summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/personalization/__init__.py0
-rw-r--r--src/personalization/config/__init__.py0
-rw-r--r--src/personalization/config/registry.py131
-rw-r--r--src/personalization/config/settings.py73
-rw-r--r--src/personalization/data/personamem_loader.py84
-rw-r--r--src/personalization/evaluation/__init__.py0
-rw-r--r--src/personalization/evaluation/compare_pairs.py0
-rw-r--r--src/personalization/evaluation/metrics.py0
-rw-r--r--src/personalization/feedback/__init__.py0
-rw-r--r--src/personalization/feedback/gating.py72
-rw-r--r--src/personalization/feedback/handlers.py50
-rw-r--r--src/personalization/feedback/online_update.py0
-rw-r--r--src/personalization/feedback/reward_model.py64
-rw-r--r--src/personalization/feedback/sampler.py109
-rw-r--r--src/personalization/feedback/schemas.py23
-rw-r--r--src/personalization/retrieval/__init__.py0
-rw-r--r--src/personalization/retrieval/chunking/__init__.py0
-rw-r--r--src/personalization/retrieval/chunking/rules.py0
-rw-r--r--src/personalization/retrieval/pipeline.py250
-rw-r--r--src/personalization/retrieval/preference_store/__init__.py0
-rw-r--r--src/personalization/retrieval/preference_store/base.py0
-rw-r--r--src/personalization/retrieval/preference_store/schemas.py47
-rw-r--r--src/personalization/retrieval/preference_store/vector_kv.py0
-rw-r--r--src/personalization/retrieval/rerank.py0
-rw-r--r--src/personalization/retrieval/store/__init__.py0
-rw-r--r--src/personalization/retrieval/store/base.py0
-rw-r--r--src/personalization/retrieval/store/faiss_store.py0
-rw-r--r--src/personalization/retrieval/store/pgvector_store.py0
-rw-r--r--src/personalization/serving/__init__.py22
-rw-r--r--src/personalization/serving/api/__init__.py0
-rw-r--r--src/personalization/serving/api/main.py0
-rw-r--r--src/personalization/serving/api/routes/__init__.py0
-rw-r--r--src/personalization/serving/api/routes/feedback.py0
-rw-r--r--src/personalization/serving/api/routes/query.py0
-rw-r--r--src/personalization/serving/api/routes/users.py0
-rw-r--r--src/personalization/serving/api/schemas.py0
-rw-r--r--src/personalization/serving/personalized_llm.py837
-rw-r--r--src/personalization/types.py4
-rw-r--r--src/personalization/user_model/__init__.py0
-rw-r--r--src/personalization/user_model/features.py49
-rw-r--r--src/personalization/user_model/policy/__init__.py0
-rw-r--r--src/personalization/user_model/policy/optimizer.py0
-rw-r--r--src/personalization/user_model/policy/reinforce.py104
-rw-r--r--src/personalization/user_model/scoring.py25
-rw-r--r--src/personalization/user_model/session_state.py19
-rw-r--r--src/personalization/user_model/tensor_store.py80
-rw-r--r--src/personalization/utils/__init__.py0
-rw-r--r--src/personalization/utils/ids.py0
-rw-r--r--src/personalization/utils/io.py0
-rw-r--r--src/personalization/utils/logging.py0
-rw-r--r--src/personalization/utils/timing.py0
51 files changed, 2043 insertions, 0 deletions
diff --git a/src/personalization/__init__.py b/src/personalization/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/__init__.py
diff --git a/src/personalization/config/__init__.py b/src/personalization/config/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/config/__init__.py
diff --git a/src/personalization/config/registry.py b/src/personalization/config/registry.py
new file mode 100644
index 0000000..d825ad3
--- /dev/null
+++ b/src/personalization/config/registry.py
@@ -0,0 +1,131 @@
+from __future__ import annotations
+
+from pathlib import Path
+from typing import Any, Dict, Optional
+import torch
+import yaml
+
+from personalization.config import settings
+
+# Avoid circular imports by NOT importing extractors here at top level
+# from personalization.models.preference_extractor.base import PreferenceExtractorBase
+# from personalization.models.preference_extractor.rule_extractor import QwenRuleExtractor
+# from personalization.models.preference_extractor.gpt4o_extractor import GPT4OExtractor
+# from personalization.models.preference_extractor.llm_extractor import PreferenceExtractorLLM
+
+_DTYPE_MAP: Dict[str, torch.dtype] = {
+ "bfloat16": torch.bfloat16,
+ "float16": torch.float16,
+ "float32": torch.float32,
+}
+
+def choose_dtype(preferred: Optional[str] = None) -> torch.dtype:
+ if preferred and preferred.lower() in _DTYPE_MAP:
+ dt = _DTYPE_MAP[preferred.lower()]
+ else:
+ dt = torch.bfloat16 if torch.cuda.is_available() else torch.float32
+ if dt is torch.bfloat16 and not torch.cuda.is_available():
+ return torch.float32
+ return dt
+
+def choose_device_map(spec: Optional[str] = "auto") -> Any:
+ return spec or "auto"
+
+def ensure_local_path(path_str: str) -> str:
+ path = Path(path_str)
+ if not path.exists():
+ path.mkdir(parents=True, exist_ok=True)
+ return str(path)
+
+# --- Chat Model Factory ---
+def get_chat_model(name: str, device_override: Optional[str] = None):
+ """
+ Get a chat model by name.
+
+ Args:
+ name: Model name (e.g., "qwen_1_5b", "llama_8b")
+ device_override: Optional device override (e.g., "cuda:2"). If None, uses config default.
+ """
+ from personalization.models.llm.base import ChatModel
+ from personalization.models.llm.qwen_instruct import QwenInstruct
+ from personalization.models.llm.llama_instruct import LlamaChatModel
+
+ cfg = settings.load_local_models_config()
+
+ # Try to load raw config to support multi-backend map
+ with open("configs/local_models.yaml", "r") as f:
+ raw_cfg = yaml.safe_load(f)
+
+ models = raw_cfg.get("models", {}).get("llm", {})
+
+ # If models['llm'] is a dict of configs (new style)
+ if isinstance(models, dict) and "backend" in models.get(name, {}):
+ spec = models[name]
+ backend = spec.get("backend", "qwen")
+ path = spec["path"]
+ device = device_override or spec.get("device", "cuda") # Use override if provided
+ dtype = spec.get("dtype", "bfloat16")
+ max_len = spec.get("max_context_length", 4096)
+
+ if backend == "qwen":
+ return QwenInstruct(
+ model_path=path,
+ device=device,
+ dtype=choose_dtype(dtype), # Converts string to torch.dtype
+ max_context_length=max_len
+ )
+ elif backend == "llama":
+ return LlamaChatModel(
+ model_path=path,
+ device=device,
+ dtype=choose_dtype(dtype), # Converts string to torch.dtype
+ max_context_length=max_len
+ )
+
+ # Fallback to legacy single config
+ return QwenInstruct.from_config(cfg)
+
+def get_preference_extractor(name: Optional[str] = None):
+ # Deferred imports to break circular dependency
+ from personalization.models.preference_extractor.rule_extractor import QwenRuleExtractor
+ from personalization.models.preference_extractor.gpt4o_extractor import GPT4OExtractor
+ from personalization.models.preference_extractor.llm_extractor import PreferenceExtractorLLM
+
+ cfg = settings.load_local_models_config()
+ pref_cfg = cfg.preference_extractor
+
+ if name is None:
+ if isinstance(pref_cfg, dict) and "qwen3_0_6b_sft" in pref_cfg:
+ name = "qwen3_0_6b_sft"
+ else:
+ name = "rule"
+
+ if isinstance(pref_cfg, dict) and name in pref_cfg:
+ spec = pref_cfg[name]
+ if name == "qwen3_0_6b_sft":
+ # Use QwenRuleExtractor which we have updated for SFT End-to-End logic
+ return QwenRuleExtractor(
+ model_path=spec["path"],
+ device_map=spec.get("device", "auto"),
+ dtype=choose_dtype(spec.get("dtype", "bfloat16")),
+ )
+ # Add 'default' handling if mapped to rule/gpt
+ if name == "default":
+ pass
+
+ if name == "gpt4o":
+ return GPT4OExtractor.from_config(cfg)
+ elif name == "rule":
+ if isinstance(pref_cfg, dict):
+ if "default" in pref_cfg:
+ # Manually construct to bypass ModelSpec mismatch if needed
+ spec_dict = pref_cfg["default"]
+ return QwenRuleExtractor(
+ model_path=spec_dict["local_path"],
+ dtype=choose_dtype(spec_dict.get("dtype")),
+ device_map=choose_device_map(spec_dict.get("device_map"))
+ )
+ else:
+ return QwenRuleExtractor.from_config(cfg)
+
+ raise ValueError(f"Could not load preference extractor: {name}")
diff --git a/src/personalization/config/settings.py b/src/personalization/config/settings.py
new file mode 100644
index 0000000..1bb1bbe
--- /dev/null
+++ b/src/personalization/config/settings.py
@@ -0,0 +1,73 @@
+from __future__ import annotations
+
+import os
+from pathlib import Path
+from typing import Optional, Any, Dict
+
+import yaml
+from pydantic import BaseModel, Field
+
+
+class ModelSpec(BaseModel):
+ hf_id: str = Field(..., description="Hugging Face repository id")
+ local_path: str = Field(..., description="Local directory for model weights")
+ dtype: Optional[str] = Field(
+ default="bfloat16", description="Preferred torch dtype: bfloat16|float16|float32"
+ )
+ device_map: Optional[str] = Field(default="auto", description="Device map policy")
+
+
+class EmbeddingModelsConfig(BaseModel):
+ qwen3: Optional[ModelSpec] = None
+ nemotron: Optional[ModelSpec] = None
+
+
+class RerankerModelsConfig(BaseModel):
+ qwen3_8b: Optional[ModelSpec] = None
+
+
+class LocalModelsConfig(BaseModel):
+ llm: ModelSpec
+ preference_extractor: Any # Allow flexible dict or ModelSpec for now to support map
+ embedding: Optional[EmbeddingModelsConfig] = None
+ reranker: Optional[RerankerModelsConfig] = None
+
+
+def _resolve_config_path(env_key: str, default_rel: str) -> Path:
+ value = os.getenv(env_key)
+ if value:
+ return Path(value).expanduser().resolve()
+ return (Path.cwd() / default_rel).resolve()
+
+
+def load_local_models_config(path: Optional[str] = None) -> LocalModelsConfig:
+ config_path = Path(path) if path else _resolve_config_path(
+ "LOCAL_MODELS_CONFIG", "configs/local_models.yaml"
+ )
+ with open(config_path, "r", encoding="utf-8") as f:
+ raw = yaml.safe_load(f) or {}
+ models = raw.get("models", {})
+ embedding_cfg = None
+ if "embedding" in models:
+ emb = models["embedding"] or {}
+ # dtype/device_map are not necessary for embedders; ModelSpec still accepts them
+ embedding_cfg = EmbeddingModelsConfig(
+ qwen3=ModelSpec(**emb["qwen3"]) if "qwen3" in emb else None,
+ nemotron=ModelSpec(**emb["nemotron"]) if "nemotron" in emb else None,
+ )
+
+ reranker_cfg = None
+ if "reranker" in models:
+ rer = models["reranker"] or {}
+ reranker_cfg = RerankerModelsConfig(
+ qwen3_8b=ModelSpec(**rer["qwen3_8b"]) if "qwen3_8b" in rer else None
+ )
+
+ return LocalModelsConfig(
+ llm=ModelSpec(**models["llm"]),
+ preference_extractor=models["preference_extractor"], # Pass raw dict/value
+ embedding=embedding_cfg,
+ reranker=reranker_cfg,
+ )
+
+
diff --git a/src/personalization/data/personamem_loader.py b/src/personalization/data/personamem_loader.py
new file mode 100644
index 0000000..3b516ad
--- /dev/null
+++ b/src/personalization/data/personamem_loader.py
@@ -0,0 +1,84 @@
+from __future__ import annotations
+
+import csv
+import json
+from dataclasses import dataclass
+from typing import Dict, List
+
+@dataclass
+class PersonaMemQuestion:
+ persona_id: str
+ question_id: str
+ question_type: str
+ topic: str
+ user_question_or_message: str
+ all_options: List[str] # 4 options
+ correct_index: int # 0..3
+ shared_context_id: str
+ end_index_in_shared_context: int
+
+@dataclass
+class PersonaMemContext:
+ shared_context_id: str
+ messages: List[dict] # raw dicts with "role"/"content" etc
+
+def load_personamem_questions_32k(path_csv: str) -> List[PersonaMemQuestion]:
+ questions = []
+ with open(path_csv, "r", encoding="utf-8") as f:
+ reader = csv.DictReader(f)
+ for row in reader:
+ # Check fields
+ # The official csv usually has: question_id, persona_id, shared_context_id, question, correct_answer, options etc.
+ # Assuming standard PersonaMem format or similar to provided description.
+ # We might need to adjust based on actual file content.
+ # Based on user description:
+ try:
+ options_str = row.get("all_options", "[]") # Assuming json string
+ try:
+ options = json.loads(options_str)
+ except:
+ # Fallback if it's not JSON (e.g. string repr)
+ # For now assume JSON or simple list
+ options = []
+
+ # Handle raw answer format (e.g. "(c)" or "c")
+ raw_ans = row.get("correct_answer", "").strip()
+ # Remove parens if present
+ if raw_ans.startswith("(") and raw_ans.endswith(")"):
+ raw_ans = raw_ans[1:-1]
+
+ # Parse correct index
+ # If correct_answer is 'A','B','C','D' -> 0,1,2,3
+ ans_map = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'a': 0, 'b': 1, 'c': 2, 'd': 3}
+ correct_idx = ans_map.get(raw_ans, -1)
+
+ q = PersonaMemQuestion(
+ persona_id=row["persona_id"],
+ question_id=row["question_id"],
+ question_type=row.get("question_type", "unknown"),
+ topic=row.get("topic", "unknown"),
+ user_question_or_message=row.get("user_question_or_message", row.get("question", "")),
+ all_options=options,
+ correct_index=correct_idx,
+ shared_context_id=row["shared_context_id"],
+ end_index_in_shared_context=int(row.get("end_index_in_shared_context", -1))
+ )
+ questions.append(q)
+ except KeyError as e:
+ # print(f"Skipping row due to missing key: {e}")
+ continue
+ return questions
+
+def load_personamem_contexts_32k(path_jsonl: str) -> Dict[str, PersonaMemContext]:
+ contexts = {}
+ with open(path_jsonl, "r", encoding="utf-8") as f:
+ for line in f:
+ data = json.loads(line)
+ # Format: {"hash_id": [messages...]}
+ for cid, msgs in data.items():
+ contexts[cid] = PersonaMemContext(
+ shared_context_id=cid,
+ messages=msgs
+ )
+ return contexts
+
diff --git a/src/personalization/evaluation/__init__.py b/src/personalization/evaluation/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/evaluation/__init__.py
diff --git a/src/personalization/evaluation/compare_pairs.py b/src/personalization/evaluation/compare_pairs.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/evaluation/compare_pairs.py
diff --git a/src/personalization/evaluation/metrics.py b/src/personalization/evaluation/metrics.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/evaluation/metrics.py
diff --git a/src/personalization/feedback/__init__.py b/src/personalization/feedback/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/feedback/__init__.py
diff --git a/src/personalization/feedback/gating.py b/src/personalization/feedback/gating.py
new file mode 100644
index 0000000..d741874
--- /dev/null
+++ b/src/personalization/feedback/gating.py
@@ -0,0 +1,72 @@
+import numpy as np
+from personalization.feedback.schemas import TurnSample
+
+def cosine_sim_batch(matrix: np.ndarray, vector: np.ndarray) -> np.ndarray:
+ # matrix: [N, d], vector: [d]
+ # return: [N]
+ norm_m = np.linalg.norm(matrix, axis=1)
+ norm_v = np.linalg.norm(vector)
+
+ # Avoid div by zero
+ den = norm_m * norm_v
+ den[den == 0] = 1e-9
+
+ return np.dot(matrix, vector) / den
+
+def estimate_retrieval_gating(sample: TurnSample, reward_hat: float) -> float:
+ """
+ Return g_t in [0,1], representing how much the reward is due to retrieval.
+ """
+ e_q = sample.query_embedding_t
+ e_q1 = sample.query_embedding_t1
+
+ if e_q is None or e_q1 is None or not sample.memories:
+ return 0.5 # Neutral
+
+ # We need embeddings of the memories.
+ # In a real pipeline, we might pass them in sample.memory_embeddings.
+ # If missing, we can't compute sim.
+ if sample.memory_embeddings is None:
+ # Try to use embedding_e from memory cards if available
+ # But MemoryCard.embedding_e is List[float]
+ try:
+ mem_embs = np.array([m.embedding_e for m in sample.memories])
+ if mem_embs.shape[1] == 0: # Empty embeddings
+ return 0.5
+ except:
+ return 0.5
+ else:
+ mem_embs = sample.memory_embeddings
+
+ # Compute similarities
+ # shape: [K]
+ sims_q = cosine_sim_batch(mem_embs, e_q)
+ sims_q1 = cosine_sim_batch(mem_embs, e_q1)
+
+ s_q_max = sims_q.max() if len(sims_q) > 0 else 0
+ s_q1_max = sims_q1.max() if len(sims_q1) > 0 else 0
+
+ g = 0.5
+
+ # Heuristics
+
+ # Case A: Retrieval clearly irrelevant + bad reward
+ # q_t / q_{t+1} have low similarity to memories -> likely retrieval failure (or no relevant memories)
+ if reward_hat < -0.5 and s_q_max < 0.2 and s_q1_max < 0.2:
+ g = 0.9 # Blame retrieval (for failing to find anything, or nothing exists)
+
+ # Case B: Retrieval looks good but reward is bad
+ # Memories are relevant to query, but user still unhappy -> LLM didn't use them well?
+ elif reward_hat < -0.5 and s_q_max > 0.5:
+ g = 0.2 # Likely LLM fault
+
+ # Case C: Good reward
+ # If reward is high, we assume both did okay.
+ elif reward_hat > 0.5:
+ if s_q_max > 0.4:
+ g = 0.6 # Retrieval helped
+ else:
+ g = 0.3 # LLM handled it without strong retrieval help
+
+ return float(g)
+
diff --git a/src/personalization/feedback/handlers.py b/src/personalization/feedback/handlers.py
new file mode 100644
index 0000000..60a8d17
--- /dev/null
+++ b/src/personalization/feedback/handlers.py
@@ -0,0 +1,50 @@
+from typing import Tuple, List, Optional
+import numpy as np
+
+from personalization.retrieval.preference_store.schemas import MemoryCard
+from personalization.feedback.schemas import TurnSample
+from personalization.feedback.reward_model import estimate_reward
+from personalization.feedback.gating import estimate_retrieval_gating
+
+def eval_step(
+ q_t: str,
+ answer_t: str,
+ q_t1: str,
+ memories_t: List[MemoryCard],
+ query_embedding_t: Optional[np.ndarray] = None,
+ query_embedding_t1: Optional[np.ndarray] = None,
+) -> Tuple[float, float]:
+ """
+ Unified evaluation interface.
+ Given (q_t, a_t, q_{t+1}, memories), returns (reward_hat, gating_hat).
+ """
+
+ # Construct a lightweight TurnSample
+ # We might need embeddings for gating. If not provided, gating might return default.
+
+ # Ensure memories have embeddings for gating
+ mem_embs = None
+ if memories_t and memories_t[0].embedding_e:
+ try:
+ mem_embs = np.array([m.embedding_e for m in memories_t])
+ except:
+ pass
+
+ sample = TurnSample(
+ user_id="", # Not needed for simple eval
+ session_id="",
+ turn_id=0,
+ query_t=q_t,
+ answer_t=answer_t,
+ query_t1=q_t1,
+ memories=memories_t,
+ query_embedding_t=query_embedding_t,
+ query_embedding_t1=query_embedding_t1,
+ memory_embeddings=mem_embs
+ )
+
+ r_hat = estimate_reward(sample)
+ g_hat = estimate_retrieval_gating(sample, r_hat)
+
+ return r_hat, g_hat
+
diff --git a/src/personalization/feedback/online_update.py b/src/personalization/feedback/online_update.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/feedback/online_update.py
diff --git a/src/personalization/feedback/reward_model.py b/src/personalization/feedback/reward_model.py
new file mode 100644
index 0000000..3584b43
--- /dev/null
+++ b/src/personalization/feedback/reward_model.py
@@ -0,0 +1,64 @@
+import numpy as np
+from personalization.feedback.schemas import TurnSample
+
+def cosine_sim(a: np.ndarray, b: np.ndarray) -> float:
+ norm_a = np.linalg.norm(a)
+ norm_b = np.linalg.norm(b)
+ if norm_a == 0 or norm_b == 0:
+ return 0.0
+ return float(np.dot(a, b) / (norm_a * norm_b))
+
+def estimate_reward(sample: TurnSample) -> float:
+ """
+ Return a scalar reward_hat, indicating if the previous answer was helpful.
+ Range: [-1.0, 1.0] (approx)
+ """
+
+ # 1. Language/Topic Coherence
+ if sample.query_embedding_t is None or sample.query_embedding_t1 is None:
+ topic_sim = 0.5
+ else:
+ topic_sim = cosine_sim(sample.query_embedding_t, sample.query_embedding_t1)
+
+ # 2. Negative Keywords (Complaint/Correction)
+ negative_keywords = [
+ "you didn't", "that's not", "incorrect", "redo", "again", "explain more",
+ "doesn't help", "wrong", "no", "not what i asked",
+ "你没", "不是", "这不是", "重来", "重新", "不对", "错了", "没说清楚"
+ ]
+
+ # 3. Positive Keywords (Follow-up/Elaboration)
+ positive_keywords = [
+ "can you elaborate", "give an example", "continue", "what if", "based on that",
+ "thanks", "good", "great", "cool",
+ "能不能详细一点", "举个例子", "再继续", "那如果", "接下来", "在这个基础上", "谢谢", "不错"
+ ]
+
+ q1_lower = sample.query_t1.lower()
+
+ has_negative = any(kw in q1_lower for kw in negative_keywords)
+ has_positive = any(kw in q1_lower for kw in positive_keywords)
+
+ reward = 0.0
+
+ if has_negative:
+ reward -= 1.0
+
+ if has_positive:
+ # Only reward if topic similarity is decent, otherwise might be "thanks, bye" (end of session)
+ # But "thanks" is good.
+ reward += 0.5
+ if topic_sim > 0.3:
+ reward += 0.5
+
+ if topic_sim < 0.2:
+ # Topic shift -> previous interaction likely finished or failed.
+ # If no explicit positive/negative, assume neutral/slightly decayed.
+ # If user changes topic, it often means the previous task is done (neutral/positive)
+ # OR they gave up (negative). Hard to tell.
+ # Let's dampen the reward towards 0.
+ reward *= 0.5
+
+ # Clip
+ return max(-1.0, min(1.0, reward))
+
diff --git a/src/personalization/feedback/sampler.py b/src/personalization/feedback/sampler.py
new file mode 100644
index 0000000..9e26912
--- /dev/null
+++ b/src/personalization/feedback/sampler.py
@@ -0,0 +1,109 @@
+from typing import Iterable, List, Optional
+import numpy as np
+from tqdm import tqdm
+
+from personalization.retrieval.preference_store.schemas import ChatTurn, MemoryCard
+from personalization.feedback.schemas import TurnSample
+from personalization.retrieval.pipeline import retrieve_with_rerank
+from personalization.models.llm.qwen_instruct import QwenInstruct
+from personalization.models.embedding.base import EmbeddingModel
+from personalization.models.reranker.base import Reranker
+from personalization.user_model.tensor_store import UserTensorStore
+
+def build_turn_samples_from_sessions(
+ sessions: Iterable[List[ChatTurn]],
+ embed_model: EmbeddingModel,
+ llm: QwenInstruct,
+ reranker: Reranker,
+ memory_cards: List[MemoryCard],
+ memory_embeddings: np.ndarray,
+ user_store: UserTensorStore,
+ item_vectors: np.ndarray,
+ max_samples: Optional[int] = None,
+ topk_dense: int = 64,
+ topk_rerank: int = 3,
+) -> List[TurnSample]:
+ samples = []
+
+ for turns in tqdm(sessions, desc="Building TurnSamples"):
+ if max_samples and len(samples) >= max_samples:
+ break
+
+ # Ensure sorted by turn_id
+ sorted_turns = sorted(turns, key=lambda x: x.turn_id)
+
+ # Iterate to find (q_t, a_t, q_{t+1})
+ for i in range(len(sorted_turns)):
+ if max_samples and len(samples) >= max_samples:
+ break
+
+ q_t = sorted_turns[i]
+ if q_t.role != "user":
+ continue
+
+ # Find next user turn
+ # Also try to find assistant response in between
+ a_t_text = ""
+ q_t1 = None
+
+ # Look ahead
+ for j in range(i + 1, len(sorted_turns)):
+ next_turn = sorted_turns[j]
+ if next_turn.role == "assistant" and not a_t_text:
+ a_t_text = next_turn.text
+ elif next_turn.role == "user":
+ q_t1 = next_turn
+ break
+
+ if not q_t1:
+ # End of session or no subsequent user query
+ continue
+
+ # We have q_t, a_t (optional but preferred), q_t1
+ # If a_t is missing, we might skip or use empty string.
+ # For RL, we usually need the answer to evaluate quality.
+ # If dataset doesn't have assistant turns, we might need to generate one?
+ # For now, let's proceed even if a_t is empty, or maybe require it.
+ if not a_t_text:
+ # Try to use LLM to generate if needed, but for offline sampling
+ # from existing chats, we prefer existing answers.
+ # If using OASST1, it should have assistant turns.
+ pass
+
+ # 3. Retrieve memories for q_t
+ memories_t = retrieve_with_rerank(
+ user_id=q_t.user_id,
+ query=q_t.text,
+ embed_model=embed_model,
+ reranker=reranker,
+ memory_cards=memory_cards,
+ memory_embeddings=memory_embeddings,
+ user_store=user_store,
+ item_vectors=item_vectors,
+ topk_dense=topk_dense,
+ topk_rerank=topk_rerank,
+ beta_long=0.0,
+ beta_short=0.0,
+ only_own_memories=True # Assume we want user specific memories
+ )
+
+ # 4. Precompute embeddings
+ # We can do this efficiently later or batch, but here per sample
+ e_q_t = embed_model.encode([q_t.text], return_tensor=False)[0]
+ e_q_t1 = embed_model.encode([q_t1.text], return_tensor=False)[0]
+
+ sample = TurnSample(
+ user_id=q_t.user_id,
+ session_id=q_t.session_id,
+ turn_id=q_t.turn_id,
+ query_t=q_t.text,
+ answer_t=a_t_text,
+ query_t1=q_t1.text,
+ memories=memories_t,
+ query_embedding_t=np.array(e_q_t),
+ query_embedding_t1=np.array(e_q_t1)
+ )
+ samples.append(sample)
+
+ return samples
+
diff --git a/src/personalization/feedback/schemas.py b/src/personalization/feedback/schemas.py
new file mode 100644
index 0000000..b15db80
--- /dev/null
+++ b/src/personalization/feedback/schemas.py
@@ -0,0 +1,23 @@
+from __future__ import annotations
+
+from dataclasses import dataclass
+from typing import List, Optional, Any
+import numpy as np
+
+from personalization.retrieval.preference_store.schemas import MemoryCard
+
+@dataclass
+class TurnSample:
+ user_id: str
+ session_id: str
+ turn_id: int # index of q_t within the session
+ query_t: str # q_t
+ answer_t: str # a_t
+ query_t1: str # q_{t+1}
+ memories: List[MemoryCard] # A_t
+
+ # Optional pre-computed vectors and features
+ query_embedding_t: Optional[np.ndarray] = None
+ query_embedding_t1: Optional[np.ndarray] = None
+ memory_embeddings: Optional[np.ndarray] = None # corresponding e_m or v_m for memories
+
diff --git a/src/personalization/retrieval/__init__.py b/src/personalization/retrieval/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/__init__.py
diff --git a/src/personalization/retrieval/chunking/__init__.py b/src/personalization/retrieval/chunking/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/chunking/__init__.py
diff --git a/src/personalization/retrieval/chunking/rules.py b/src/personalization/retrieval/chunking/rules.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/chunking/rules.py
diff --git a/src/personalization/retrieval/pipeline.py b/src/personalization/retrieval/pipeline.py
new file mode 100644
index 0000000..3d3eeb7
--- /dev/null
+++ b/src/personalization/retrieval/pipeline.py
@@ -0,0 +1,250 @@
+from typing import List, Tuple
+import numpy as np
+
+from personalization.models.embedding.base import EmbeddingModel
+from personalization.models.reranker.base import Reranker
+from personalization.retrieval.preference_store.schemas import MemoryCard
+from personalization.user_model.tensor_store import UserTensorStore, UserState
+from personalization.user_model.scoring import score_with_user
+from personalization.user_model.policy.reinforce import compute_policy_scores
+
+def cosine_similarity_matrix(E: np.ndarray, e_q: np.ndarray) -> np.ndarray:
+ # E: [M, d], e_q: [d]
+ return np.dot(E, e_q)
+
+def dense_topk_indices(
+ query: str,
+ embed_model: EmbeddingModel,
+ memory_embeddings: np.ndarray,
+ valid_indices: List[int] = None,
+ topk: int = 64
+) -> List[int]:
+ """
+ Return indices of topk memories based on dense embedding similarity.
+ If valid_indices is provided, only search within that subset.
+ """
+ if valid_indices is not None and len(valid_indices) == 0:
+ return []
+
+ e_q_list = embed_model.encode([query], normalize=True, return_tensor=False)
+ e_q = np.array(e_q_list[0], dtype=np.float32)
+
+ # Select subset of embeddings if restricted
+ if valid_indices is not None:
+ # subset_embeddings = memory_embeddings[valid_indices]
+ # But valid_indices might be arbitrary.
+ # Efficient way: only dot product with subset
+ # E_sub: [M_sub, d]
+ E_sub = memory_embeddings[valid_indices]
+ sims_sub = np.dot(E_sub, e_q)
+
+ # Topk within subset
+ k = min(topk, len(sims_sub))
+ if k == 0:
+ return []
+
+ # argsort gives indices relative to E_sub (0..M_sub-1)
+ # We need to map back to original indices
+ idx_sub = np.argsort(sims_sub)[-k:][::-1]
+
+ return [valid_indices[i] for i in idx_sub]
+
+ # Global search
+ sims = np.dot(memory_embeddings, e_q)
+ k = min(topk, len(memory_embeddings))
+ if k == 0:
+ return []
+
+ idx = np.argsort(sims)[-k:][::-1]
+ return idx.tolist()
+
+def retrieve_with_policy(
+ user_id: str,
+ query: str,
+ embed_model: EmbeddingModel,
+ reranker: Reranker,
+ memory_cards: List[MemoryCard],
+ memory_embeddings: np.ndarray, # shape: [M, d]
+ user_store: UserTensorStore,
+ item_vectors: np.ndarray, # shape: [M, k], v_m
+ topk_dense: int = 64,
+ topk_rerank: int = 8,
+ beta_long: float = 0.0,
+ beta_short: float = 0.0,
+ tau: float = 1.0,
+ only_own_memories: bool = False,
+ sample: bool = False,
+) -> Tuple[List[MemoryCard], np.ndarray, np.ndarray, List[int], np.ndarray]:
+ """
+ Returns extended info for policy update:
+ (candidates, candidate_item_vectors, base_scores, chosen_indices, policy_probs)
+
+ Args:
+ sample: If True, use stochastic sampling from policy distribution (for training/exploration).
+ If False, use deterministic top-k by policy scores (for evaluation).
+ """
+ # 0. Filter indices if needed
+ valid_indices = None
+ if only_own_memories:
+ valid_indices = [i for i, card in enumerate(memory_cards) if card.user_id == user_id]
+ if not valid_indices:
+ return [], np.array([]), np.array([]), [], np.array([])
+
+ # 1. Dense retrieval
+ dense_idx = dense_topk_indices(
+ query,
+ embed_model,
+ memory_embeddings,
+ valid_indices=valid_indices,
+ topk=topk_dense
+ )
+ # DEBUG: Check for duplicates or out of bounds
+ if len(dense_idx) > 0:
+ import os
+ if os.getenv("RETRIEVAL_DEBUG") == "1":
+ print(f" [Pipeline] Dense Indices (Top {len(dense_idx)}): {dense_idx[:10]}...")
+ print(f" [Pipeline] Max Index: {max(dense_idx)} | Memory Size: {len(memory_cards)}")
+
+ if not dense_idx:
+ return [], np.array([]), np.array([]), [], np.array([])
+
+ candidates = [memory_cards[i] for i in dense_idx]
+ candidate_docs = [c.note_text for c in candidates]
+
+ # 2. Rerank base score (P(yes|q,m))
+ base_scores = np.array(reranker.score(query, candidate_docs))
+
+ # 3. Policy Scoring (Softmax)
+ user_state: UserState = user_store.get_state(user_id)
+ candidate_vectors = item_vectors[dense_idx] # [K, k]
+
+ policy_out = compute_policy_scores(
+ base_scores=base_scores,
+ user_state=user_state,
+ item_vectors=candidate_vectors,
+ beta_long=beta_long,
+ beta_short=beta_short,
+ tau=tau
+ )
+
+ # 4. Selection: Greedy (eval) or Stochastic (training)
+ k = min(topk_rerank, len(policy_out.scores))
+
+ if sample:
+ # Stochastic sampling from policy distribution (for training/exploration)
+ # Sample k indices without replacement, weighted by policy probs
+ probs = policy_out.probs
+ # Normalize to ensure sum to 1 (handle numerical issues)
+ probs = probs / (probs.sum() + 1e-10)
+ # Sample without replacement
+ chosen_indices = np.random.choice(
+ len(probs), size=k, replace=False, p=probs
+ ).tolist()
+ else:
+ # Deterministic top-k by policy scores (for evaluation)
+ top_indices_local = policy_out.scores.argsort()[-k:][::-1]
+ chosen_indices = top_indices_local.tolist()
+
+ import os
+ if os.getenv("RETRIEVAL_DEBUG") == "1":
+ print(f" [Pipeline] Candidates: {len(candidates)} | Chosen Indices: {chosen_indices} | Sample: {sample}")
+
+ return candidates, candidate_vectors, base_scores, chosen_indices, policy_out.probs
+
+def retrieve_no_policy(
+ user_id: str,
+ query: str,
+ embed_model: EmbeddingModel,
+ reranker: Reranker,
+ memory_cards: List[MemoryCard],
+ memory_embeddings: np.ndarray, # shape: [M, d]
+ topk_dense: int = 64,
+ topk_rerank: int = 8,
+ only_own_memories: bool = False,
+) -> Tuple[List[MemoryCard], np.ndarray, np.ndarray, List[int], np.ndarray]:
+ """
+ Deterministic retrieval baseline (NoPersonal mode):
+ - Dense retrieval -> Rerank -> Top-K (no policy sampling, no user vector influence)
+
+ Returns same structure as retrieve_with_policy for compatibility:
+ (candidates, candidate_item_vectors, base_scores, chosen_indices, rerank_scores_for_chosen)
+
+ Note: candidate_item_vectors is empty array (not used in NoPersonal mode)
+ The last return value is rerank scores instead of policy probs
+ """
+ # 0. Filter indices if needed
+ valid_indices = None
+ if only_own_memories:
+ valid_indices = [i for i, card in enumerate(memory_cards) if card.user_id == user_id]
+ if not valid_indices:
+ return [], np.array([]), np.array([]), [], np.array([])
+
+ # 1. Dense retrieval
+ dense_idx = dense_topk_indices(
+ query,
+ embed_model,
+ memory_embeddings,
+ valid_indices=valid_indices,
+ topk=topk_dense
+ )
+
+ if not dense_idx:
+ return [], np.array([]), np.array([]), [], np.array([])
+
+ candidates = [memory_cards[i] for i in dense_idx]
+ candidate_docs = [c.note_text for c in candidates]
+
+ # 2. Rerank base score (P(yes|q,m))
+ base_scores = np.array(reranker.score(query, candidate_docs))
+
+ # 3. Deterministic Top-K selection based on rerank scores ONLY (no policy)
+ k = min(topk_rerank, len(base_scores))
+ top_indices_local = base_scores.argsort()[-k:][::-1]
+ chosen_indices = top_indices_local.tolist()
+
+ # Get scores for chosen items (for logging compatibility)
+ chosen_scores = base_scores[top_indices_local]
+
+ # Return empty item vectors (not used in NoPersonal mode)
+ # Return rerank scores as the "probs" field for logging compatibility
+ return candidates, np.array([]), base_scores, chosen_indices, chosen_scores
+
+
+def retrieve_with_rerank(
+ user_id: str,
+ query: str,
+ embed_model: EmbeddingModel,
+ reranker: Reranker,
+ memory_cards: List[MemoryCard],
+ memory_embeddings: np.ndarray, # shape: [M, d]
+ user_store: UserTensorStore,
+ item_vectors: np.ndarray, # shape: [M, k], v_m
+ topk_dense: int = 64,
+ topk_rerank: int = 8,
+ beta_long: float = 0.0,
+ beta_short: float = 0.0,
+ only_own_memories: bool = False,
+) -> List[MemoryCard]:
+ """
+ Wrapper around retrieve_with_policy for standard inference.
+ """
+ candidates, _, _, chosen_indices, _ = retrieve_with_policy(
+ user_id=user_id,
+ query=query,
+ embed_model=embed_model,
+ reranker=reranker,
+ memory_cards=memory_cards,
+ memory_embeddings=memory_embeddings,
+ user_store=user_store,
+ item_vectors=item_vectors,
+ topk_dense=topk_dense,
+ topk_rerank=topk_rerank,
+ beta_long=beta_long,
+ beta_short=beta_short,
+ tau=1.0, # Default tau
+ only_own_memories=only_own_memories
+ )
+
+ return [candidates[i] for i in chosen_indices]
+
+
diff --git a/src/personalization/retrieval/preference_store/__init__.py b/src/personalization/retrieval/preference_store/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/preference_store/__init__.py
diff --git a/src/personalization/retrieval/preference_store/base.py b/src/personalization/retrieval/preference_store/base.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/preference_store/base.py
diff --git a/src/personalization/retrieval/preference_store/schemas.py b/src/personalization/retrieval/preference_store/schemas.py
new file mode 100644
index 0000000..eb82558
--- /dev/null
+++ b/src/personalization/retrieval/preference_store/schemas.py
@@ -0,0 +1,47 @@
+from __future__ import annotations
+
+from typing import List, Literal, Optional, Dict, Any
+
+from pydantic import BaseModel, Field, confloat
+
+
+class Preference(BaseModel):
+ condition: str = Field(
+ ..., min_length=1, max_length=128, description="When the rule applies"
+ )
+ action: str = Field(
+ ..., min_length=1, max_length=256, description="What to do in that case"
+ )
+ confidence: confloat(ge=0.0, le=1.0) = Field(
+ ..., description="Confidence the rule is correct"
+ )
+
+
+class PreferenceList(BaseModel):
+ preferences: List[Preference] = Field(default_factory=list)
+
+
+def preference_list_json_schema() -> dict:
+ return PreferenceList.model_json_schema()
+
+
+class ChatTurn(BaseModel):
+ user_id: str
+ session_id: str
+ turn_id: int
+ role: Literal["user", "assistant"]
+ text: str
+ timestamp: Optional[float] = None
+ meta: Dict[str, Any] = Field(default_factory=dict)
+
+
+class MemoryCard(BaseModel):
+ card_id: str
+ user_id: str
+ source_session_id: str
+ source_turn_ids: List[int]
+ raw_queries: List[str] # The original user utterances
+ preference_list: PreferenceList
+ note_text: str # Summarized "condition: action" text
+ embedding_e: List[float] # The embedding vector
+ kind: Literal["pref", "fact"] = "pref"
diff --git a/src/personalization/retrieval/preference_store/vector_kv.py b/src/personalization/retrieval/preference_store/vector_kv.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/preference_store/vector_kv.py
diff --git a/src/personalization/retrieval/rerank.py b/src/personalization/retrieval/rerank.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/rerank.py
diff --git a/src/personalization/retrieval/store/__init__.py b/src/personalization/retrieval/store/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/store/__init__.py
diff --git a/src/personalization/retrieval/store/base.py b/src/personalization/retrieval/store/base.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/store/base.py
diff --git a/src/personalization/retrieval/store/faiss_store.py b/src/personalization/retrieval/store/faiss_store.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/store/faiss_store.py
diff --git a/src/personalization/retrieval/store/pgvector_store.py b/src/personalization/retrieval/store/pgvector_store.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/retrieval/store/pgvector_store.py
diff --git a/src/personalization/serving/__init__.py b/src/personalization/serving/__init__.py
new file mode 100644
index 0000000..11adcf8
--- /dev/null
+++ b/src/personalization/serving/__init__.py
@@ -0,0 +1,22 @@
+# Personalization Serving Module
+#
+# This module provides the interface layer for the personalization system.
+
+from personalization.serving.personalized_llm import (
+ PersonalizedLLM,
+ AssistantResponse,
+ UsageStats,
+ DebugInfo,
+ Feedback,
+ create_personalized_llm,
+)
+
+__all__ = [
+ "PersonalizedLLM",
+ "AssistantResponse",
+ "UsageStats",
+ "DebugInfo",
+ "Feedback",
+ "create_personalized_llm",
+]
+
diff --git a/src/personalization/serving/api/__init__.py b/src/personalization/serving/api/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/__init__.py
diff --git a/src/personalization/serving/api/main.py b/src/personalization/serving/api/main.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/main.py
diff --git a/src/personalization/serving/api/routes/__init__.py b/src/personalization/serving/api/routes/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/routes/__init__.py
diff --git a/src/personalization/serving/api/routes/feedback.py b/src/personalization/serving/api/routes/feedback.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/routes/feedback.py
diff --git a/src/personalization/serving/api/routes/query.py b/src/personalization/serving/api/routes/query.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/routes/query.py
diff --git a/src/personalization/serving/api/routes/users.py b/src/personalization/serving/api/routes/users.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/routes/users.py
diff --git a/src/personalization/serving/api/schemas.py b/src/personalization/serving/api/schemas.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/serving/api/schemas.py
diff --git a/src/personalization/serving/personalized_llm.py b/src/personalization/serving/personalized_llm.py
new file mode 100644
index 0000000..2c4d5a8
--- /dev/null
+++ b/src/personalization/serving/personalized_llm.py
@@ -0,0 +1,837 @@
+#!/usr/bin/env python3
+"""
+Personalized LLM Interface for Evaluation.
+
+This module provides the `PersonalizedLLM` class that wraps the entire
+personalization system into a clean interface for evaluation frameworks
+and user simulators.
+
+Interface contract:
+- chat(user_id, query) -> AssistantResponse: Main online interface
+- reset_session(user_id): Clear session history and short-term state
+- reset_user(user_id): Completely reset user (long-term, short-term, memories)
+- apply_feedback(feedback): Apply external feedback for RL updates
+"""
+
+from __future__ import annotations
+
+import os
+import sys
+import uuid
+from dataclasses import dataclass, field
+from typing import Any, Dict, List, Optional
+
+import numpy as np
+import yaml
+
+# Ensure src is in path for standalone usage
+_src_path = os.path.join(os.path.dirname(__file__), "../../..")
+if _src_path not in sys.path:
+ sys.path.insert(0, _src_path)
+
+from personalization.config.settings import load_local_models_config
+from personalization.config.registry import get_preference_extractor, get_chat_model
+from personalization.models.embedding.qwen3_8b import Qwen3Embedding8B
+from personalization.models.reranker.qwen3_reranker import Qwen3Reranker
+from personalization.user_model.tensor_store import UserTensorStore, UserState
+from personalization.user_model.session_state import OnlineSessionState
+from personalization.user_model.features import ItemProjection
+from personalization.retrieval.preference_store.schemas import (
+ MemoryCard, ChatTurn, PreferenceList, Preference
+)
+from personalization.retrieval.pipeline import retrieve_with_policy, retrieve_no_policy
+from personalization.feedback.handlers import eval_step
+from personalization.user_model.policy.reinforce import reinforce_update_user_state
+
+
+# =============================================================================
+# Data Classes for Interface
+# =============================================================================
+
+@dataclass
+class UsageStats:
+ """Token usage statistics from a chat completion."""
+ prompt_tokens: int
+ completion_tokens: int
+ total_tokens: int
+ model: str
+
+
+@dataclass
+class DebugInfo:
+ """
+ Debug information for analysis and ablation studies.
+ All fields are optional - fill what you have, leave empty what you don't.
+ """
+ selected_memory_ids: List[str] = field(default_factory=list)
+ selected_memory_notes: List[str] = field(default_factory=list)
+ selected_memory_scores: List[float] = field(default_factory=list)
+ user_vector_before: Optional[List[float]] = None
+ user_vector_after: Optional[List[float]] = None
+ extracted_preferences: List[Dict[str, Any]] = field(default_factory=list)
+ extra: Dict[str, Any] = field(default_factory=dict)
+
+
+@dataclass
+class AssistantResponse:
+ """Response from the personalized LLM chat interface."""
+ answer: str
+ usage: UsageStats
+ debug: Optional[DebugInfo] = None
+
+
+@dataclass
+class Feedback:
+ """
+ Feedback data structure for RL updates from user simulator or judge.
+
+ Attributes:
+ user_id: The user this feedback is for.
+ turn_id: The turn this feedback refers to (from the previous turn).
+ reward: Reward scalar computed by user simulator / judge.
+ gating: Gating flag (1=valid learning signal, 0=skip update).
+ meta: Additional metadata for training/analysis.
+ """
+ user_id: str
+ turn_id: int
+ reward: float
+ gating: float # Can be 0.0 or 1.0, or continuous
+ meta: Dict[str, Any] = field(default_factory=dict)
+
+
+# =============================================================================
+# Internal Session State Extended
+# =============================================================================
+
+@dataclass
+class _SessionContext:
+ """Extended session context for evaluation tracking."""
+ session_state: OnlineSessionState
+ turn_counter: int = 0
+ # Store info needed for apply_feedback
+ pending_rl_update: Optional[Dict[str, Any]] = None
+
+
+# =============================================================================
+# PersonalizedLLM Class
+# =============================================================================
+
+class PersonalizedLLM:
+ """
+ Personalized LLM wrapper for evaluation frameworks.
+
+ This class provides a clean interface that accepts only (user_id, query)
+ for the main chat function, while internally managing:
+ - User state vectors (z_long, z_short)
+ - Session history
+ - Memory retrieval and policy
+ - Preference extraction and storage
+ - RL updates
+
+ Example usage:
+ llm = PersonalizedLLM()
+
+ # Reset user for fresh experiment
+ llm.reset_user("user_123")
+
+ # Start a session
+ llm.reset_session("user_123")
+
+ # Chat
+ response = llm.chat("user_123", "What's a good recipe for dinner?")
+ print(response.answer)
+
+ # Apply feedback from previous turn (from turn 2 onwards)
+ llm.apply_feedback(Feedback(
+ user_id="user_123",
+ turn_id=0,
+ reward=0.8,
+ gating=1.0
+ ))
+ """
+
+ def __init__(
+ self,
+ config_path: Optional[str] = None,
+ user_store_path: str = "data/users/user_store_eval.npz",
+ memory_cards_path: str = "data/corpora/memory_cards.jsonl",
+ memory_embeddings_path: str = "data/corpora/memory_embeddings.npy",
+ item_projection_path: str = "data/corpora/item_projection.npz",
+ only_own_memories: bool = True,
+ enable_preference_extraction: bool = True,
+ enable_rl_updates: bool = True,
+ mode: str = "full", # "full", "nopersonal", or "vanilla"
+ eval_mode: bool = True, # True = greedy selection, False = stochastic sampling
+ device_assignment: Optional[Dict[str, str]] = None, # Multi-GPU support
+ ):
+ """
+ Initialize the PersonalizedLLM.
+
+ Args:
+ config_path: Path to config file. If None, uses default locations.
+ user_store_path: Path to persist user state vectors.
+ memory_cards_path: Path to memory cards JSONL file.
+ memory_embeddings_path: Path to memory embeddings numpy file.
+ item_projection_path: Path to item projection (PCA) file.
+ only_own_memories: If True, only retrieve user's own memories (strict privacy).
+ enable_preference_extraction: If True, extract preferences from user turns.
+ enable_rl_updates: If True, apply RL updates via apply_feedback.
+ mode: "full" for full personalization, "nopersonal" for baseline (no user vector influence),
+ "vanilla" for pure LLM without any memory retrieval or preference extraction.
+ eval_mode: If True, use greedy/deterministic selection (for evaluation).
+ If False, use stochastic sampling (for training/exploration).
+ device_assignment: Optional dict to assign models to specific GPUs.
+ Example: {"embed": "cuda:0", "reranker": "cuda:1", "chat": "cuda:2", "extractor": "cuda:3"}
+ If None, uses "auto" for all models.
+ """
+ self.only_own_memories = only_own_memories
+ self.enable_preference_extraction = enable_preference_extraction
+ self.enable_rl_updates = enable_rl_updates
+ self.mode = mode # "full" or "nopersonal"
+ self.eval_mode = eval_mode # True = greedy, False = sample
+
+ # Multi-GPU device assignment
+ self._device_assignment = device_assignment or {
+ "embed": "auto",
+ "reranker": "auto",
+ "chat": "auto",
+ "extractor": "auto",
+ }
+
+ # Paths
+ self._memory_cards_path = memory_cards_path
+ self._memory_embeddings_path = memory_embeddings_path
+ self._item_projection_path = item_projection_path
+
+ # RL Configuration
+ # Note: beta/eta increased for more significant z_u updates
+ self._rl_cfg = {
+ "item_dim": 256,
+ "beta_long": 2.0, # Increased from 0.1 for stronger personalization
+ "beta_short": 5.0, # Increased from 0.3
+ "tau": 1.0,
+ "eta_long": 0.01, # Increased from 1e-3 for faster learning
+ "eta_short": 0.05, # Increased from 5e-3
+ "ema_alpha": 0.05,
+ "short_decay": 0.1,
+ "dense_topk": 64,
+ "rerank_topk": 3,
+ "max_new_tokens": 512,
+ }
+
+ # Load config and override RL params if available
+ self._load_config(config_path)
+
+ # Load models
+ print("[PersonalizedLLM] Loading models...")
+ self._load_models()
+
+ # Load memory store
+ print("[PersonalizedLLM] Loading memory store...")
+ self._load_memory_store()
+
+ # Initialize user store
+ self._user_store = UserTensorStore(
+ k=self._rl_cfg["item_dim"],
+ path=user_store_path,
+ )
+
+ # Session contexts per user (in-memory)
+ self._sessions: Dict[str, _SessionContext] = {}
+
+ print("[PersonalizedLLM] Initialization complete.")
+
+ def _load_config(self, config_path: Optional[str]):
+ """Load configuration from yaml files."""
+ self._cfg = load_local_models_config()
+
+ # Try to load user_model.yaml for RL params
+ if config_path is None:
+ config_path = "configs/user_model.yaml"
+
+ self._llm_name = "qwen_1_5b" # Default
+
+ try:
+ if os.path.exists(config_path):
+ with open(config_path, "r") as f:
+ user_cfg = yaml.safe_load(f)
+ if user_cfg:
+ # Override RL params if present
+ for key in self._rl_cfg:
+ if key in user_cfg:
+ self._rl_cfg[key] = user_cfg[key]
+ # LLM name
+ if "llm_name" in user_cfg:
+ self._llm_name = user_cfg["llm_name"]
+ except Exception as e:
+ print(f"[PersonalizedLLM] Warning: Failed to load config: {e}")
+
+ def _load_models(self):
+ """Load all ML models with optional multi-GPU assignment."""
+ import torch
+
+ # Report GPU availability
+ num_gpus = torch.cuda.device_count()
+ print(f"[PersonalizedLLM] Available GPUs: {num_gpus}")
+ for i in range(num_gpus):
+ mem = torch.cuda.get_device_properties(i).total_memory / 1e9
+ print(f" GPU {i}: {torch.cuda.get_device_name(i)} ({mem:.1f}GB)")
+
+ embed_device = self._device_assignment.get("embed", "auto")
+ reranker_device = self._device_assignment.get("reranker", "auto")
+ chat_device = self._device_assignment.get("chat", "auto")
+ extractor_device = self._device_assignment.get("extractor", "auto")
+
+ # Embedding model
+ print(f"[PersonalizedLLM] Loading Embedding model on {embed_device}...")
+ self._embed_model = Qwen3Embedding8B(
+ model_path=self._cfg.embedding.qwen3.local_path,
+ dtype=torch.bfloat16,
+ device_map=embed_device,
+ )
+
+ # Reranker
+ print(f"[PersonalizedLLM] Loading Reranker on {reranker_device}...")
+ self._reranker = Qwen3Reranker(
+ model_path=self._cfg.reranker.qwen3_8b.local_path,
+ device_map=reranker_device,
+ dtype=torch.bfloat16,
+ )
+
+ # Chat model (via registry for backend switching)
+ print(f"[PersonalizedLLM] Loading ChatModel: {self._llm_name} on {chat_device}...")
+ # Pass device override if specified (not "auto")
+ device_for_chat = chat_device if chat_device != "auto" else None
+ self._chat_model = get_chat_model(self._llm_name, device_override=device_for_chat)
+
+ # Preference extractor
+ if self.enable_preference_extraction:
+ extractor_name = "qwen3_0_6b_sft"
+ print(f"[PersonalizedLLM] Loading extractor: {extractor_name} on {extractor_device}...")
+ try:
+ self._extractor = get_preference_extractor(extractor_name)
+ except Exception as e:
+ print(f"[PersonalizedLLM] Warning: Failed to load {extractor_name}: {e}. Using rule-based.")
+ self._extractor = get_preference_extractor("rule")
+ else:
+ print("[PersonalizedLLM] Preference extraction disabled, using rule-based extractor.")
+ self._extractor = get_preference_extractor("rule")
+
+ def _load_memory_store(self):
+ """Load memory cards and embeddings."""
+ if not os.path.exists(self._memory_cards_path):
+ print(f"[PersonalizedLLM] Warning: Memory cards not found at {self._memory_cards_path}")
+ self._memory_cards: List[MemoryCard] = []
+ self._memory_embeddings = np.zeros((0, 4096), dtype=np.float32)
+ self._item_vectors = np.zeros((0, self._rl_cfg["item_dim"]), dtype=np.float32)
+ self._projection = None
+ return
+
+ # Load cards
+ self._memory_cards = []
+ with open(self._memory_cards_path, "r") as f:
+ for line in f:
+ line = line.strip()
+ if line:
+ self._memory_cards.append(MemoryCard.model_validate_json(line))
+
+ # Load embeddings
+ if os.path.exists(self._memory_embeddings_path):
+ self._memory_embeddings = np.load(self._memory_embeddings_path)
+ else:
+ self._memory_embeddings = np.zeros((len(self._memory_cards), 4096), dtype=np.float32)
+
+ # Load projection
+ if os.path.exists(self._item_projection_path):
+ proj_data = np.load(self._item_projection_path)
+ self._projection = ItemProjection(P=proj_data["P"], mean=proj_data["mean"])
+ self._item_vectors = proj_data["V"]
+ else:
+ self._projection = None
+ self._item_vectors = np.zeros((len(self._memory_cards), self._rl_cfg["item_dim"]), dtype=np.float32)
+
+ print(f"[PersonalizedLLM] Loaded {len(self._memory_cards)} memory cards.")
+
+ def _get_or_create_session(self, user_id: str) -> _SessionContext:
+ """Get or create session context for a user."""
+ if user_id not in self._sessions:
+ self._sessions[user_id] = _SessionContext(
+ session_state=OnlineSessionState(user_id=user_id),
+ turn_counter=0,
+ )
+ return self._sessions[user_id]
+
+ def _build_chat_turn(self, user_id: str, text: str, role: str, turn_id: int) -> ChatTurn:
+ """Build a ChatTurn object."""
+ return ChatTurn(
+ user_id=user_id,
+ session_id=f"eval_session_{user_id}",
+ turn_id=turn_id,
+ role=role,
+ text=text,
+ meta={"source": "eval"}
+ )
+
+ def _count_tokens(self, text: str) -> int:
+ """Estimate token count using the tokenizer."""
+ try:
+ # Use the chat model's tokenizer if available
+ if hasattr(self._chat_model, 'tokenizer'):
+ return len(self._chat_model.tokenizer.encode(text))
+ else:
+ # Rough estimate: ~4 chars per token
+ return len(text) // 4
+ except Exception:
+ return len(text) // 4
+
+ def _add_preferences_as_memory(
+ self,
+ prefs: PreferenceList,
+ query: str,
+ user_id: str,
+ turn_id: int,
+ ) -> List[Dict[str, Any]]:
+ """
+ Add extracted preferences as new memory cards.
+ Returns list of preference dicts for debug info.
+ """
+ extracted = []
+
+ if not prefs.preferences or self._projection is None:
+ return extracted
+
+ # Compute embedding for the query
+ e_q = self._embed_model.encode([query], return_tensor=False)[0]
+ v_q = self._projection.transform_vector(np.array(e_q))
+
+ for pref in prefs.preferences:
+ note_text = f"When {pref.condition}, {pref.action}."
+
+ # Record for debug
+ extracted.append({
+ "condition": pref.condition,
+ "action": pref.action,
+ "confidence": pref.confidence,
+ })
+
+ # Deduplication check
+ is_duplicate = any(
+ card.user_id == user_id and card.note_text == note_text
+ for card in self._memory_cards
+ )
+
+ if is_duplicate:
+ continue
+
+ # Create new memory card
+ card = MemoryCard(
+ card_id=str(uuid.uuid4()),
+ user_id=user_id,
+ source_session_id=f"eval_session_{user_id}",
+ source_turn_ids=[turn_id],
+ raw_queries=[query],
+ preference_list=PreferenceList(preferences=[pref]),
+ note_text=note_text,
+ embedding_e=list(e_q),
+ kind="pref",
+ )
+
+ # Add to memory store
+ self._memory_cards.append(card)
+ self._memory_embeddings = np.vstack([self._memory_embeddings, np.array([e_q])])
+ self._item_vectors = np.vstack([self._item_vectors, np.array([v_q])])
+
+ return extracted
+
+ # =========================================================================
+ # Public Interface
+ # =========================================================================
+
+ def chat(self, user_id: str, query: str) -> AssistantResponse:
+ """
+ Main online chat interface.
+
+ Args:
+ user_id: Unique identifier for the user.
+ query: Current user query/message.
+
+ Returns:
+ AssistantResponse containing the answer, usage stats, and debug info.
+
+ Notes:
+ - Internally manages user state, session history, memory retrieval
+ - After this call, you can call apply_feedback() with the turn's feedback
+ """
+ ctx = self._get_or_create_session(user_id)
+ session = ctx.session_state
+ user_state = self._user_store.get_state(user_id)
+
+ # Record user vector before for debug
+ z_long_before = user_state.z_long.copy().tolist()
+ z_short_before = user_state.z_short.copy().tolist()
+
+ # Compute query embedding
+ e_q_t = np.array(self._embed_model.encode([query], return_tensor=False)[0])
+
+ # Store pending RL update info from last turn (for apply_feedback)
+ if session.last_query is not None and self.enable_rl_updates:
+ ctx.pending_rl_update = {
+ "last_query": session.last_query,
+ "last_answer": session.last_answer,
+ "last_memories": session.last_memories,
+ "last_query_embedding": session.last_query_embedding,
+ "current_query_embedding": e_q_t,
+ "last_candidate_item_vectors": session.last_candidate_item_vectors,
+ "last_policy_probs": session.last_policy_probs,
+ "last_chosen_indices": session.last_chosen_indices,
+ }
+
+ # Add user turn to history
+ user_turn = self._build_chat_turn(user_id, query, "user", ctx.turn_counter)
+ session.history.append(user_turn)
+
+ # Vanilla mode: pure LLM without any memory or preference extraction
+ if self.mode == "vanilla":
+ # Skip preference extraction and memory retrieval entirely
+ extracted_prefs = []
+ candidates = []
+ cand_item_vecs = np.array([])
+ base_scores = np.array([])
+ chosen_indices = []
+ probs = np.array([])
+ memories_t = []
+ memory_notes = []
+ else:
+ # Extract preferences from conversation (if enabled)
+ extracted_prefs = []
+ if self.enable_preference_extraction:
+ prefs = self._extractor.extract_turn(session.history)
+ extracted_prefs = self._add_preferences_as_memory(
+ prefs, query, user_id, ctx.turn_counter
+ )
+
+ # Retrieve memories
+ # In "nopersonal" mode: deterministic retrieval (dense + rerank + topk), no policy/user vector
+ # In "full" mode: policy-based retrieval with user vector influence
+ if self.mode == "nopersonal":
+ candidates, cand_item_vecs, base_scores, chosen_indices, probs = retrieve_no_policy(
+ user_id=user_id,
+ query=query,
+ embed_model=self._embed_model,
+ reranker=self._reranker,
+ memory_cards=self._memory_cards,
+ memory_embeddings=self._memory_embeddings,
+ topk_dense=self._rl_cfg["dense_topk"],
+ topk_rerank=self._rl_cfg["rerank_topk"],
+ only_own_memories=self.only_own_memories,
+ )
+ else:
+ beta_long = self._rl_cfg["beta_long"]
+ beta_short = self._rl_cfg["beta_short"]
+ # eval_mode=True -> sample=False (greedy/deterministic)
+ # eval_mode=False -> sample=True (stochastic/exploration)
+ candidates, cand_item_vecs, base_scores, chosen_indices, probs = retrieve_with_policy(
+ user_id=user_id,
+ query=query,
+ embed_model=self._embed_model,
+ reranker=self._reranker,
+ memory_cards=self._memory_cards,
+ memory_embeddings=self._memory_embeddings,
+ user_store=self._user_store,
+ item_vectors=self._item_vectors,
+ topk_dense=self._rl_cfg["dense_topk"],
+ topk_rerank=self._rl_cfg["rerank_topk"],
+ beta_long=beta_long,
+ beta_short=beta_short,
+ tau=self._rl_cfg["tau"],
+ only_own_memories=self.only_own_memories,
+ sample=not self.eval_mode,
+ )
+
+ # Get selected memories
+ memories_t = [candidates[int(i)] for i in chosen_indices] if chosen_indices else []
+ memory_notes = [m.note_text for m in memories_t]
+
+ # Build prompt and count tokens
+ prompt_tokens = self._count_tokens(query)
+ for turn in session.history:
+ prompt_tokens += self._count_tokens(turn.text)
+ for note in memory_notes:
+ prompt_tokens += self._count_tokens(note)
+
+ # Generate answer
+ answer_t = self._chat_model.answer(
+ history=session.history,
+ memory_notes=memory_notes,
+ max_new_tokens=self._rl_cfg["max_new_tokens"],
+ )
+
+ completion_tokens = self._count_tokens(answer_t)
+
+ # Add assistant turn to history
+ assist_turn = self._build_chat_turn(user_id, answer_t, "assistant", ctx.turn_counter)
+ session.history.append(assist_turn)
+
+ # Update session state for next turn
+ session.last_query = query
+ session.last_answer = answer_t
+ session.last_memories = memories_t
+ session.last_query_embedding = e_q_t
+ session.last_candidate_item_vectors = cand_item_vecs
+ session.last_policy_probs = probs
+ session.last_chosen_indices = list(chosen_indices) if len(chosen_indices) > 0 else []
+
+ ctx.turn_counter += 1
+
+ # Build debug info
+ debug = DebugInfo(
+ selected_memory_ids=[m.card_id for m in memories_t],
+ selected_memory_notes=[m.note_text for m in memories_t],
+ selected_memory_scores=[float(probs[i]) if i < len(probs) else 0.0 for i in chosen_indices] if len(chosen_indices) > 0 else [],
+ user_vector_before=z_long_before + z_short_before, # Concatenated for simplicity
+ user_vector_after=user_state.z_long.tolist() + user_state.z_short.tolist(),
+ extracted_preferences=extracted_prefs,
+ extra={
+ "num_candidates": len(candidates),
+ "num_total_memories": len(self._memory_cards),
+ "z_long_norm": float(np.linalg.norm(user_state.z_long)),
+ "z_short_norm": float(np.linalg.norm(user_state.z_short)),
+ }
+ )
+
+ # Build usage stats
+ usage = UsageStats(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ model=self._llm_name,
+ )
+
+ return AssistantResponse(
+ answer=answer_t,
+ usage=usage,
+ debug=debug,
+ )
+
+ def reset_session(self, user_id: str) -> None:
+ """
+ Reset session for a user (new chat window).
+
+ This clears:
+ - Session conversation history
+ - Short-term user vector (z_short)
+ - Pending RL update info
+
+ This preserves:
+ - Long-term user vector (z_long)
+ - User's memory cards
+
+ Args:
+ user_id: The user whose session to reset.
+ """
+ # Clear session context
+ if user_id in self._sessions:
+ del self._sessions[user_id]
+
+ # Create fresh session
+ self._sessions[user_id] = _SessionContext(
+ session_state=OnlineSessionState(user_id=user_id),
+ turn_counter=0,
+ )
+
+ # Reset short-term vector but keep long-term
+ user_state = self._user_store.get_state(user_id)
+ user_state.z_short = np.zeros(self._rl_cfg["item_dim"], dtype=np.float32)
+ self._user_store.save_state(user_state)
+
+ def reset_user(self, user_id: str) -> None:
+ """
+ Completely reset a user (new "life").
+
+ This clears:
+ - Long-term user vector (z_long)
+ - Short-term user vector (z_short)
+ - User's memory cards
+ - Session history
+ - All cached state
+
+ Args:
+ user_id: The user to reset.
+ """
+ # Clear session
+ if user_id in self._sessions:
+ del self._sessions[user_id]
+
+ # Reset user state vectors
+ user_state = self._user_store.get_state(user_id)
+ user_state.z_long = self._user_store.global_init_z.copy()
+ user_state.z_short = np.zeros(self._rl_cfg["item_dim"], dtype=np.float32)
+ user_state.reward_ma = 0.0
+ self._user_store.save_state(user_state)
+
+ # Find indices to KEEP (cards NOT belonging to this user)
+ # Must do this BEFORE modifying _memory_cards
+ keep_indices = [
+ i for i, card in enumerate(self._memory_cards)
+ if card.user_id != user_id
+ ]
+
+ # Filter memory cards
+ self._memory_cards = [self._memory_cards[i] for i in keep_indices]
+
+ # Filter embeddings and item vectors to match
+ if len(keep_indices) > 0 and len(self._memory_embeddings) > 0:
+ self._memory_embeddings = self._memory_embeddings[keep_indices]
+ self._item_vectors = self._item_vectors[keep_indices]
+ else:
+ # No cards left or no embeddings
+ embed_dim = self._memory_embeddings.shape[1] if len(self._memory_embeddings) > 0 else 4096
+ self._memory_embeddings = np.zeros((0, embed_dim), dtype=np.float32)
+ self._item_vectors = np.zeros((0, self._rl_cfg["item_dim"]), dtype=np.float32)
+
+ def apply_feedback(self, feedback: Feedback) -> None:
+ """
+ Apply feedback from user simulator or judge.
+
+ This performs the REINFORCE update to user vectors based on
+ the reward signal from the previous turn.
+
+ Args:
+ feedback: Feedback object containing reward, gating, and metadata.
+
+ Notes:
+ - Should be called AFTER chat() but BEFORE the next chat() call
+ - Uses the stored context from the previous turn
+ - If enable_rl_updates is False, this is a no-op (logging only)
+ - If mode is "nopersonal", this is a no-op (baseline comparison)
+ """
+ if not self.enable_rl_updates:
+ return
+
+ # In "nopersonal" or "vanilla" mode, skip RL updates entirely (baseline)
+ if self.mode in ("nopersonal", "vanilla"):
+ return
+
+ user_id = feedback.user_id
+ ctx = self._sessions.get(user_id)
+
+ if ctx is None or ctx.pending_rl_update is None:
+ return
+
+ pending = ctx.pending_rl_update
+ user_state = self._user_store.get_state(user_id)
+
+ # Check if we have the necessary data for RL update
+ if (pending.get("last_candidate_item_vectors") is not None and
+ pending.get("last_policy_probs") is not None and
+ pending.get("last_chosen_indices") is not None and
+ len(pending["last_chosen_indices"]) > 0):
+
+ # Extract chosen vectors
+ chosen_indices = pending["last_chosen_indices"]
+ candidate_vectors = pending["last_candidate_item_vectors"]
+
+ if len(candidate_vectors) > 0:
+ # REINFORCE expects:
+ # - item_vectors: ALL candidate vectors [K, k]
+ # - chosen_indices: indices into those candidates
+ # - policy_probs: probabilities over all K candidates [K]
+ updated = reinforce_update_user_state(
+ user_state=user_state,
+ item_vectors=candidate_vectors, # All candidates, not just chosen
+ chosen_indices=chosen_indices, # Original indices into candidates
+ policy_probs=pending["last_policy_probs"],
+ reward_hat=feedback.reward,
+ gating=feedback.gating,
+ tau=self._rl_cfg["tau"],
+ eta_long=self._rl_cfg["eta_long"],
+ eta_short=self._rl_cfg["eta_short"],
+ ema_alpha=self._rl_cfg["ema_alpha"],
+ short_decay=self._rl_cfg["short_decay"],
+ )
+
+ if updated:
+ self._user_store.save_state(user_state)
+
+ # Clear pending update
+ ctx.pending_rl_update = None
+
+ def get_user_state_summary(self, user_id: str) -> Dict[str, Any]:
+ """
+ Get a summary of the user's current state (for debugging/analysis).
+
+ Args:
+ user_id: The user to query.
+
+ Returns:
+ Dictionary with user state information.
+ """
+ user_state = self._user_store.get_state(user_id)
+ ctx = self._sessions.get(user_id)
+
+ user_memory_count = sum(
+ 1 for card in self._memory_cards if card.user_id == user_id
+ )
+
+ return {
+ "user_id": user_id,
+ "z_long_norm": float(np.linalg.norm(user_state.z_long)),
+ "z_short_norm": float(np.linalg.norm(user_state.z_short)),
+ "reward_ma": user_state.reward_ma,
+ "session_history_length": len(ctx.session_state.history) if ctx else 0,
+ "turn_counter": ctx.turn_counter if ctx else 0,
+ "user_memory_count": user_memory_count,
+ "total_memory_count": len(self._memory_cards),
+ }
+
+ def persist(self) -> None:
+ """
+ Persist all state to disk.
+
+ Call this at the end of an evaluation run to save:
+ - User state vectors
+ - Memory cards
+ """
+ # Save user store
+ self._user_store.persist()
+
+ # Save memory cards
+ with open(self._memory_cards_path, "w", encoding="utf-8") as f:
+ for card in self._memory_cards:
+ f.write(card.model_dump_json() + "\n")
+
+ # Save embeddings
+ np.save(self._memory_embeddings_path, self._memory_embeddings)
+
+ # Save item projection with updated vectors
+ if self._projection is not None:
+ np.savez(
+ self._item_projection_path,
+ P=self._projection.P,
+ mean=self._projection.mean,
+ V=self._item_vectors,
+ )
+
+ print("[PersonalizedLLM] State persisted to disk.")
+
+
+# =============================================================================
+# Convenience Factory
+# =============================================================================
+
+def create_personalized_llm(
+ config_path: Optional[str] = None,
+ **kwargs
+) -> PersonalizedLLM:
+ """
+ Factory function to create a PersonalizedLLM instance.
+
+ Args:
+ config_path: Optional path to configuration file.
+ **kwargs: Additional arguments passed to PersonalizedLLM constructor.
+
+ Returns:
+ Configured PersonalizedLLM instance.
+ """
+ return PersonalizedLLM(config_path=config_path, **kwargs)
+
diff --git a/src/personalization/types.py b/src/personalization/types.py
new file mode 100644
index 0000000..a25b560
--- /dev/null
+++ b/src/personalization/types.py
@@ -0,0 +1,4 @@
+from personalization.retrieval.preference_store.schemas import ChatTurn
+
+__all__ = ["ChatTurn"]
+
diff --git a/src/personalization/user_model/__init__.py b/src/personalization/user_model/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/user_model/__init__.py
diff --git a/src/personalization/user_model/features.py b/src/personalization/user_model/features.py
new file mode 100644
index 0000000..a4508b4
--- /dev/null
+++ b/src/personalization/user_model/features.py
@@ -0,0 +1,49 @@
+import numpy as np
+from dataclasses import dataclass
+from sklearn.decomposition import PCA
+
+@dataclass
+class ItemProjection:
+ P: np.ndarray # [k, d]
+ mean: np.ndarray # [d]
+
+ @classmethod
+ def from_pca(cls, embeddings: np.ndarray, k: int) -> "ItemProjection":
+ """
+ embeddings: [M, d]
+ """
+ mean = embeddings.mean(axis=0)
+ centered = embeddings - mean
+
+ # Ensure k is not larger than min(n_samples, n_features)
+ n_samples, n_features = embeddings.shape
+ actual_k = min(k, n_samples, n_features)
+
+ pca = PCA(n_components=actual_k)
+ pca.fit(centered)
+
+ # pca.components_: [k, d]
+ P = pca.components_ # Each row is a principal component vector
+
+ # If we had to reduce k, we might want to pad P or handle it?
+ # For now, let's assume we get what we asked for or less if data is small.
+ # But for the system we want fixed k.
+ # If actual_k < k, we should pad with zeros to match expected dimension.
+ if actual_k < k:
+ padding = np.zeros((k - actual_k, n_features), dtype=P.dtype)
+ P = np.vstack([P, padding])
+
+ return cls(P=P, mean=mean)
+
+ def transform_embeddings(self, E: np.ndarray) -> np.ndarray:
+ """
+ E: [N, d] -> [N, k]
+ """
+ return (E - self.mean) @ self.P.T
+
+ def transform_vector(self, e: np.ndarray) -> np.ndarray:
+ """
+ e: [d] -> [k]
+ """
+ return self.P @ (e - self.mean)
+
diff --git a/src/personalization/user_model/policy/__init__.py b/src/personalization/user_model/policy/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/user_model/policy/__init__.py
diff --git a/src/personalization/user_model/policy/optimizer.py b/src/personalization/user_model/policy/optimizer.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/user_model/policy/optimizer.py
diff --git a/src/personalization/user_model/policy/reinforce.py b/src/personalization/user_model/policy/reinforce.py
new file mode 100644
index 0000000..adfaef7
--- /dev/null
+++ b/src/personalization/user_model/policy/reinforce.py
@@ -0,0 +1,104 @@
+from typing import Sequence, List
+from dataclasses import dataclass
+import numpy as np
+
+from personalization.user_model.tensor_store import UserState
+
+@dataclass
+class PolicyScores:
+ scores: np.ndarray # [K] s(q_t, m; u)
+ probs: np.ndarray # [K] π_z(m|q_t)
+
+def compute_policy_scores(
+ base_scores: np.ndarray, # [K], from reranker
+ user_state: UserState,
+ item_vectors: np.ndarray, # [K, k], v_m for the K candidates
+ beta_long: float,
+ beta_short: float,
+ tau: float,
+) -> PolicyScores:
+ """
+ Compute personalized scores and softmax probabilities.
+ s(q_t, m; u) = s_0(q_t,m) + z_t^{(eff)}.T @ v_m
+ z_t^{(eff)} = beta_long * z_long + beta_short * z_short
+ """
+ if len(item_vectors) == 0:
+ return PolicyScores(scores=np.array([]), probs=np.array([]))
+
+ z_eff = beta_long * user_state.z_long + beta_short * user_state.z_short
+
+ # Calculate personalized term
+ # item_vectors: [K, k]
+ # z_eff: [k]
+ # term: [K]
+ personalization_term = np.dot(item_vectors, z_eff)
+
+ # Total scores
+ scores = base_scores + personalization_term
+
+ # Softmax
+ # Use exp(score/tau)
+ # Subtract max for stability
+ scaled_scores = scores / tau
+ exp_scores = np.exp(scaled_scores - np.max(scaled_scores))
+ probs = exp_scores / np.sum(exp_scores)
+
+ return PolicyScores(scores=scores, probs=probs)
+
+def reinforce_update_user_state(
+ user_state: UserState,
+ item_vectors: np.ndarray, # [K, k] for candidates
+ chosen_indices: Sequence[int], # indices of A_t in 0..K-1
+ policy_probs: np.ndarray, # [K] π_z(m|q_t)
+ reward_hat: float, # \hat r_t
+ gating: float, # g_t
+ tau: float,
+ eta_long: float,
+ eta_short: float,
+ ema_alpha: float,
+ short_decay: float,
+) -> bool:
+ """
+ In-place update user_state.z_long / z_short / reward_ma via REINFORCE.
+ Returns True if update occurred, False otherwise.
+ """
+ if len(chosen_indices) == 0:
+ return False
+
+ # 1. Baseline Advantage
+ advantage = gating * (reward_hat - user_state.reward_ma)
+
+ # Optimization: skip if advantage is negligible
+ if abs(advantage) < 1e-6:
+ return False
+
+ # 2. Chosen Vector Average (v_{chosen,t})
+ chosen_mask = np.zeros(len(item_vectors), dtype=np.float32)
+ for idx in chosen_indices:
+ idx_int = int(idx)
+ if 0 <= idx_int < len(item_vectors):
+ chosen_mask[idx_int] = 1.0
+
+ if chosen_mask.sum() == 0:
+ return False
+
+ chosen_mask /= chosen_mask.sum() # Normalize to average
+ v_chosen = np.dot(chosen_mask, item_vectors) # [k]
+
+ # 3. Expected Vector (\mu_t(z))
+ # policy_probs: [K]
+ # item_vectors: [K, k]
+ v_expect = np.dot(policy_probs, item_vectors) # [k]
+
+ # 4. Gradient Direction
+ grad = (advantage / tau) * (v_chosen - v_expect)
+
+ # 5. Update Vectors
+ user_state.z_long += eta_long * grad
+ user_state.z_short = (1.0 - short_decay) * user_state.z_short + eta_short * grad
+
+ # 6. Update Reward Baseline (EMA)
+ user_state.reward_ma = (1.0 - ema_alpha) * user_state.reward_ma + ema_alpha * reward_hat
+
+ return True
+
diff --git a/src/personalization/user_model/scoring.py b/src/personalization/user_model/scoring.py
new file mode 100644
index 0000000..75ffc84
--- /dev/null
+++ b/src/personalization/user_model/scoring.py
@@ -0,0 +1,25 @@
+import numpy as np
+from .tensor_store import UserState
+
+def score_with_user(
+ base_score: float,
+ user_state: UserState,
+ v_m: np.ndarray, # [k]
+ beta_long: float,
+ beta_short: float,
+) -> float:
+ """
+ Personalized scoring:
+ s = base_score + (beta_long * z_long + beta_short * z_short) . v_m
+ Day2: beta_long = beta_short = 0 -> s == base_score
+ """
+ z_eff = beta_long * user_state.z_long + beta_short * user_state.z_short
+ # dot product
+ # Ensure shapes match
+ if v_m.shape != z_eff.shape:
+ # Just in case of dimension mismatch
+ return float(base_score)
+
+ term = np.dot(z_eff, v_m)
+ return float(base_score + term)
+
diff --git a/src/personalization/user_model/session_state.py b/src/personalization/user_model/session_state.py
new file mode 100644
index 0000000..5cd2243
--- /dev/null
+++ b/src/personalization/user_model/session_state.py
@@ -0,0 +1,19 @@
+from dataclasses import dataclass, field
+from typing import List, Optional
+import numpy as np
+
+from personalization.retrieval.preference_store.schemas import ChatTurn, MemoryCard
+
+@dataclass
+class OnlineSessionState:
+ user_id: str
+ history: List[ChatTurn] = field(default_factory=list)
+ last_query: Optional[str] = None
+ last_answer: Optional[str] = None
+ last_memories: List[MemoryCard] = field(default_factory=list)
+ last_query_embedding: Optional[np.ndarray] = None
+ last_candidate_item_vectors: Optional[np.ndarray] = None # [K, k]
+ last_policy_probs: Optional[np.ndarray] = None # [K]
+ last_chosen_indices: List[int] = field(default_factory=list)
+
+
diff --git a/src/personalization/user_model/tensor_store.py b/src/personalization/user_model/tensor_store.py
new file mode 100644
index 0000000..42dbf4e
--- /dev/null
+++ b/src/personalization/user_model/tensor_store.py
@@ -0,0 +1,80 @@
+import numpy as np
+from dataclasses import dataclass
+from typing import Dict, Optional
+import os
+
+@dataclass
+class UserState:
+ user_id: str
+ z_long: np.ndarray # [k]
+ z_short: np.ndarray # [k]
+ reward_ma: float # baseline for reward, init 0.0
+
+class UserTensorStore:
+ def __init__(self, k: int, path: str):
+ self.k = k
+ self.path = path
+ self._states: Dict[str, UserState] = {}
+ self._load()
+
+ # Calculate global mean for initialization
+ if self._states:
+ z_all = np.stack([st.z_long for st in self._states.values()])
+ self.global_init_z = np.mean(z_all, axis=0)
+ else:
+ self.global_init_z = np.zeros(self.k, dtype=np.float32)
+
+ def _load(self):
+ if os.path.exists(self.path):
+ try:
+ data = np.load(self.path, allow_pickle=True)
+ # Assume saved as dict of user_id -> dict/object
+ # For simplicity, let's say we save a single dict in a .npy or .npz
+ # But np.save/load with pickle is tricky for complex objects.
+ # Let's save as .npz where each key is user_id and value is a structured array or just use z_long for now?
+ # A robust way for prototype:
+ # save multiple arrays: "u1_long", "u1_short", "u1_meta"
+ pass
+ # For Day 2 prototype, we might just re-init from init script or rely on memory if not persisting strictly.
+ # But let's try to load if we can.
+
+ # Let's implement a simple npz schema:
+ # keys: "{uid}_long", "{uid}_short", "{uid}_meta" (meta=[reward_ma])
+ for key in data.files:
+ if key.endswith("_long"):
+ uid = key[:-5]
+ z_long = data[key]
+ z_short = data.get(f"{uid}_short", np.zeros(self.k))
+ meta = data.get(f"{uid}_meta", np.array([0.0]))
+ self._states[uid] = UserState(uid, z_long, z_short, float(meta[0]))
+ except Exception as e:
+ print(f"Warning: Failed to load UserStore from {self.path}: {e}")
+
+ def _save(self):
+ # Save to npz
+ save_dict = {}
+ for uid, state in self._states.items():
+ save_dict[f"{uid}_long"] = state.z_long
+ save_dict[f"{uid}_short"] = state.z_short
+ save_dict[f"{uid}_meta"] = np.array([state.reward_ma])
+ np.savez(self.path, **save_dict)
+
+ def get_state(self, user_id: str) -> UserState:
+ if user_id not in self._states:
+ # Lazy init with global mean for new users
+ state = UserState(
+ user_id=user_id,
+ z_long=self.global_init_z.copy(),
+ z_short=np.zeros(self.k, dtype=np.float32),
+ reward_ma=0.0,
+ )
+ self._states[user_id] = state
+ return self._states[user_id]
+
+ def save_state(self, state: UserState) -> None:
+ self._states[state.user_id] = state
+
+ def persist(self):
+ """Public method to force save to disk."""
+ self._save()
+
diff --git a/src/personalization/utils/__init__.py b/src/personalization/utils/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/utils/__init__.py
diff --git a/src/personalization/utils/ids.py b/src/personalization/utils/ids.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/utils/ids.py
diff --git a/src/personalization/utils/io.py b/src/personalization/utils/io.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/utils/io.py
diff --git a/src/personalization/utils/logging.py b/src/personalization/utils/logging.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/utils/logging.py
diff --git a/src/personalization/utils/timing.py b/src/personalization/utils/timing.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/src/personalization/utils/timing.py