + cand_item_vecs = np.array([]) + base_scores = np.array([]) + chosen_indices = [] + probs = np.array([]) + memories_t = [] + memory_notes = [] + else: + # Extract preferences from conversation (if enabled) + extracted_prefs = [] + if self.enable_preference_extraction: + prefs = self._extractor.extract_turn(session.history) + extracted_prefs = self._add_preferences_as_memory( + prefs, query, user_id, ctx.turn_counter + ) + + # Retrieve memories + # In "nopersonal" mode: deterministic retrieval (dense + rerank + topk), no policy/user vector + # In "full" mode: policy-based retrieval with user vector influence + if self.mode == "nopersonal": + candidates, cand_item_vecs, base_scores, chosen_indices, probs = retrieve_no_policy( + user_id=user_id, + query=query, + embed_model=self._embed_model, + reranker=self._reranker, + memory_cards=self._memory_cards, + memory_embeddings=self._memory_embeddings, + topk_dense=self._rl_cfg["dense_topk"], + topk_rerank=self._rl_cfg["rerank_topk"], + only_own_memories=self.only_own_memories, + ) + else: + beta_long = self._rl_cfg["beta_long"] + beta_short = self._rl_cfg["beta_short"] + # eval_mode=True -> sample=False (greedy/deterministic) + # eval_mode=False -> sample=True (stochastic/exploration) + candidates, cand_item_vecs, base_scores, chosen_indices, probs = retrieve_with_policy( + user_id=user_id, + query=query, + embed_model=self._embed_model, + reranker=self._reranker, + memory_cards=self._memory_cards, + memory_embeddings=self._memory_embeddings, + user_store=self._user_store, + item_vectors=self._item_vectors, + topk_dense=self._rl_cfg["dense_topk"], + topk_rerank=self._rl_cfg["rerank_topk"], + beta_long=beta_long, + beta_short=beta_short, + tau=self._rl_cfg["tau"], + only_own_memories=self.only_own_memories, + sample=not self.eval_mode, + ) + + # Get selected memories + memories_t = [candidates[int(i)] for i in chosen_indices] if chosen_indices else [] + memory_notes = [m.note_text for m in memories_t] + + # Build prompt and count tokens + prompt_tokens = self._count_tokens(query) + for turn in session.history: + prompt_tokens += self._count_tokens(turn.text) + for note in memory_notes: + prompt_tokens += self._count_tokens(note) + + # Generate answer + answer_t = self._chat_model.answer( + history=session.history, + memory_notes=memory_notes, + max_new_tokens=self._rl_cfg["max_new_tokens"], + ) + + completion_tokens = self._count_tokens(answer_t) + + # Add assistant turn to history + assist_turn = self._build_chat_turn(user_id, answer_t, "assistant", ctx.turn_counter) + session.history.append(assist_turn) + + # Update session state for next turn + session.last_query = query + session.last_answer = answer_t + session.last_memories = memories_t + session.last_query_embedding = e_q_t + session.last_candidate_item_vectors = cand_item_vecs + session.last_policy_probs = probs + session.last_chosen_indices = list(chosen_indices) if len(chosen_indices) > 0 else [] + + ctx.turn_counter += 1 + + # Build debug info + debug = DebugInfo( + selected_memory_ids=[m.card_id for m in memories_t], + selected_memory_notes=[m.note_text for m in memories_t], + selected_memory_scores=[float(probs[i]) if i < len(probs) else 0.0 for i in chosen_indices] if len(chosen_indices) > 0 else [], + user_vector_before=z_long_before + z_short_before, # Concatenated for simplicity + user_vector_after=user_state.z_long.tolist() + user_state.z_short.tolist(), + extracted_preferences=extracted_prefs, + extra={ + "num_candidates": len(candidates), + "num_total_memories": len(self._memory_cards), + "z_long_norm": float(np.linalg.norm(user_state.z_long)), + "z_short_norm": float(np.linalg.norm(user_state.z_short)), + } + ) + + # Build usage stats + usage = UsageStats( + prompt_tokens=prompt_tokens, + completion_tokens=completion_tokens, + total_tokens=prompt_tokens + completion_tokens, + model=self._llm_name, + ) + + return AssistantResponse( + answer=answer_t, + usage=usage, + debug=debug, + ) + + def reset_session(self, user_id: str) -> None: + """ + Reset session for a user (new chat window). + + This clears: + - Session conversation history + - Short-term user vector (z_short) + - Pending RL update info + + This preserves: + - Long-term user vector (z_long) + - User's memory cards + + Args: + user_id: The user whose session to reset. + """ + # Clear session context + if user_id in self._sessions: + del self._sessions[user_id] + + # Create fresh session + self._sessions[user_id] = _SessionContext( + session_state=OnlineSessionState(user_id=user_id), + turn_counter=0, + ) + + # Reset short-term vector but keep long-term + user_state = self._user_store.get_state(user_id) + user_state.z_short = np.zeros(self._rl_cfg["item_dim"], dtype=np.float32) + self._user_store.save_state(user_state) + + def reset_user(self, user_id: str) -> None: + """ + Completely reset a user (new "life"). + + This clears: + - Long-term user vector (z_long) + - Short-term user vector (z_short) + - User's memory cards + - Session history + - All cached state + + Args: + user_id: The user to reset. + """ + # Clear session + if user_id in self._sessions: + del self._sessions[user_id] + + # Reset user state vectors + user_state = self._user_store.get_state(user_id) + user_state.z_long = self._user_store.global_init_z.copy() + user_state.z_short = np.zeros(self._rl_cfg["item_dim"], dtype=np.float32) + user_state.reward_ma = 0.0 + self._user_store.save_state(user_state) + + # Find indices to KEEP (cards NOT belonging to this user) + # Must do this BEFORE modifying _memory_cards + keep_indices = [ + i for i, card in enumerate(self._memory_cards) + if card.user_id != user_id + ] + + # Filter memory cards + self._memory_cards = [self._memory_cards[i] for i in keep_indices] + + # Filter embeddings and item vectors to match + if len(keep_indices) > 0 and len(self._memory_embeddings) > 0: + self._memory_embeddings = self._memory_embeddings[keep_indices] + self._item_vectors = self._item_vectors[keep_indices] + else: + # No cards left or no embeddings + embed_dim = self._memory_embeddings.shape[1] if len(self._memory_embeddings) > 0 else 4096 + self._memory_embeddings = np.zeros((0, embed_dim), dtype=np.float32) + self._item_vectors = np.zeros((0, self._rl_cfg["item_dim"]), dtype=np.float32) + + def apply_feedback(self, feedback: Feedback) -> None: + """ + Apply feedback from user simulator or judge. + + This performs the REINFORCE update to user vectors based on + the reward signal from the previous turn. + + Args: + feedback: Feedback object containing reward, gating, and metadata. + + Notes: + - Should be called AFTER chat() but BEFORE the next chat() call + - Uses the stored context from the previous turn + - If enable_rl_updates is False, this is a no-op (logging only) + - If mode is "nopersonal", this is a no-op (baseline comparison) + """ + if not self.enable_rl_updates: + return + + # In "nopersonal" or "vanilla" mode, skip RL updates entirely (baseline) + if self.mode in ("nopersonal", "vanilla"): + return + + user_id = feedback.user_id + ctx = self._sessions.get(user_id) + + if ctx is None or ctx.pending_rl_update is None: + return + + pending = ctx.pending_rl_update + user_state = self._user_store.get_state(user_id) + + # Check if we have the necessary data for RL update + if (pending.get("last_candidate_item_vectors") is not None and + pending.get("last_policy_probs") is not None and + pending.get("last_chosen_indices") is not None and + len(pending["last_chosen_indices"]) > 0): + + # Extract chosen vectors + chosen_indices = pending["last_chosen_indices"] + candidate_vectors = pending["last_candidate_item_vectors"] + + if len(candidate_vectors) > 0: + # REINFORCE expects: + # - item_vectors: ALL candidate vectors [K, k] + # - chosen_indices: indices into those candidates + # - policy_probs: probabilities over all K candidates [K] + updated = reinforce_update_user_state( + user_state=user_state, + item_vectors=candidate_vectors, # All candidates, not just chosen + chosen_indices=chosen_indices, # Original indices into candidates + policy_probs=pending["last_policy_probs"], + reward_hat=feedback.reward, + gating=feedback.gating, + tau=self._rl_cfg["tau"], + eta_long=self._rl_cfg["eta_long"], + eta_short=self._rl_cfg["eta_short"], + ema_alpha=self._rl_cfg["ema_alpha"], + short_decay=self._rl_cfg["short_decay"], + ) + + if updated: + self._user_store.save_state(user_state) + + # Clear pending update + ctx.pending_rl_update = None + + def get_user_state_summary(self, user_id: str) -> Dict[str, Any]: + """ + Get a summary of the user's current state (for debugging/analysis). + + Args: + user_id: The user to query. + + Returns: + Dictionary with user state information. + """ + user_state = self._user_store.get_state(user_id) + ctx = self._sessions.get(user_id) + + user_memory_count = sum( + 1 for card in self._memory_cards if card.user_id == user_id + ) + + return { + "user_id": user_id, + "z_long_norm": float(np.linalg.norm(user_state.z_long)), + "z_short_norm": float(np.linalg.norm(user_state.z_short)), + "reward_ma": user_state.reward_ma, + "session_history_length": len(ctx.session_state.history) if ctx else 0, + "turn_counter": ctx.turn_counter if ctx else 0, + "user_memory_count": user_memory_count, + "total_memory_count": len(self._memory_cards), + } + + def persist(self) -> None: + """ + Persist all state to disk. + + Call this at the end of an evaluation run to save: + - User state vectors + - Memory cards + """ + # Save user store + self._user_store.persist() + + # Save memory cards + with open(self._memory_cards_path, "w", encoding="utf-8") as f: + for card in self._memory_cards: + f.write(card.model_dump_json() + "\n") + + # Save embeddings + np.save(self._memory_embeddings_path, self._memory_embeddings) + + # Save item projection with updated vectors + if self._projection is not None: + np.savez( + self._item_projection_path, + P=self._projection.P, + mean=self._projection.mean, + V=self._item_vectors, + ) + + print("[PersonalizedLLM] State persisted to disk.") + + +# ============================================================================= +# Convenience Factory +# ============================================================================= + +def create_personalized_llm( + config_path: Optional[str] = None, + **kwargs +) -> PersonalizedLLM: + """ + Factory function to create a PersonalizedLLM instance. + + Args: + config_path: Optional path to configuration file. + **kwargs: Additional arguments passed to PersonalizedLLM constructor. + + Returns: + Configured PersonalizedLLM instance. + """ + return PersonalizedLLM(config_path=config_path, **kwargs) + |
